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Abstract

Many plants have natural partnerships with microbes that can boost their nitrogen (N) and/

or phosphorus (P) acquisition. To assess whether wheat may have undiscovered associa-

tions of these types, we tested if N/P-starved Triticum aestivum show microbiome profiles

that are simultaneously different from those of N/P-amended plants and those of their own

bulk soils. The bacterial and fungal communities of root, rhizosphere, and bulk soil samples

from the Historical Dryland Plots (Lethbridge, Canada), which hold T. aestivum that is grown

both under N/P fertilization and in conditions of extreme N/P-starvation, were taxonomically

described and compared (bacterial 16S rRNA genes and fungal Internal Transcribed Spac-

ers—ITS). As the list may include novel N- and/or P-providing wheat partners, we then iden-

tified all the operational taxonomic units (OTUs) that were proportionally enriched in one or

more of the nutrient starvation- and plant-specific communities. These analyses revealed:

a) distinct N-starvation root and rhizosphere bacterial communities that were proportionally

enriched, among others, in OTUs belonging to families Enterobacteriaceae, Chitinophaga-

ceae, Comamonadaceae, Caulobacteraceae, Cytophagaceae, Streptomycetaceae, b) dis-

tinct N-starvation root fungal communities that were proportionally enriched in OTUs

belonging to taxa Lulworthia, Sordariomycetes, Apodus, Conocybe, Ascomycota, Croci-

creas, c) a distinct P-starvation rhizosphere bacterial community that was proportionally

enriched in an OTU belonging to genus Agrobacterium, and d) a distinct P-starvation root

fungal community that was proportionally enriched in OTUs belonging to genera Parastago-

nospora and Phaeosphaeriopsis. Our study might have exposed wheat-microbe connec-

tions that can form the basis of novel complementary yield-boosting tools.

Introduction

The spread of chemical fertilization practices was one of the main features of the Green Revo-

lution. These yield-boosting methods are so efficient that they quickly became worldwide
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pillars of intensive agriculture. The environmental costs associated with the currently general-

ized use of inorganic N and P fertilizers are, however, mounting [1–4]. Although it remains

manageable now, this imbalance could eventually compromise the sustainability of our farm-

ing system [5–6]. It therefore constitutes a strong incentive for the development of comple-

mentary yield-boosting tools.

Farmers already have access to many such tools, including crop cultivars that possess

improved nutrient use efficiencies, alternative agronomic practices, and microbial inoculants

[7–10]. However, although appreciable, the reduction of global environmental impacts that

these tools can collectively provide appears limited [9, 11]. More will likely be needed to

address the future challenges of sustainable food production. As many of the currently

deployed complementary yield-boosting tools rest on natural N- or P-sharing plant-microbe

partnerships, discovering new partnerships of these types could help us develop the necessary

tools.

Targeting wheat may be a good choice for research endeavors that have such objectives.

Several studies suggest that the plant can partner with N- and P-providing microorganisms

[12–20], but its natural microbial associations are not well delineated. Since wheat farming

currently consumes approximately 20% of the worldwide production of inorganic N and P fer-

tilizers [21], this choice also opens up the possibility of producing highly valuable complemen-

tary yield-boosting tools. We thus focused the work presented herein on T. aestivum, the most

widely grown wheat species.

Correlations between microbiome composition and soil N/P content have been reported

for many plants [22–32]. This phenomenon is largely attributed to concomitant variations of

soil microbiome composition, which presumably prompt different unsolicited plant coloniza-

tion processes [33, 34]. But the dynamics of N- and P-sharing plant-microbe partnerships are

undoubtedly also at play. The N-related microbiome variations seen in legumes are, for exam-

ple, largely tied to the plants’ modulation of their rhizobia recruitment efforts [35–37]. The P-

related microbiome variations seen in many mycorrhizal embroyphytes are similarly tied to

the recruitment of arbuscular mycorrhizae [38–40]. The prevalence of N/P-sharing plant-

microbe partnerships, and their contribution to N/P-related variations of plant microbiome

composition, seem to extend much beyond the above examples [41–45]. To assess whether

wheat may be among the plants that have undiscovered associations of these types, we thus

first aimed to test if its root and rhizosphere microbiomes vary with soil N and P content.

