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Abstract

The generation of the high species diversity of insects in Japan was profoundly influenced

by the formation of the Japanese Archipelago. We explored the species diversification and

biogeographical history of the Nemouridae Billberg, 1820 family in the Japanese Archipel-

ago using mitochondrial DNA and nuclear DNA markers. We collected 49 species among

four genera: Indonemoura Baumann, 1975; Protonemura Kempny, 1898; Amphinemura,

Ris 1902 and Nemoura Latreille, 1796 in Japan, China, South Korea and North America.

We estimated their divergence times—based on three molecular clock node calibrations—

using Bayesian phylogeography approaches. Our results suggested that Japanese Archi-

pelago formation events resulted in diversification events in the middle of the Cretaceous

(<120 Ma), speciation in the Paleogene (<50 Ma) and intra-species diversification segre-

gated into eastern and western Japan of the Fossa Magna region at late Neogene (20 Ma).

The Indonemoura samples were genetically separated into two clades—that of Mainland

China and that of Japan. The Japanese clade clustered with the Nemouridae species from

North America, suggesting the possibility of a colonisation event prior to the formation of the

Japanese Archipelago. We believe that our results enhanced the understanding both of the

origin of the species and of local species distribution in the Japanese Archipelago.

Introduction

The East Asian region—and in particular, the Japanese Archipelago—is considered to have

high insect biodiversity [1], [2]. The high degree of Japanese insect biodiversity is a result of

several mechanisms—in particular, the complex geological history. The Japanese Archipelago

originated in the middle of the Miocene [3] as an independent formation of eastern and west-

ern Japanese landmasses. Extensive geographical changes and large-scale climatic changes

throughout the islands facilitated the subsequent connection and disconnection of Japanese

landmasses from the Eurasian continent, and the formation of tectonic lines (as the median

tectonic line, MTL; and the Itoigawa-Shizuoka tectonic line, ISLT) [3], [4], [5]. These geologi-

cal events—facilitating for the colonisation of insects from the continent and their subsequent
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diversification as endemic lineages (i.e. new species)—substantially contributed to the high

diversity of insects in Japan [2].

The process of species diversification has been intensively explored through phylogeographical

approaches [6], [7]. These approaches have allowed for the observation of the historical process

responsible for the current geographical distribution of individuals [6]. Molecular approaches to

phylogeographic studies, using specific genes—such as mitochondrial DNA (mtDNA) or nuclear

DNA (nDNA)—allow for a better understanding of species diversity by resolving complex taxo-

nomic groups of species (for instance, cryptic species and species groups) [7]. Molecular phylo-

geography has provided valuable insights into the historical process of Japanese Archipelago

formation underlying insect diversification. Previous studies identified genetic differentiation

within species between the Japanese landmasses and the Eurasian continent (for instance, the

mayflies Isonychia japonica (Ulmer, 1919) [8]; caddisflies Palaeagapetus spp. (Ulmer, 1912) [9]

and beetles Ohomopterus spp. (Nakane, 1953) [10] and the Carabina subtribe [11]). Dispersal

events via land bridges (islands between continents) from the Eurasian continent to the Japanese

Archipelago (of, for instance, the orthopteran Locusta migratoria Linnaeus, 1758, [12]; mayflies

Ephron spp. (Williamson, 1802), [13]) or, in reverse, from the Japanese Archipelago to the Eur-

asian continent (of, for instance, water bugs Appasus spp. Amyot and Serville, 1843, [14]) were

additionally identified before, during and after the formation of the Japan Archipelago.

