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Santé Oculaire, Niamey, Niger, 5 Carter Center, Addis Ababa, Ethiopia, 6 Department of Ophthalmology,

University of California San Francisco, San Francisco, CA, United States of America, 7 Department of

Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States of

America

* travis.porco@ucsf.edu

Abstract

Background/aims

Trachoma programs base treatment decisions on the community prevalence of the clinical

signs of trachoma, assessed by direct examination of the conjunctiva. Automated assess-

ment could be more standardized and more cost-effective. We tested the hypothesis that an

automated algorithm could classify eyelid photographs better than chance.

Methods

A total of 1,656 field-collected conjunctival images were obtained from clinical trial partici-

pants in Niger and Ethiopia. Images were scored for trachomatous inflammation—follicular

(TF) and trachomatous inflammation—intense (TI) according to the simplified World Health

Organization grading system by expert raters. We developed an automated procedure for

image enhancement followed by application of a convolutional neural net classifier for TF

and separately for TI. One hundred images were selected for testing TF and TI, and these

images were not used for training.

Results

The agreement score for TF and TI tasks for the automated algorithm relative to expert

graders was κ = 0.44 (95% CI: 0.26 to 0.62, P < 0.001) and κ = 0.69 (95% CI: 0.55 to 0.84,

P < 0.001), respectively.

PLOS ONE | https://doi.org/10.1371/journal.pone.0210463 February 11, 2019 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Kim MC, Okada K, Ryner AM, Amza A,

Tadesse Z, Cotter SY, et al. (2019) Sensitivity and

specificity of computer vision classification of

eyelid photographs for programmatic trachoma

assessment. PLoS ONE 14(2): e0210463. https://

doi.org/10.1371/journal.pone.0210463

Editor: Ryan E. Wiegand, Centers for Disease

Control and Prevention, UNITED STATES

Received: February 28, 2018

Accepted: December 24, 2018

Published: February 11, 2019

Copyright: © 2019 Kim et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Original images and

underlying data for this study are available on

figshare: https://doi.org/10.6084/m9.figshare.

7551053.v1.

Funding: The authors gratefully acknowledge

funding from the US National Eye Institute (NEI

U10 EY016214, TANA and TIRET studies) to TML,

from the Bill and Melinda Gates Foundation (grant

number 48027, PRET Study) to TML, and from the

UCSF Academic Senate RAP Program (“Computer

vision assessment of trachoma photos”) to TCP.

http://orcid.org/0000-0001-8813-3171
https://doi.org/10.1371/journal.pone.0210463
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210463&domain=pdf&date_stamp=2019-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210463&domain=pdf&date_stamp=2019-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210463&domain=pdf&date_stamp=2019-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210463&domain=pdf&date_stamp=2019-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210463&domain=pdf&date_stamp=2019-02-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210463&domain=pdf&date_stamp=2019-02-11
https://doi.org/10.1371/journal.pone.0210463
https://doi.org/10.1371/journal.pone.0210463
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.6084/m9.figshare.7551053.v1
https://doi.org/10.6084/m9.figshare.7551053.v1


Discussion

For assessing the clinical signs of trachoma, a convolutional neural net performed well

above chance when tested against expert consensus. Further improvements in specificity

may render this method suitable for field use.

Introduction

Millions of people are currently blind because of trachoma worldwide, a result of infection

by ocular strains of Chlamydia trachomatis. [1, 2] This infection is treatable using single-dose

azithromycin, and mass administration of azithromycin forms the basis of the World Health

Organization’s strategy for trachoma control. [3] Stakeholders base decisions on starting pro-

grams, stopping mass treatment, and declaring control on the clinical signs of trachoma. Yet

studies show a great deal of variance between graders, or even the same grader over time. If

any concerns later arise, field results are not auditable. Photographic grading appears to be as

accurate as clinical grading, and could overcome other limitations. [4]

Is it possible for an automated algorithm to clinically grade active trachoma from photo-

graphs collected in the field? We note that automated image processing is becoming useful in

many medical imaging applications. [5–7] Our application differs from most in that we use

images collected under field conditions (under differing lighting conditions and camera angles

and distances), and in that we are conducting classifications of a subclinical condition with an

ultimate goal of guiding, not individual treatment, but community-wide mass administration

of azithromycin for a public health control campaign. Automated scoring would avoid human

grader drift over time. [8, 9] It would also permit standardization of methods between regions

and countries, and could allow a higher volume of images to be scored at lower cost. Neural

networks have long been useful for diagnostic tests in medicine, and in ophthalmological

applications in particular. [10–12] Here, we test the hypothesis that a convolutional neural net-

work [13] can classify trachoma photographs substantially better than chance.