The microbiomes of plant roots and rhizospheres are generally distinguishable from those

of the adjacent bulk soils [46]. This phenomenon is again largely attributed to unsolicited

microbial colonization. But plant recruitment of N- and P-providing microorganisms is also

undoubtedly at play under conditions of low soil N and P. Legumes’ activation of flavonoid

release and nodule organogenesis mechanisms, for example, promotes such contrasts [36].

Similar patterns are also attributed to other microbial attraction and accommodation mecha-

nisms [42, 44]. We thus, as part of the aforementioned assessment, also aimed to test if wheat

shapes its root and rhizosphere microbiomes under conditions of low N and P availability.

The Historical Dryland Plots, a unique long-term experiment that examines wheat produc-

tion with and without the use of N and P fertilizers in Lethbridge, Canada [47], constituted the

ideal setting to run the selected tests. Indeed, its Rotation A section (wheat without fallow

since 1911) contains a plot that annually receives N and P fertilization (45 kg N ha-1 ammo-

nium nitrate and 20 kg P ha-1 monocalcium phosphate, i.e. N45P20) and plots that have not

been amended with one or both for over 4 decades (i.e. N45P0, N0P20, N0P0). It thus offers an

access to T. aestivum that are both grown under sufficient N/P supplies and in conditions of

extreme N/P-starvation on the same land. We therefore profiled the bacterial and fungal com-

munities that were associated with T. aestivum roots, rhizospheres, and bulk soil collected

Microbiomes of nitrogen- and phosphorus-starved Triticum aestivum
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from each Rotation A plot, and tested: 1) if the nutrient-starved T. aestivum showed root and

rhizosphere microbial communities that were significantly different from those of the fertilized

plants (hypothesis 1, Fig 1), and 2) if starvation-specific T. aestivum communities were also

significantly different from those of the adjacent bulk soils (hypothesis 2, Fig 1). As they may

represent soil microbes that are specifically attracted towards the plant when it experiences N-

or P-starvation, a behavior that is seen in known N- and P-providing plant partners [46, 48,

49], we then identified all the OTUs that were proportionally enriched in one or more of the

nutrient starvation- and plant-specific communities.

Material and methods

Sampling and DNA extraction

DNA samples analyzed in this study were provided by B. Helgason (Agriculture and Agri-

Food Canada and University of Saskatchewan) and S. Hemmingsen (National Research Coun-

cil Canada). Plant and soil samples (S1 Table) were collected from the Rotation A plot of the

Rotation ABC study at the AAFC Lethbridge Research Center in 2013 and 2014, when the

plants were in early vegetative growth and anthesis, following the procedure described by Sici-

liano and Germida [50]. DNA was extracted using DNeasy PowerSoil and PowerPlant Pro

DNA Isolation Kits (Qiagen, Hilden, Germany) from bulk soil (250 mg per sample), rhizo-

sphere soil (250 mg per sample), and washed root samples (50 mg per sample) collected by

Helgason (Hemmingsen personal communication). Rotation A plots N45P0, N0P20, and

N45P20 were supplemented once a year with 45 kg N ha-1 ammonium nitrate and/or 20 kg P

ha-1 monocalcium phosphate [47]. AC Lillian was planted during the period under study.

PCR amplification/sequencing of microbial taxonomic markers

Genes encoding for a portion of the V4 region of bacterial 16S rRNA were amplified from

DNA extracts by PCR, with the following reagents and conditions: 1X HotStarTaq Plus Master

Mix (Qiagen, Hilden, Germany), 0.4 mg/mL bovine serum albumin (Roche Diagnostics, Basel,

Switzerland), and 0.6 uM each of forward (F520 5'-TCG TCG GCA GCG TCA GAT GTG
TAT AAG AGA CAG AGC AGC CGC GGT AAT-3') and reverse (R799 5'-GTC TCG
TGG GCT CGG AGA TGT GTA TAA GAG ACA GCA GGG TAT CTA ATC CTG TT-
3', based on Huws et al. [51] MiSeq primers (Integrated DNA Technologies, Coralville, USA)

per reaction; 5 min at 95˚C, followed by 25 cycles of 30 sec at 95˚C, 30 sec annealing at 45˚C,

45 sec at 72˚C, and a final 10 min at 72˚C. Fungal internal transcribed spacers were also PCR

amplified using the same reagents and conditions as bacterial 16S rRNA genes, except for the

forward (ITS_F 5'-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CTT
GGT CAT TTA GAG GAA GTA A -3') and reverse (ITS_R 5'-GTC TCG TGG GCT
CGG AGA TGT GTA TAA GAG ACA GCT GCG TTC TTC ATC GAT -3', based on

Martin and Rygiewicz [52]) primers.