Aquatic insects have advantages in the studies of phylogeography, as their specialised eco-

logical requirements and habitat range make aquatic insect species susceptible to geological

changes. Among the Plecoptera order [15], the family Nemouridae is one of the largest and

most dominant aquatic insect groups. The family comprises 20 genera and more than 400 spe-

cies distributed throughout the Northern Hemisphere and across the equator in the Sunda

Archipelago [16]. Several genera of the Nemouridae family have distinct disjunctions in their

distribution [15]. For example, Ostrocerca Ricker, 1952, Prostoia Ricker, 1952 and Soyedina
Ricker, 1952 were found in both the extreme western and the extreme eastern regions of

North America, but they were absent in the central area [17], [18]. Similar disjunctive distribu-

tions were also observed among Protonemura, Indonemoura, Sphaeronemoura Shimizu &

Sivec, 2001, and Illiesonemoura Baumann, 1975 in the Palaearctic region [19], the western and

eastern Himalayan ranges [20] and North and South India [15]. Podmosta Ricker, 1952 and

Zapada Ricker, 1952 (Nemourinae Billberg, 1820) are two interesting cases distributed across

the Nearctic region and East Asia [21], [22]. Previous studies have suggested that their current

habitat distribution could be associated with mountain formation and land bridges. In Japan,

the Nemouridae family is widely distributed with four genera [23]—Indonemoura; Protone-
mura; Amphinemura; and Nemoura. To date, 30 Nemoura species, 17 Amphinemura species,

12 Protonemura species and 1 Indonemoura species have been reported in Japan [16]. How-

ever, their evolutionary history in the Japanese Archipelago remains unknown.

We studied the molecular phylogeny of the aquatic insect Nemouridae (Plecoptera) in the

Japanese Archipelago with comprehensive genera-level sampling using mitochondrial cyto-

chrome c oxidase 1 (cox1) and nuclear histone 3 (H3) markers. We hypothesised that the

Nemouridae family diversification could be linked to the geological formation of the Japanese

Archipelago. Therefore, we estimated the phylogenetic relationships among Nemouridae spe-

cies and genera with reference to their historical biogeography. We focused on geographic

events of Japanese Archipelago formation and their influence on the divergence time among

the genera and species using a combination of fossil records and the Archipelago formation

history. Furthermore, to estimate the historical process of the phylogeography of Nemouridae

in Japan, we compared the phylogenetic relationships among the specimens from South

Korea, China and North America, that are assumed to be the potential sources of Japanese

Nemouridae because of the geological formation history of the Japanese Archipelago.

Molecular phylogeny and diversification timing of Nemouridae
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Material and methods

Study sites and sample collection

Our sampling sites in Japan comprised 32 sampling sites on Hokkaido Island, 83 on Honshu

Island and 27 on Shikoku Island. The field sampling was conducted without the necessity of

any special permit. None of the Nemouridae species was found on Hokkaido Island during

sampling. All species reported from Hokkaido are known to occur on either Honshu or Shi-

koku Islands. Herein, we only reported on the sampling sites wherein specimens were found.

We collected 20, 7, 8 and 1 species of the genera Nemoura, Amphinemura, Protonemura and

Indonemoura, respectively, on 110 sampling sites in Japan (Fig 1, S1 Table). Additionally, 14

species collected from 8 sampling sites of Mainland China and 2 of South Korea (S1 Table, Fig

2) and 100 specimens of the three species Zapada columbiana (Claassen, 1923), Z. cinctipes
(Banks, 1897), and Podmosta delicatula (Claassen, 1923) of subfamily Nemourinae collected

from 15 sampling sites of North America (western United States of America and Alaska) were

included in our analysis. We added these samples from outside of Japan because of their

Fig 1. The Japanese islands and distribution of 110 sampling sites from where Nemouridae samples were collected (open circles).

The map was prepared using QGIS v 2.18 under the GNU free documentation License with political boundaries from the Global Database

of Administrative Areas (https://gadm.org/).

https://doi.org/10.1371/journal.pone.0210269.g001
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Fig 2. Concatenated Bayesian phylogeny (cox1 + H3) of the East Asian Nemouridae family. The phylogenetic tree nodes were calibrated using 180 Ma based on

fossil records + 15 to 30 Ma based on the Japanese Archipelago formation. Calibration and geological time are shown at the bottom of the tree. A 95% HPD is

indicated as a horizontal grey bar and posterior probabilities are shown for each node. Circle symbol (O) in the nodes indicates intra-species diversification based on
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geographical proximity to the Japanese Archipelago and their geological formation histories.