Materials and methods

Data

Images used in this prospective study were obtained from two clinical trials: the Niger arm of

the Partnership for the Rapid Elimination of Trachoma trial (PRET, clinicaltrials.
gov accession number NCT00792922), and the Trachoma Amelioration in Northern Amhara

trial (TANA, clinicaltrials.gov accession number NCT01202331). These trials

included a total of 85550 participants, with details published elsewhere. [14, 15] Verbal consent

was obtained for study subjects, and ethical approval was obtained from the University of Cali-

fornia, San Francisco, the Niger Ministry of Health, and the Ethiopian Ministry of Science and

Technology.

Images were taken by community health workers who were trained in field trachoma

evaluation, and who were implementing the specimen collection for each trial. For each study

participant, the right upper eyelid was everted and the underlying tarsal conjunctiva photo-

graphed with a single-lens reflex (SLR) camera equipped with a 105/2.8f macro lens using a

standardized protocol (aperture priority, aperture f/40, ISO 400, native flash engaged, auto-

matic white balance, at least 2 high-quality photographs taken). Images were saved in JPG for-

mat. A panel of three experts applied the WHO simplified system [16] to randomly selected
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images. The graders classified each image for the presence or absence of TF and the presence

or absence of TI, independently. No qualitative evaluation of TF or TI intensity was conducted

(see Fig 1). The three human experts graded images independently, each masked to the grades

of the other two. A labeled data set of 1,656 digital images was obtained, considering the

human consensus as the gold standard (Table 1). No missing or indeterminate grades were

allowed. These images were used in assessment of field grading for the clinical trials, and were

the total set of available images. Each image in our dataset exhibits an everted eyelid that is

approximately centered and parallel to the edge of the photograph.

For both TF and TI cases, we randomly sampled 50 images from the TF or TI labeled set

and another 50 images from the normal set to obtain a hold-out validation set. These images

were not used to train classifiers, but were used only to produce the final performance scores.

Fig 1. Trachoma classification of selected field collected images, according to the WHO simplified system. TF: trachomatous inflammation

—follicular; TI: trachomatous inflammation—intense [16].

https://doi.org/10.1371/journal.pone.0210463.g001

Table 1. Distribution of clinical categories in our dataset.

Label Number % of total Sub categories

Neither TF nor TI 843 51.0%

Infected 813 49.0% TF 527 32.0%

TI 272 16.3%

TI and TF 162 9.7%

Scarring 176 10.6%

https://doi.org/10.1371/journal.pone.0210463.t001
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For TF classification, we utilized 477 images scored as TF and 793 normal images; for TI

classification, we utilized 222 images scored as TI alone and the same 793 normal images.

These constituted a random sample of images that had been prepared for trial evaluation. We

estimated that inclusion of 230 images would achieve an estimated standard error of 0.05 in

Cohen’s kappa, assuming κ = 0.8 and that 20% of the images were classified TF.

Machine classification

Image preprocessing. Automated preprocessing was necessary, since the eyelid may have

been off center or misaligned with the edge (Fig 2). The eyelid in each image was approxi-

mately centered and parallel to the main axis of the photograph as shown in Fig 3(a). The

region of interest was automatically extracted without these assumptions using a four step

Fig 2. Sample image where eyelid is neither centered nor horizontally aligned.

https://doi.org/10.1371/journal.pone.0210463.g002

Fig 3. An illustrative example for various eyelid images in our procedural pipeline.

https://doi.org/10.1371/journal.pone.0210463.g003

Computer vision classification for trachoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0210463 February 11, 2019 4 / 12

https://doi.org/10.1371/journal.pone.0210463.g002
https://doi.org/10.1371/journal.pone.0210463.g003
https://doi.org/10.1371/journal.pone.0210463


procedure consisting of image resizing, application of a pixel-level classifier, a corrective rota-

tion step, and finally a crop to yield a standard size region of interest. Note that pixel classifiers

have proven useful in other applications [17].