PCR amplicons were purified with Beckman Coulter’s Agencourt AMPure XP system

(Beckman Coulter Inc, Brea, USA) according to the manufacturer’s instructions. They were

then indexed by PCR with the following reagents and conditions: 5 uL of purified amplicon

solution, 1X KAPA HiFi HotSart ReadyMix (Kapa Biosystems, Wilmington, USA), and 2.5 uL

each of Nextera XT DNA Library Prep (Illumina, San Diego, USA) index 1 and index 2 primer;

3 min at 95˚C, followed by 8 cycles of 30 sec at 95˚C, 30 sec annealing at 55˚C, 30 sec at 72˚C,

and a final 5 min at 72˚C. Indexed PCR amplicons were again purified using Beckman Coul-

ter’s Agencourt AMPure XP system, quantified with a Quant-iT PicoGreen dsDNA Assay Kit

(ThermoFisher Scientific, Waltham, USA), pooled, size selected with a SPRISelect DNA Size

Selection system (Beckman Coulter Inc, Brea, USA), and sequenced on a MiSeq DNA
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Sequencer (Illumina, San Diego, USA). Sequence data was deposited into the NCBI’s sequence

read archive under bioproject PRJNA343655 and biosamples SAMN05791727 to

SAMN05791930.

Sequence quality control, collation of sequences into OTUs, normalization

of OTU abundances, and assignment of taxonomic qualifiers

Sets of 16S rRNA gene and ITS sequence reads were all analyzed with a custom amplicon anal-

ysis pipeline [53]. Briefly: common sequence contaminants were removed from raw reads

using a kmer matching tool (DUK v1.051, http://duk.sourceforge.net/), filtered reads were

assembled using FLASH v1.2.11 [54], assembled amplicons were trimmed with custom Perl

scripts to remove remaining primer sequences and filtered for quality (sequencing with>1 N,

an average quality score lower than 33, or more than 5 nucleotides having a quality score lower

than 10 were rejected).

OTU generation was conducted using a three-step clustering pipeline. Quality controlled

sequences were dereplicated at 100% identity using a custom Perl script, denoised at 99% iden-

tity using USEARCH v.6.0.203 [55]. Clusters of less than three reads were discarded and

remaining clusters were scanned for chimeras using UCHIME, first in de novomode, then in

reference mode, using the Broad Institute’s 16S rRNA Gold reference database. Remaining

clusters were clustered at 97% identity (USEARCH).

16S rRNA gene OTUs were assigned taxonomic qualifiers using the RDP classifier (v2.5)

with a modified Greengenes training set built from a concatenation of the Greengenes data-

base (version 13_8 maintained by Second Genome), Silva eukaryotes 18S r118, and a selection

of chloroplast and mitochondrial rRNA sequences. For ITS OTUs, this task was performed

Fig 1. Microbiome comparison procedure. Procedure used herein to identify starvation- and T. aestivum-specific bacterial and fungal communities (example

illustrating the assessment of N-starved T. aestivum communities). On the left, a T. aestivum plant grown with N fertilization. On the right, a T. aestivum plant grown

without N fertilization. H1 = hypothesis 1: the nutrient-starved T. aestivum show root and rhizosphere microbial communities that are significantly different from those

of the fertilized plants. H2 = hypothesis 2: starvation-specific T. aestivum communities are significantly different from those of the adjacent bulk soil.

https://doi.org/10.1371/journal.pone.0210538.g001
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using the ITS Unite database. Hierarchical tree files were generated with custom Perl scripts

and used to generate training sets using the RDP classifier training set generator’s functionality

[56]. With taxonomic qualifiers in hand, OTU abundances were normalized with edgeR

v3.10.2 [57].

Estimated microbial community coverages, comparisons of community

structures, identification of OTU enrichments

The proportion of each microbial community that was captured through the sequencing

efforts described above was estimated using R package Entropart (Chao estimator) [58].