The maps were prepared in QGIS software v 2.18 under the GNU free Documentation

License.

We collected adult insects using hand nets around riversides. We stored samples in 80%

ethanol in the field, and replaced the ethanol with fresh 99.5% ethanol after morphological

identification. We identified individuals according to the taxonomical keys of [21], [23], [24],

[25], [26], [27], [28], [29], [30], [31] and [32]. Undescribed species in our study were morpho-

logically sorted based on our taxonomic expertise and inconclusive taxonomic keys.

DNA extraction, amplification and sequencing

We genetically analysed a total of 289 individuals, out of which 189 were from East Asia

(males, 97; females, 92) and 100 were from North America (males, 92; females, 8). We

extracted genomic DNA individually using DNeasy tissue kits (Qiagen GmbH, Hilden, Ger-

many), following the manufacturer’s instructions. We amplified a 658-bp fragment of mtDNA

cox1 using LCO-1490 and HCO-2198 primers [33] with an annealing temperature of 38˚C

and 40 PCR cycles. Further, we amplified a 328-bp fragment of nDNA marker histone 3 (H3)

using the universal primers H3F and H3R [34] with an annealing temperature of 58˚C and 40

PCR cycles. We purified the PCR products using the QIAquick PCR Purification Kit (Qiagen

GmbH, Hilden, Germany) and sequenced them in both directions using the same primers as

mentioned above. Cox1 and H3 sequences were sequenced by Eurofins Operon (Tokyo,

Japan). All sequence data reported here have been deposited in GenBank (COI: MK132196-

MK132472; H3: MK132473-MK132742).

Sequence analysis

We assembled and edited forward and reverse sequences using CodonCode Aligner v 3.5

(Codon Code Corporation, Dedham, USA). All sequences were aligned using ClustalW

(https://www.genome.jp/tools-bin/clustalw) [35]. Alignment of H3 was based on the conserva-

tion of the amino acid reading frame across the data. Only a few nucleotide sites in the

sequence showed heterozygous nucleotides (i.e. double peaks). These nucleotide sites were

treated as unambiguous and they were omitted from our phylogenetic analysis. All alignment

data have been deposited in Dryad repository.

We calculated the genetic diversity by the number of polymorphic sites, number of haplo-

types and both mean nucleotide substitution rate (i.e. individuals within species) and pairwise

nucleotide substitution rate (i.e. between species), with the Kimura 2-parameter model. We

performed all analyses using DnaSp v5.10 [36]. All analyses were performed for cox1 and h3

separately.

All sequences of the mtDNA and nDNA markers were compared with the NCBI nucleotide

database using blastn queries (http://blast.ncbi.nlm.nih.gov) to corroborate species identifica-

tion (DNA barcoding, similarity > 98%) and to discard possible sequence errors.

DNA species delimitation

To corroborate the morphological species identification match with our molecular data, we

implemented a DNA species delimitation analysis. Putative DNA species were delineated

the eastern and western Japanese boundaries of the Fossa Magna region. Inserted upper map shows sample site locations for Japan (black), China (red) and South

Korea (blue) as dots. Colour branches indicate sample location distribution as shown in the map. The map was prepared using QGIS v 2.18 under the GNU free

documentation License with political boundaries from the Global Database of Administrative Areas (https://gadm.org/).

https://doi.org/10.1371/journal.pone.0210269.g002
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using the General Mixed Yule Coalescent model (GMYC; [37]). An ultrametric gene tree of

cox1 gene was constructed using BEST v1.8.3 [38], and the GMYC analysis was performed

using the splits package [39] in R ver. 3.3 (R Core Team). We used a single version of the

GMYC model. The maximum likelihood of the GMYC model was tested using the likelihood

ratio test against a one-species null model (i.e. entire tree is considered as a single coalescent).