Resizing. The original raw images are in color JPEG format, which vary in dimension from

4288 × 2848 to 3008 × 2000 pixels. The first step in preprocessing was resize the images to

1024 × 680 preserving the 3:2 ratio of the digital cameras using the image resizing function in

the OpenCV package [18] with linear interpolation. Our eyelid rectification procedure then

transforms these preprocessed color images into cropped grayscale images of size 128 × 128

containing an eyelid in a standard orientation and location. This procedure consists of the

three successive steps: 1) a pixel-level transformation, 2) a corrective rotation, and 3) a ROI

crop selection. We explain these steps in some detail below.

Classification of pixels. We used a pixel-level classifier as part of the image preprocessing; a

different classifier is used for classifying the entire image into trachoma-related categories. For

the first pixel-level transformation step, we build a binary classifier that maps a pixel color in

RBG values into the probability of the pixel being on an eyelid or not. This classifier is then

successively applied to each pixel of the 1024 × 680 preprocessed image, yielding a probabilistic

image of the same size, whose pixel value represents the estimated probability that certain pixel

belongs to an eyelid (See Fig 3(b) for an example).

We design this classifier with a multilayer perceptron [19] with two fully-connected hidden

layers. Architectural overview of this network is shown in Fig 4. The input layer to the multi-

layer perceptron consists of three neurons (x1, x2, x3) corresponding to a pixel’s RGB values

between 0 and 255. The first and the second hidden layer includes 8 neurons ða1;2
1;::;8Þ. The final

output layer consists of two neurons (y1, y2), representing two possible states: whether a pixel

is on eyelid or not. For both the input and hidden layers the rectified linear unit (ReLu)

Fig 4. Network architecture of multilayer perceptron-based pixel-level classifier.

https://doi.org/10.1371/journal.pone.0210463.g004
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defined as f(x) ≔ max(x, 0) is used as its non-linear activation function. The softmax function

is applied to the output neurons in order to generate a two dimensional stochastic vector esti-

mating the probability distribution of the pixel belonging to an eyelid.

We train this classifier by backpropagation [20] with the stochastic gradient descent and

the categorical cross-entropy as its loss function. [21] The training set, consisting of 32 million

positive (i.e., eyelid) pixels and 41 million negative (i.e., non-eyelid) pixels, was prepared by

hand-segmenting eyelids in 40 images randomly sampled from our training set for positives

and by collecting 28 non-eyelid crops for negatives, including various types of objects such as

skin, fingers, eyelashes, and insects. Our trained classifier yielded 96.7% accuracy when tested

with our hold-out validation data sets for validation.

Corrective rotation. For the second corrective rotation step, we first estimate an eyelid’s

center and its binary shape mask from the result of the first step, then perform discrete Gabor

transform on the shape mask in order to estimate the tilt-angle between the major axis of the

detected eyelid and the horizontal image axis. The image is then rotated to correct this tilt,

resulting in automatic alignment of the eyelid’s orientation.

Given the image of estimated probabilities from the first step, we first smooth this probabi-

listic field by 3 × 3 median filtering. Then we estimate the location of the everted eyelid’s center

by computing the centroid of the probabilistic field. We also derive the binary eyelid shape

mask (see Fig 3(c) for an example) by thresholding the probability value p at each pixel: eyelid

(1) if p> TH and non-eyelid (0) otherwise. We use TH = 0.6 that was empirically chosen. The

resulting binary field is then smoothed by morphological closing. [22] We estimate the tilt-

angle of the eyelid’s major axis by 1) convolving the shape mask at the center location with a

bank of 18 orientation-selective discrete Gabor filters [22, 23] designed in a range between � p

4

and p

4
with an interval of p

36
, and 2) selecting the filter that resulted in the maximum response.

The angle associated with the selected maximal filter is used as our tilt-angle estimate. The

original image is then rotated by the negative of this angle to align the eyelid horizontally.

Crop. For the final ROI crop selection step, we first extract, from the preprocessed and

rotated image, a 256 × 256 crop centered at the eyelid center estimated in the previous step. We

did not estimate the eyelid size for each image since our data set came with relatively similar

size of eyelids across images. The window size was empirically chosen to encompass the extent

of eyelids across images. The crop is then resized to 128 × 128 and converted to gray scale. We

then applied contrast limiting adaptive histogram normalization [24] in order to enhance and

standardize grayscale contrasts. Fig 5 shows an illustrative example for this final step.