We then sought to determine whether significant differences of mean community dissimi-

larity were found among the bacterial root data of the four Rotation A plots (N0P0, N0P20,

N45P0, N45P20). This was accomplished by running a permanova analysis on a matrix of com-

munity dissimilarity (Bray-Curtis index) created with the associated sample profiles (9999 per-

mutations, R package Vegan version 2.4–1) [59]. This procedure was subsequently repeated

with bacterial rhizosphere, bacterial bulk soil, fungal root, fungal rhizosphere, and fungal bulk

soil data. Datasets that showed significant differences (p< 0.05) were further explored with

post hoc permanova analyses that compared plot-specific data subsets against each other (e.g.

bacterial root N45P20 vs. N0P20 for N starvation and N45P20 vs. N45P0 for P starvation, hypothe-

sis 1—Fig 1, analyses parameters as above). The p values of these individual pairwise compari-

sons were adjusted with the Bonferroni correction [60] to account for multiple testing. The

tests that revealed significant differences (p< 0.05 after adjustment) were followed by tests for

multivariate homogeneity of group dispersion conducted with Vegan function betadisper and

R stats package function tukeyHSD (default parameters, p values also adjusted with Bonferroni

correction). Non-metric multidimensional scaling (NMDS) ordinations were performed with

Vegan’s metaMDS function to illustrate community differences (trymax = 100, all other

parameters default).

We then sought to determine whether the identified starvation-specific communities were

also significantly different from their bulk soil counterparts (e.g. bacterial root N0P0 vs. bacte-

rial bulk soil N0P0, hypothesis 2—Fig 1). This was also accomplished by running permanova

analyses on matrices of community dissimilarity (parameters as above with Bonferroni correc-

tions). The tests that revealed significant differences (p< 0.05 after adjustment) were again fol-

lowed by tests for multivariate homogeneity of group dispersion (parameters as above), and

community differences were again illustrated with NMDS ordinations.

These analyses identified 6 N/P-starvation and T. aestivum-specific microbial communities

(i.e. that were simultaneously different from the equivalent communities in fertilized T. aesti-
vum and from the communities of their adjacent bulk soil). A conservative two-step process

was used to identify the OTUs that were enriched in each one. All OTUs that were detected in

the relevant data subsets (e.g. bacterial root N0P0, bacterial root N45P0, bacterial bulk soil

N0P0,) were individually submitted to a two-tailed Kruskal-Wallis Rank Sum Test using func-

tion kruskal.test from R stats package (default parameters). Those that had a significantly dif-

ferent average relative abundance among the three data subsets were then assessed for

statistical enrichments in the starvation- and T. aestivum-specific data subset (e.g. bacterial

root N0P0). This was accomplished by fitting a linear model to each OTU’s overall abundance

in the three considered data subsets (using R stats package lm function), and repeatedly testing

it for abundance differences in pairs of compartment- and plot-specific data subsets (e.g. bac-

terial root N0P0 vs bacterial root N45P0, bacterial root N0P0 vs bacterial bulk soil N0P0) using R

package Multcomp’s general linear hypotheses testing function (glht) with the treatment dif-

ference set to “Tukey” [61]. To illustrate the results of these analyses, we presented the average

Microbiomes of nitrogen- and phosphorus-starved Triticum aestivum
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relative abundances of each enriched OTU next to a dendrogram built with the average Bray-

Curtis dissimilarities of the associated compartment- and plot-specific data subsets. Heatmap

were drawn using R package pheatmap [62], average community similarities were calculated

using Vegan’s meandist function, and dendrograms were drawn with function of hclust of R’s

stats package.

Results

Estimated microbial community coverages, comparisons of community

structures, identification of OTU enrichments

The sequencing datasets associated with the 172 samples contained, on average, 50052 bacte-

rial 16S rRNA gene sequences or 77115 fungal ITS sequences following quality control. Evalua-

tions of community coverage calculated using a Chao estimator suggest that this sequencing

effort allowed the identification of, on average, 98.1% of the bacterial OTUs and 99.4% of the

fungal OTUs that were present in each sample.

Significant differences of mean community dissimilarity were found among the bacterial

root data of the four Rotation A plots (p = 0.0001, R2 = 0.13), and the difference found in a

pair of N-starved/N-fertilized data subsets contributed to this signal (N45P0/N0P0, p = 0.0004,

R2 = 0.13, Fig 2A). An additional comparison revealed that the N0P0 root data subset was also

significantly different from that of N0P0’s bulk soil (p = 0.0002, R2 = 0.51, Fig 3E, Table 1). The

latter subsets did, however, show significantly different group dispersions (p< 0.05).