Molecular clock analysis

We estimated the evolutionary history of the family in the Japanese Archipelago according to

the timing of the divergence of the lineages. For this estimation, we implemented a Bayesian

phylogenetic analysis in combination with a molecular clock analysis using BEAST v.2.4.4 [40]

with Zwicknia bifrons (Newman, 1838) (Capniidae Banks, 1990) as a outgroup for cox1 and

H3 (own sequences) separately. This outgroup was selected owing to their close phylogenetic

relationship with Nemouridae [41], [42]. To observe the divergence time, we adopted a relax

clock model [43] following a log normal distribution, and calibrated the phylogenetic tree

nodes using three types of molecular clock analysis. The first calibration was based on fossil

records of the Nemouridae family [44]. We calibrated the nodes at 180 million years ago (Ma)

and adjusted the parameters with a standard deviation of 20 Ma, as suggested in a previous

study [45] for a 95% highest posterior density (HPD). For this analysis, we implemented a fos-

silised birth death model [46] for tree prior parameter. The second calibration was based on

the Japanese Archipelago formation events dated from 15 to 30 Ma [3]. We applied several cal-

ibrations from 15, 20, 25 and 30 Ma at all nodes representing taxonomic species. All calibra-

tions were adjusted to 5 Ma as a standard deviation for a 95% HPD and a fossilised birth death

model [46] for tree prior parameter. Lastly, the third calibration was the time to the most

recent common ancestor (TMRCA) to observe species diversification patterns based on the

mean substitution rate of cox1. Using a Yule model tree prior parameter [47], we applied the

substitution rate for insect cox1 of 1.5% [48] and 3.54% [49] per million years for a 95% HPD.

For all branch age calibrations (namely, fossil, biogeographic and mtDNA substitution

rate), we performed MCMC for 50 million generations, and log dating trees (BEAST parame-

ters) for every 5000 generations. We tested the output files for convergence after removing a

10% burn-in by examining the effective sampling size using Tracer v1.5 [50]. We pooled the

four resulting output trees from biogeographical calibration analysis into a single tree. We then

pooled the resulting single tree from biogeographical calibration and the single tree from fossil

calibration analyses into a single tree. We performed all pooling analyses using Log Combiner

v1.6.1 (BEAST package) summarised with Tree Annotator (BEAST package) and visualised

using FigTree v1.3.1 [51]. We performed the analyses for cox1 and H3 separately. In summary,

three molecular clock calibration trees were obtained, two for cox1 (fossil + biogeography and

cox1 rates) and one for H3 (fossil + biogeography). The incongruence length difference test

(ILD) [52] was conducted to test the congruence of tree topologies (fossil + biogeography)

between cox1 and H3 using Tree Analysis Technology (TNT) [53]. ILD test revealed no signifi-

cant differences in terms of the Bayesian tree topologies between cox1 and H3 (P = 0.8); there-

fore, both markers were polled into a single tree for further analysis. The tree files have been

deposited in the Dryad repository.

Phylogenetic analysis between Nemoura from Japan and North America

To observe the phylogenetic relationship between Nemouridae from Japan and North America

(Zapada columbiana, Z. cinctipes and Podmosta delicatula), we analysed the maximum likeli-

hood (ML) phylogenetic trees of cox1 and H3 separately using PhyML 3.1 [54]. The General

Time-Reversible (GTR) model and gamma distribution were selected for both markers (cox1

Molecular phylogeny and diversification timing of Nemouridae
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and H3) based on a separate test performed with jModel Test v.3 [55] and using Zwicknia
bifrons (Capniidae) as an outgroup as described above. The trees were bootstrapped using

10,000 replications.

Results

Genetic diversity and DNA phylogeny

For studying the phylogeny of Nemouridae in the Japanese Archipelago, we analysed two

molecular markers. Cox1 sequences were of 658 bp length, with 247 polymorphic sites, 237

parsimony-informative sites, 10 singletons and a mean nucleotide substitution rate of 0.151.