Fig 5. ROI crop selection procedure. (a) 256 × 256 crop on the rotated image. Estimated (white) and randomly

perturbed eyelid centers (green) are shown. (b) Resulting 128 × 128 grayscale ROI.

https://doi.org/10.1371/journal.pone.0210463.g005
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Trachoma Classification. This section describes our classification model that takes the

128 × 128 region of interest from the previous eyelid rectification process as an input, and

outputs the binary classification of whether an eye depicted in the input image exhibits the

signs TF or TI. We designed our model with a convolutional neural network [13]. Our net-

work consists of three stage convolutional layers followed by fully connected layers with two

hidden layers. Note that the representational power of a convolutional neural network is not

compromised by the use of relatively small (3 × 3) filters, since by stacking several convolu-

tional layers, a much larger effective field is realized. [13] The Keras platform with a Theano

backend was used in implementation (https://keras.io/, http://deeplearning.net/software/

theano).

Table 2 summarizes our convolutional neural network architecture. We use convolutional

filters of size 3 × 3. Each stage of the convolutional layers is augmented with a max-pooling

layer with 2 × 2 size blocks, halving the size of the input after each stage. The border of input

image is zero-padded before convolution of each layer. Fig 6 illustrates computational proce-

dures in the convolutinoal layer for a schematized simple example. Two fully-connected hid-

den-layers of our network include 512 neurons. The final output layer consists of two positive/

negative neurons whose value indicates the probability that the target image manifests TF or

TI, respectively. The rectified linear unit (ReLu), defined above, is used as our activation func-

tion of each layer. The softmax function was applied to the final output layer to produce a

probabilistic classification. Final binary classification is then given by thresholding the proba-

bility with TH = 0.5.

Table 2. Architecture of our convolutional neural network classification model. K denotes the number of filters in

the first stage of the convolutional layers.

Layer Size

Convolution 1.1 3 × 3 × K
Convolution 1.2 3 × 3 × K
Max Pooling 1 2 × 2

Convolution 2.1 3 × 3 × 2K
Convolution 2.2 3 × 3 × 2K
Max Pooling 2 2 × 2

Convolution 3.1 3 × 3 × 4K
Convolution 3.2 3 × 3 × 4K
Convolution 3.3 3 × 3 × 4K
Max Pooling 3 2 × 2

Fully-Connected Hidden 1 512

Fully-Connected Hidden 2 512

Fully-Connected Output 2

https://doi.org/10.1371/journal.pone.0210463.t002

Fig 6. Convolutional layer with zero-padding and a 3 × 3 filter followed by max pooling with a 2 × 2 block.

https://doi.org/10.1371/journal.pone.0210463.g006
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Training. For training, we used the binary cross-entropy loss function [21] with respect to

the gold standard labels made by our expert panels. We then trained our classification model

using two learning strategies of 1) a standard stochastic gradient descent algorithm [25] and 2)

AdaDelta [26] with an adaptive learning rate. Furthermore, we tested our model with the vary-

ing number of convolutional filters K set to 8, 16, 32, or 64. The best strategy with the maxi-

mum performance was determined by using a second hold-out test set which was prepared by

randomly selecting 10% of the training set, described in Data section, to be used for computing

performance statistics of a model trained with the remaining 90% in order to minimize over-

fitting.

To further reduce the possibility of overfitting, we incorporated the following strategies

during our model training. We used batch normalization [27] after each set of convolutional

layers at training time, which normalizes batches of training images in between layers so that

each pixel has a standard normal distribution over all the images in the batch. This prevents

variations in the distribution of training data in deeper networks, which can slow training by

forcing the later weights to accommodate a larger domain. We also employed random dropout

[28] of 25% (i.e. 25% of weights are randomly chosen to be turned off, forcing the remaining

weights to generalize faster) after each stage of convolutional layers. Training for the fully-con-

nected layers were also subject to L2 regularization with a quadratic complexity penalty. We

utilized the same strategies for building models for both TF and TI classification tasks.

We used an additional strategy to reduce overfitting. Specifically, we augmented our

cropped region of interests as follows (see Fig 5(b)) As described above, we used an automated

procedure which yields a single region of interest crop centered at the estimated eyelid center

location. As shown in Fig 5(a), we modified this procedure to introduce randomly generated

noise to the centroid location of each eyelid. Repeating the procedure with this perturbed eye-

lid center yields a new cropped region of interest which exhibits a slightly translated view from

the original crop. In order to effectively increase the size of the training set, we incorporated

this random data perturbation between each successive epoch (i.e., iteration) during our

model training, providing, in essence, a virtually unlimited stream of new training images.