The bacterial rhizosphere communities of the four Rotation A plots showed significant dif-

ferences of mean dissimilarity (p = 0.0001, R2 = 0. 27). The differences found in two pairs of

N-starved/N-fertilized data subsets (N45P20/N0P20: p = 0.0004 and R2 = 0.18, N45P0/N0P0:

p = 0.0004 and R2 = 0.27, Fig 2C) and one pair of P-starved/P-fertilized data subsets (N45P20/

N45P0: p = 0.0176 and R2 = 0.12; Fig 2C) contributed to this signal. Only two of the latter three

nutrient-starved subsets were also significantly different from their bulk soil counterparts

(N0P20: p = 0.2649 and R2 = 0.07, N45P0: p = 0.0003 and R2 = 0.15, N0P0: p = 0.0003 and R2 =

0.17; Fig 3A, 3C and 3E; Table 1). None of the above comparisons were performed between

data subsets that showed significant differences of group dispersion.

Significant differences of mean community dissimilarity were found among the fungal root

data of the four Rotation A plots (p = 0.0001, R2 = 0. 13). The differences found in two pairs of

N-starved/N-fertilized data subsets (N45P20/N0P20: p = 0.0032 and R2 = 0.08, N45P0/N0P0:

p = 0.0004 and R2 = 0.11, Fig 2B) and one pair of P-starved/P-fertilized data subsets (N45P20/

N45P0: p = 0.0024 and R2 = 0.07; Fig 2B) contributed to this signal. All of the latter nutrient-

starved subsets were also significantly different from their bulk soil counterparts (N0P20:

p = 0.0003 and R2 = 0.28, N45P0: p = 0.0003 and R2 = 0.24, N0P0: p = 0.0003 and R2 = 0.22; Fig

3B, 3D and 3F; Table 1). These comparisons were, however, performed on subsets that showed

significantly different dispersions (p< 0.05).

The fungal rhizosphere communities of the four Rotation A plots showed significant differ-

ences of mean dissimilarity (p = 0.0001, R2 = 0. 21). The difference found in two pairs of N-

starved/N-fertilized data subsets (N45P20/N0P20: p = 0.0012 and R2 = 0.18, N45P0/N0P0:

p = 0.0008 and R2 = 0.17, Fig 2D) contributed to this signal. However, neither of the nutrient-

starved subsets were also significantly different from their bulk soil counterparts (N0P20:

p = 0.2322 and R2 = 0.06, N0P0: p = 0.1728 and R2 = 0.06; Fig 3B and 3F; Table 1). None of the

above comparisons were performed between data subsets that showed significant differences

of group dispersion.

Significant differences of mean dissimilarity were, finally, also found among the bacterial

and fungal bulk soil data of the four Rotation A plots (respectively p = 0.0001, R2 = 0.21 and

Microbiomes of nitrogen- and phosphorus-starved Triticum aestivum
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p = 0.0001, R2 = 0.16). The differences found in pairs of N-starved/N-fertilized data subsets

contributed to this signal in both cases (bacteria N45P20/N0P20: p = 0.0016 and R2 = 0.13, bacte-

ria N45P0/N0P0: p = 0.0004 and R2 = 0.28, Fig 2E; fungi N45P20/N0P20: p = 0.0004 and R2 =

Fig 2. Microbial community comparisons—fertilization. Non-metric multidimensional scaling (NMDS) ordinations representing the dissimilarity (Bray-Curtis) of

microbial communities sampled in the different Rotation A plots. The significance of pairwise comparisons is reported next to each graph (� = p< 0.05; �� = p< 0.01,
��� = p< 0.001).

https://doi.org/10.1371/journal.pone.0210538.g002
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0.12, fungi N45P0/N0P0: p = 0.0004 and R2 = 0.12, Fig 2F). None of the above comparisons

were performed between data subsets that showed significant differences of group dispersion.