H3 sequences were of 328 bp length, with 67 polymorphic sites, 54 parsimony-informative

sites, 13 singletons and a mean nucleotide substitution rate of 0.051. No gaps were detected for

either cox1 or H3 sequences. In total, for cox1 and H3, we identified 128 and 68 haplotypes,

respectively.

The log-likelihood of the GMYC model at the optimal threshold (111.02) was significantly

better than the null model of a single coalescent (logL = 56.99) in the likelihood ratio test

(p< 0.001). Most clades have GMYC-support values higher than 0.9, implying that the proba-

bility of the clades being delimited as separate GMYC-species among the alternative models of

delimitation (within a 95% confidence set) is higher than 0.9. The single-threshold model

delimited 61 putative species (S1 Table) (confidence interval: 58–65) composed of 39 clusters

(confidence interval: 38–42), indicating that some of the inferred putative species were single-

tons (i.e. only one sequence). These results agreed with our 34 morphologically identified and

15 undescribed (five species of Protonemura, seven of Nemoura, one of Indonemoura and two

of Amphinemura) species. Eight species (I. nohirae (Okamoto, 1922), A. decemseta Okamoto,

1922, A. zonata Okamoto, 1922, A. longispina Okamoto, 1922, A. megaloba (Kawai, 1960), N.

uenoi Kawai, 1954, N. chinonis Okamoto, 1922, and N. cf. cercispinosa Kawai, 1960) showed

two putative DNA-species. While A. decemseta showed multiple putative DNA-species (three

putative DNA-species), N. sanbena Shimizu (1993) and P. kohnoae Shimizu, 1998, showed two

putative DNA-species in the same sampling site suggesting the presence of cryptic species. The

congruence of H3 phylogenetic groups provided confirmation of DNA-based groups detected

by GMYC.

We observed the genetic diversity of the species per island (Table 1). Honshu had the high-

est number of species (26 species), haplotype richness (63) and mean nucleotide substitution

rate (average 0.027). Five species were found throughout the three Japanese islands (Honshu,

Shikoku and Kyushu), i.e. A. decemseta, A. zonata, N. cf. cercispinosa, N. chinonis and I.
nohirae, with a mean nucleotide substitution rate ranging from 0.011 to 0.126 and a total of 23

haplotypes. N. sanbena haplotypes were observed in two different branches in the phylogenetic

tree, both within N. cf. cercispinosa and as an isolated branch.

Divergence dates

The Bayesian phylogenetic trees for cox1 and H3 showed tree topology similarity (ILD test,

P = 0.8). Three clades corresponded to the three families—Protonemura, Amphinemura and

Nemoura—whereas Indonemoura was divided into two clades—the Mainland China clade,

clustered with Protonemura, and the Japanese clade (Fig 2).

The evolutionary divergence between the Nemouridae and Capniidae families was settled

at 180 Ma, with a 95% HPD interval of 160 to 198 Ma, in the Jurassic geological period (Fig 2).

Genus-level diversifications within Nemouridae occurred in the early and middle Cretaceous.

Indonemoura from Japan at 119.0 Ma (95% HPD, 125.8 to 100.2 Ma), Indonemoura from

Mainland China at 112.0 Ma (95% HPD, 90.2 to 115.0 Ma), Protonemura at 112.7 Ma (95%

Molecular phylogeny and diversification timing of Nemouridae
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HPD, 98.0 to 121.3 Ma), Nemoura at 107.0 Ma (95% HPD, 98.8 to 110.1 Ma) and Amphine-
mura at 80.0 Ma (95% HPD, 75.1 to 92.0 Ma). The speciation process occurred between 25 Ma

(early Paleogene) and 90 Ma (late Crustaceous). Out of 35 events of speciation (i.e. nodes), 16

(45%) occurred during late Crustaceous and 19 (54%) occurred during early Paleogene,

broadly overlapping with the formation time of the Japanese Archipelago (15 to 30 Ma). We

observed intra-species diversification in I. nohirae, A. decemseta, A. zonata, A. longispina, A.