Results

We trained eight convolutional neural network models by varying the two learning strategies

and four K values for each of TF and TI classification tasks. Using the hold-out set, we ranked

eight models in terms of the kappa statistic for each of the two TF and TI tasks.

The model that produced the best training-time scores on the TF task was trained using

AdaDelta and used K = 64 filters in its initial convolutional layer. The best performing model

for the TI task was training using stochastic gradient descent and used K = 32 filters. We com-

pared this best performing model with an ensemble classifier that averages the output proba-

bilities estimated by the three top models for each task. Finally, for validating the best and the

ensemble classifiers for the TF and TI tasks, we used the first hold-out validation set of 100

cases for each task and computed four standard performance statistic scores: sensitivity, speci-

ficity, accuracy, and Cohen’s kappa (κ [29]). Table 3 summarizes the results.

We observe in the results that the ensemble classifiers yield better performance than the

separate classifiers, measured by the kappa, specificity, and accuracy scores for both TF and TI

tasks. However the ensemble decreases the sensitivity (e.g., recall) score. The results also indi-

cate that scores for the TI task are higher than those for the TF task for all four measures and

for both best and ensemble classifiers. The agreements for TF and TI tasks by our ensemble

models were κ = 0.44 (95% CI: 0.26 to 0.62, P< 0.001) and κ = 0.69 (95% CI: 0.55 to 0.84,

P< 0.001), indicating results far better than chance.
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Discussion

We found that machine classification of field collected eyelid images can yield automated tra-

choma classifications with performance far better than expected from chance alone. Confining

our attention to studies with digital images, we note that human grading of conjunctival pho-

tographs using the same protocol resulted in a Cohen’s kappa of 0.55 in one study, and direct

conjunctival examination in the field has shown agreement in the range of 0.57 to 0.73. [4, 8]

Trachoma grades TF and TI are defined by the presence of specific features on eyelids (seen

in the field or through photographs), as assessed by human experts. No other gold standard

for the clinical grade is available. The agreements for TF and TI tasks by our ensemble models

were lower and higher (respectively) than this baseline reported [4]. We note that in the Global

Trachoma Mapping Project [30], the protocol required that the agreement for TF between a

master grader and candidate grader trainer should be at least 0.8 for certification of the candi-

date grader.

Our experimental results also suggest that TI classification may be easier than TF classifica-

tion. The best kappa was 0.44 and 0.69 for the TF and TI tasks both by the ensemble classifiers,

respectively. The network trained for the TI task outperformed that for the TF tasks for all

scores. Although not currently used programmatically, the TI classification appears to be

much more specific than TF, and may be more correlated with actual chlamydial infection. [9]

Overall, these reasonably high validation scores are promising toward further improving the

proposed methodologies to our goal of deploying such automated grading software for the

actual field studies.

We note certain limitations. We did not explore various representation of color informa-

tion beyond the RGB space, nor classification models other than the chosen multilayer percep-

tron for the eyelid detection. We have no information on generalizability beyond the two

countries examined, to archival images, or to images collected with smartphones. Our algo-

rithm was designed for assessment of images as part of a trachoma control campaign, not for

individual-level assessment. Such a classifier could enable the assessment of community and

district level TF prevalence, as needed to guide intervention efforts during the WHO trachoma

elimination campaign. [3] Thus, we have not trained the system to evaluate other features,

since active trachoma is usually a subclinical condition which poses no immediate threat to

vision. The proposed method, in principle, could be extended to more detailed trachoma clas-

sifications. [31, 32]

Conclusion

Although grading of field trachoma images can be challenging due to less standardization of

lighting and distance than in other computer vision exercises, we showed that computer vision

Table 3. Validation scores on trained convolutional neural network models for TF and TI classification tasks.

Class Measure Best Model Ensemble of Top-3

TF κ 0.40 0.44

Sensitivity 0.92 0.86

Specificity 0.48 0.58

Accuracy 0.70 0.72

TI κ 0.69 0.69

Sensitivity 0.98 0.96

Specificity 0.72 0.74

Accuracy 0.85 0.85

https://doi.org/10.1371/journal.pone.0210463.t003
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methods are capable of classifying field collected trachoma images better than chance. Use of

newer deep learning algorithms, together with larger corpuses of labeled trachoma images

which are becoming available, is expected to yield substantial improvements in specificity of

classification. This may thus permit computer vision techniques to now play a practical role in

preserving human vision in some of the world’s poorest communities.
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