Our sequencing effort globally uncovered 8692 bacterial OTUs and 3642 fungal OTUs. The

100 that had the highest global average relative abundances in each set are respectively showed

Fig 3. Microbial community comparisons—compartments. Non-metric multidimensional scaling (NMDS) ordinations representing the dissimilarity (Bray-Curtis) of

microbial communities sampled from different soil/plant compartments. The significance of pairwise comparisons is reported next to each graph (� = p< 0.05; �� =

p< 0.01, ��� = p< 0.001).

https://doi.org/10.1371/journal.pone.0210538.g003
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in Fig 4 and Fig 5. The 9 bacterial orders that were the most represented among these OTUs

were Saprospirales, Actinomycetales, Burkholderiales, Rhizobiales, Rubrobacterales, Xanthomo-
nadales, Sphingomonadales, Cytophagales, and Flavobacterales. The 9 fungal orders that were

the most represented among these OTUs were Pleosporales, Sordariales,Hypocreales, Agari-
cales,Mortierellales,Helotiales, Xylariales, Chaetothyriales, and Eurotiales.

Twenty-one of the 8692 identified bacterial OTUs had higher proportional representations

in one of the 3 N/P-starvation and T. aestivum-specific bacterial communities. In 17 cases, the

OTUs had higher average relative abundances in the roots of the N0P0 wheat than in the roots

of the N45P0 wheat or the N0P0 bulk soil (Fig 6A). These OTUs belonged to genera Lentzea
(order Pseudonocardiales),Methylibium (order Burkholderiales), Cellulosimicrobium (order

Micrococcales), Chitinophaga (order Chitinophagales), Nocardioides (order Propionibacter-
iales), Polaromonas (order Burkholderiales), families Actinosynnemataceae (order Pseudono-
cardiales), Caulobacteraceae (order Caulobacterales), Cytophagaceae (order Cytophagales),
Streptomycetaceae (order Streptomycetales), Chitinophagaceae (order Chitinophagales), and

order Actinomycetales. In 3 cases, the OTUs had higher average relative abundances in the rhi-

zosphere of the N0P0 wheat than in the rhizosphere of the N45P0 wheat or the N0P0 bulk soil

(Fig 6B). These OTUs belonged to genera Erwinia (order Enterobacterales), Variovorax (order

Burkholderiales), and family Chitinophagaceae (order Chitinophagales). In one case, the OTU

had higher average relative abundances in the rhizosphere of the N45P0 wheat than in the rhi-

zosphere of the N45P20 wheat or the N45P0 bulk soil (Fig 6C). This OTU belonged to genus

Agrobacterium (order Rhizobiales).
Eight of the 3642 identified fungal OTUs had higher proportional representations in

one or two of the 3 N/P-starvation and T. aestivum-specific fungal communities. In 2 cases,

the OTUs had higher average relative abundances in the roots of the N0P20 wheat than in

the roots of the N45P20 wheat or the N0P20 bulk soil (Fig 7A). These OTUs belonged to gen-

era Lulworthia (order Lulworthiales) and class Sordariomycetes. In 5 cases, the OTUs had

higher average relative abundances in the roots of the N0P0 wheat than in the roots of the

N45P0 wheat or the N0P0 bulk soil (Fig 7B). These OTUs belonged to genera Apodus (order

Sordariales), Conocybe (order Agaricales), Crocicreas (order Helotiales), and phylum Asco-
mycota. In 2 cases, the OTUs had higher average relative abundances in the roots of the

N45P0 wheat than in the roots of the N45P20 wheat or the N45P0 bulk soil (Fig 7C). These

OTUs belonged to genera Parastagonospora (order Pleosporales) and Phaeosphaeriopsis
(order Pleosporales).

Table 1. Summary of tests that allowed the identification of starvation- and T. aestivum-specific communities.

Community Compartment Nutrient-

sufficient soil

Nutrient-deficient

soil

Treatment Sufficient vs. starved

(H1)

Starved vs. bulk soil

deficient (H2)

Bulk soil starved vs. bulk

soil deficient

Bacteria Root N45P0 N0P0 -N ��� ��� ���

Bacteria Rhizosphere N45P0 N0P0 -N ��� ��� ���

Fungi Root N45P20 N0P20 -N �� ��� ���

Fungi Root N45P0 N0P0 -N ��� ��� ���

Bacteria Rhizosphere N45P20 N45P0 -P � ���

Fungi Root N45P20 N45P0 -P �� ���

� = p < 0.05

�� = p < 0.01

��� = p < 0.001.

https://doi.org/10.1371/journal.pone.0210538.t001
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Discussion