Table 1. Regional distribution of sample size (n), haplotype richness (h) and mean nucleotide substitution rate of Nemouridae species among the three main islands

in Japan, based on mitochondrial DNA (cox1) sequences. Total species richness was 26, 23 and 6 for Honshu, Shikoku and Kyushu, respectively.

Honshu Shikoku Kyushu

Genus Species n h Nucleotide substitution n h Nucleotide substitution n h Nucleotide substitution

Amphinemura A. bulla 5 4 0.006

A. decemseta� 19 13 0.014 9 5 0.02 3 1 0

A. dentifera 2 1 0 2 2 0.01

A. flavostigma 3 3 0.005 3 2 0.01

A. longispina 2 1 0

A. megaloba 4 2 0.091 3 1 0

A. zonata� 2 2 0.053 1 1 1 1

A. sp. n. 1 1 3 3 0.03

Indonemoura I. nohirae� 9 4 0.059 4 2 0.01 2 1 0

Nemoura N. akagii 2 1 0

N. cf. cercispinosa� 2 2 0.011 13 7 0.01 2 1 0

N. chinonis� 2 2 0.126 5 3 0.09 1 1

N. fulva 3 3 0.043

N. cf. hikosan 2 2 0.1

N. longicercia 2 1 0 7 5 0

N. naraiensis 2 1 0

N. ovocercia 1 1

N. redimiculum 1 1 3 3 0.01

N. sanbena 2 2 0.5

N. shikokuensis 4 1 0

N. stratum 2 2 0.027

N. speciosa 2 2 0.003

N. transversospinosa 6 4 0.01

N. uenoi 1 1 2 2 0.01

N. yakushimana 2 1 0

N. sp. n. 1 3 1 0

N. sp. n. 2 2 2 0.003

N. sp. n. 3 1 1

N. sp. n. 4 1 1

P. kohnoae 6 3 0.043

P. orbiculata 6 6 0.029

P. sp. n 2 2 0.01

Protonemura P. sp. n. 1 1 1

P. sp. n. 2 2 1 0

P. sp. n. 3 1 1

P. sp. n. 4 1 1

(�) Species found on the three Japanese islands.

https://doi.org/10.1371/journal.pone.0210269.t001
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megaloba, N. chinonis, N. uenoi and N. cf. cercispinosa (GMYC > 1 species, S1 Table). These

species were divided into two clades (S1 Fig), spatially segregated into eastern and western

Japan of the Fossa Magna region during the late Neogene period (20 to 22 Ma). Recent diversi-

fications for Nemoura and Amphinemura species within either eastern or western Japanese

branches were additionally revealed by TMRCA analysis of cox1 (see Methods). A. decemseta
ranging from 3 to 3.5 Ma (95% HPD, 2.8 to 4.1 Ma); A. zonata, ranging from 3 to 4 Ma (95%

HPD, 3.5 to 5 Ma); A. longispina, ranging from 3.6 to 4.5 Ma (95% HPD, 3.9 to 5 Ma); A. mega-
loba, ranging from 3.5 to 4 Ma (95% HPD, 2.8 to 4 Ma); N. uenoi, ranging from 3 to 4 Ma

(95% HPD, 3.5 to 4.2 Ma) and N. cf. cercispinosa, ranging from 3.5 to 4.1 Ma (95% HPD, 3 to 5

Ma), for 1.5% Ma and 3.54% Ma analysis respectively.

Phylogeographic pattern between Nemoura from Japan and North America

DNA sequences in the Japanese clade of Indonemoura (single species, I. nohirae) showed a

high homology with those in the Alaskan species of Z. columbiana (COI: KM874174; >93%

sequence similarity) and Z. cinctipes (H3: EF622600; >98% sequence similarity) based on

blastn results.

Based on the Blast results and the previous reported geographical distribution of these spe-

cies in Asia and North America, we decided to observe the phylogenetic relationships of these

Alaskan specimens (Z. columbiana, Z. cinctipes and P. delicatula) with stoneflies taxa from

Japan. The ML phylogenetic trees for both cox1 and H3 (Fig 3) showed that the Indonemoura

Fig 3. Maximum likelihood trees based on both cox1 and H3 markers for comparison between the East Asia Nemouridae family and three North

American Nemourinae species: Zapada cinctipes, Z. columbiana and Podmosta delicatula. Inserted upper map shows sampling site locations in North

America (western USA and Alaska) as black dots. The map was prepared using QGIS v 2.18 under the GNU free documentation License with political

boundaries from the Global Database of Administrative Areas (https://gadm.org/).

https://doi.org/10.1371/journal.pone.0210269.g003
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Japanese clade clustered with three North American species (Z. columbiana, Z. cinctipes and P.

delicatula) and the Indonemoura Mainland China clade clustered with the East Asian Nemour-

idae genera (Nemoura, Protonemura and Amphinemura). The pairwise nucleotide substitution

rate based on cox1 between the Indonemoura Japanese clade and Zapada spp. or P. delicatula
from North America ranged from 0.13 to 0.15, whereas a higher pairwise nucleotide substitu-

tion rate based on cox1 of 0.26 was observed between the Indonemoura Japanese and Mainland

China clades (Table 2).

Discussion

We studied mitochondrial cox1 and nuclear H3 gene sequences to determine the patterns of

diversification and phylogenetic relationships of species belonging to four genera of stoneflies

of the Nemouridae family in the Japanese Archipelago. We estimated the divergence among

Nemoura, Amphinemura, Indonemoura and Protonemura to have occurred in the early and

mid-Cretaceous (around 100 Ma), which is compatible with previous studies based on fossil

records [56], [57]. Our results suggested that these four genera might have dispersed and colo-

nised different areas of the Eurasian continent—including the Japanese landmasses—when

they were still connected to the Eurasian continent. Among the four genera, the diversification

of Indonemoura occurred earlier (120 Ma) than that of the other genera (<100 Ma), suggesting

that it is an ancient genus. The geological isolation of colonised areas [58], the long evolution-

ary time [59] and poor dispersal ability of Indonemoura [23], [60] might have accounted for

their ancient diversification.

Based on the phylogenetic relationships of both molecular markers (cox1 and H3), we

observed that the three genera Nemoura, Amphinemura and Protonemura were monophyletic

and clustered as three independent groups, as previously observed by morphological systematics

[16]. However, Indonemoura was paraphyletic. This genus was divided into two clades corre-

sponding to the Mainland China and the Japanese clades. Surprisingly, the Japanese clade of

Indonemoura (single species, I. nohirae) clustered together with North American species (Z.

columbiana, Z. cinctipes and P. delicatula), with a low pairwise nucleotide substitution rate

(<0.15). The distribution range of these two North America genera covers North America and

Eastern Asia. Previous studies suggested that their distribution could be related to the land con-

nection (i.e. the islands) between Alaska and Eastern Asia [15]. Dispersal by island connectivity

between Alaska, the Aleutian Islands, the Kamchatka peninsula and the Kuril Islands has been

observed in other stonefly families (for instance, Arcynopteryx dichroa (McLachlan, 1872), Cap-
nia nearctica Banks, 1919, Mesocapnia variabilis (Klapálek, 1920) and Nemoura arctica Esben-

Petersen, 1910) [61]. However, the distribution of Indonemoura on these islands is unknown.

The complex history of the geological formation of the Japanese Archipelago may provide a

possible alternative explanation. The ancestral Japanese landmasses were located on the

Table 2. Pairwise nucleotide substitution rate based on cox1 between the East Asian Nemouridae and North American (western USA and Alaskan) species.