Our analyses identified four microbial communities that were specifically found in the roots

or rhizospheres of N-starved T. aestivum. These communities were, of course, most probably

shaped largely by factors that lie outside of plant-microbe partnerships. Their distinctiveness

Fig 4. Dominant bacterial OTUs. The 100 OTUs that had the highest global average relative abundances in the 172 samples. Samples types (compartment and

fertilization) are indicated with colored cells above the heatmap, and OTUs’ taxonomic affiliations are indicated at the order level right of the heatmap.

https://doi.org/10.1371/journal.pone.0210538.g004
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from the corresponding communities of N-fertilized plots was for exmple likely linked to the

differences that existed between N45 and N0 bulk soil communities. Soil microbiome dispari-

ties are notoriously seen in agricultural fields that receive different N fertilization [33, 34, 63,

64]. They generally spread to plant microbiomes, and this seems to occur mostly through

Fig 5. Dominant fungal OTUs. The 100 OTUs that had the highest global average relative abundances in the 172 samples. Samples types (compartment and

fertilization) are indicated with colored cells above the heatmap, and OTUs’ taxonomic affiliations are indicated at the order level right of the heatmap.

https://doi.org/10.1371/journal.pone.0210538.g005
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opportunistic microbial colonization [63, 64]. The four communities’ uniqueness could, how-

ever, also be partly tied to the activation of N-sharing plant-microbe partnerships in the N0

plots. Plant-associated communities that are molded by such interactions generally do, indeed,

show N-dependent variations. Ikeda et al. [26, 27] reported on this phenomenon in soybeans.

Others have similarly reported on correlations between the plant colonization efficiency of

known N-providing plant partners and N soil content [22, 24]. This idea is also consistent with

Fig 6. Bacterial OTU enrichments in nutrient starvation- and plant-specific communities. Average dissimilarity (Bray-Curtis) of sets of

compared bacterial communities, and relative abundance of OTUs that were significantly enriched in starvation- and T. aestivum-specific

communities. (A) Data highlighting the singularity of N0P0 root communities, (B) data highlighting the singularity of N0P0 rhizosphere

communities, (C) data highlighting the singularity of N45P0 rhizosphere communities. H1 = hypothesis 1: the nutrient-starved T. aestivum show root

and rhizosphere microbial communities that are significantly different from those of the fertilized plants. H2 = hypothesis 2: starvation-specific T.

aestivum communities are significantly different from those of the adjacent bulk soil. The significance of pairwise comparisons is reported next to

each dendrogram (� = p< 0.05; �� = p< 0.01, ��� = p< 0.001).

https://doi.org/10.1371/journal.pone.0210538.g006
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the differences noted between the four communities and their bulk soil counterparts. The lat-

ter pattern is indeed also seen in plant-associated communities that are molded by N-sharing

partnerships. Zgadzaj et al. [36], for example, linked root-soil and rhizosphere-soil micro-

biome differences to the activation of microbial partner attraction and accommodation mech-

anisms in Lotus japonicus.
Many N-sharing plant-microbe partnerships have been identified outside of the Fabaceae

family [42, 65, 66]. Others seem to exist in plants like rice, Arabidopsis thaliana, and eucalyp-

tus, which also show N-dependent microbiome variations [28, 30, 31, 43]. If they exist, T.

Fig 7. Fungal OTU enrichments in nutrient starvation- and plant-specific communities. Average dissimilarity

(Bray-Curtis) of sets of compared fungal communities, and relative abundance of OTUs that were significantly

enriched in starvation- and T. aestivum-specific communities. (A) Data highlighting the singularity of N0P20 root

communities, (B) data highlighting the singularity of N0P0 root communities, (C) data highlighting the singularity of

N45P0 root communities. H1 = hypothesis 1: the nutrient-starved T. aestivum show root and rhizosphere microbial

communities that are significantly different from those of the fertilized plants. H2 = hypothesis 2: starvation-specific T.

aestivum communities are significantly different from those of the adjacent bulk soil. The significance of pairwise

comparisons is reported next to each dendrogram (� = p< 0.05; �� = p< 0.01, ��� = p< 0.001).

https://doi.org/10.1371/journal.pone.0210538.g007
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aestivum’s N-sharing partnerships could be analogous. The microorganisms that were poten-

tially involved in the N0 plots were, however, not the most common N-providing plant part-

ners. Indeed, none of the OTUs that were enriched in the four N-starvation and plant-specific

communities belong to orders Rhizobiales, Rhodospirillales, Cyanobacteriales, or Glomerales.
Several of the enriched OTUs do, however, belong to bacterial taxa that contain known diazo-

trophic plant partners (i.e. genus Erwinia, family Enterobacteriaceae, order Burkholderiales,
class Actinobacteria) [42, 65]. Several others belong to taxa that were enriched in the micro-

biomes of N-deficient plants in other experiments (i.e. order Burkholderiales, families Cyto-
phagaceae, Chitinophagaceae, Caulobacteraceae, and Comamonadaceae) [28, 30]. These OTUs

may represent soil microbes that are specifically attracted towards T. aestivum when it experi-

ences N-starvation, a behavior that is seen in known N-providing plant partners [46, 49].

The above observations do not constitute evidence for the existence of undiscovered N-

sharing wheat-microbe partnerships, but they are coherent with it. Other such observations

include links between the plant’s cultured root microbiome and soil N content [15], links

between the plant’s metabolomic profile and soil N content [16, 20], the fact that it can shape

its root microbiome through jasmonic acid production [17], the fact that its rhizosphere con-

tains putative N-fixing microorganisms [18], and the fact that T. aestivum can directly receive

N from microbes in experimental conditions [19]. Interestingly, several taxa that were repre-

sented on the list of OTUs enriched in the N-starvation and plant-specific communities con-

tain other types of known plant growth promoting microbes. This is the case of bacterial

generaMethylibium, Polaromonas, Variovorax, Erwinia, bacterial family Chitinophagaceae,
which all contain known ACC deaminase producers [67–70], and bacterial genera Cellulosimi-
crobium, bacterial order Actinomycetales, which contain known antibiotic producers [71–73].

N starvation may thus also trigger non-N-sharing T. aestivum-microbe partnerships.

Our analyses also identified two microbial communities that were specifically found in the

roots or rhizospheres of P-starved T. aestivum. These communities were also most probably

shaped largely by factors that lie outside of plant-microbe partnerships. Their associated bulk

soil communities were not, however, different from those associated with their P20 counter-

parts. In light of research that demonstrated correlations between plant microbiome composi-

tion and soil P content [32], correlations between the plant colonization efficiency of known

P-providing plant partners and P soil content [23, 25, 29], and the root microbiome defining

effects of microbial partner accommodation mechanisms in A. thaliana [44], these results sug-

gest that the two communities may have been partly shaped by P-sharing plant-microbe part-

nerships. Wheat is a mycorrhizal plant [12–14], so the identification of a P-starvation- and T.

aestivum-specific fungal root community was expected. The OTUs that were enriched in that

community do not, however, belong to taxa known to contain fungal wheat partners (e.g. gen-

era Glomus, Sclerocystis, Acaulospora, Scutellospora) or any other P-providing fungal plant

partner (i.e. Glomeromycetes, Agaricomycetes) [41]. They rather belong to two taxa that contain

notorious plant pathogens: genera Phaeosphaeriopsis and Parastagonospora [74, 75]. This

observation is consistent with a P starvation-specific depression of T. aestivum immunity, a

phenomenon that could be similar to that described in A. thaliana by Castrillo et al. [44]. The

OTU that was enriched in the P-starvation- and T. aestivum-specific bacterial rhizosphere

community does, however, belong to a genus known to contain phosphate-solubilizing plant

growth promoters [76, 77].

Conclusions

Six N/P starvation- and plant-specific microbial communities were identified. The OTUs that

were enriched in these communities may represent microbes that are specifically attracted
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towards T. aestivum when it experiences N- or P-starvation, a behavior that is seen in known

plant partners [46, 48, 49]. Many do, indeed, belong to taxa containing relevant N/P-providing

plant partners. These results are consistent with the existence of undiscovered N/P-sharing

wheat-microbe associations. Additional research will be needed to validate this interpretation.

But the work presented here provides a way forward. The identification of potential T. aesti-
vum partners gives us a target list for subsequent relationship-assessing studies, which is in

line with modern microbiome research efforts that promote the identification of potentially

beneficial microbes and their use in experimental system manipulations [78–80]. Wheat farm-

ing currently consumes approximately 20% of the worldwide production of inorganic N and P

fertilizers, the latter experiments could thus pave the way for the development of valuable com-

plementary yield-boosting tools.
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