East Asia Amphinemura spp. 0

Nemoura spp. 0.187 0

Protonemura spp. 0.197 0.19 0

Indonemoura spp. (China) 0.213 0.193 0.197 0

Indonemoura spp. (Japan) 0.197 0.183 0.175 0.260 0

North America Zapada columbiana 0.178 0.165 0.182 0.190 0.145 0

Zapada cinctipes 0.170 0.154 0.156 0.179 0.149 0.133 0

Podmosta delicatula 0.202 0.196 0.191 0.205 0.135 0.185 0.201 0

https://doi.org/10.1371/journal.pone.0210269.t002
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borders of four major tectonic plates, of which two are continental plates—the Eurasian plate

and the North American plate [4] (S2 Fig). The eastern Japanese landmass was located on the

North American plate, whereas the western Japanese landmass was located on the Eurasian

plate [5]. The dispersal and colonisation of Indonemoura might have occurred from the North

American plate to the Eurasian continent or vice versa (from the Eurasian continent to the

North American plate) before their geographic separation in an ancient time (around 70 to 80

Ma) [62]. Dispersal events between Eurasian and Japanese landmasses are commonly reported

for aquatic insects [10], [63]. Particularly, a dispersal event between North America and the

Japanese Archipelago was detected by the phylogenetic relationship of the monophyletic

group of caddisflies, Palaeagapetus spp. [9]. However, no prior studies have observed specia-

tion events of aquatic insects associated with geological events that occurred in ancient times

(>12 Ma). Our result suggests an ancient divergence time and a distribution pattern of Indone-
moura, consistent with a hypothesis of an ancient colonisation influenced by the connection of

the Japanese landmass with the North American plate in the Eurasian continent.

Nemouridae species diversification, as has been observed in other species of aquatic insects,

such as beetles [10], caddisflies [9], water bugs [14] and mayflies [8], [13], was also observed to

be affected by the geological formation of the Japanese Archipelago. The diversification of the

Nemouridae species occurred during the Paleogene period (<50 Ma). This geological period is

consistent with the movement of landmasses (S2 Fig) about 70 Ma ago [4] and the active geo-

logical formation of the Japanese Archipelago around 20 Ma ago [5], which could be the cause

of the Nemouridae diversification, as previously reported for the mayfly Dipteromimus flavip-
terus Tojo and Matsukawa, 2003 (35 Ma) [2].

Indonemoura nohirae is the single species of Indonemoura on the Japanese Archipelago

[25], [26]. The morphology of their terminalia resembles that of Protonemura rather than of

Indonemoura, but the characteristic gill formula justifies their taxonomical classification in

Indonemoura [25], [26]. To date, there are 24 Indonemoura species from China [16], [24] and

30 species belonging to the Himalayan and Oriental regions in East Asia [15], [20]. These spe-

cies are morphologically different from I. nohirae in Japan [15], [16], [20], [24], [25], [26]. We

hypothesise that the Indonemoura species of East Asia could be forming separate phylogenetic

clades clustered by geographical regions. For the hypothesis testing, further collection of

molecular data on Indonemoura from wider areas such as Northeast China, Southeast China,

Mongolia, Russia and other countries in Asia is needed in future studies.

Eight species (I. nohirae, A. decemseta, A. zonata, A. longispina, A. megaloba, N. chinonis, N.

uenoi and N. cercispinosa) showed interesting patterns of intra-species separation into two

genetic groups corresponding to eastern and western areas of the Fossa Magna region of Hon-

shu Island (S1 Fig). Honshu is the centre of insect biodiversity [10]; apart from its extensive

territorial space, it is the main island with a geological history [3], [4], [5]. We found support-

ing evidence on the genetic diversity of these eight species. We found a larger mean nucleotide

substitution rate and haplotype number in the Honshu region than in other islands (Table 1).

The mean nucleotide substitution rate and haplotype diversity are indications of biodiversity

[64], which could lead to evidence of speciation [65]. Out of eight species, the diversification of

six species (A. decemseta, A. zonata, A. longispina, A. megaloba, N. uenoi and N. cercispinosa)

occurred during the late Neogene period (20 to 22 Ma). This event corresponded with the dou-

ble-door (i.e. the union of eastern and western Japan; S2 Fig) geological model and the forma-

tion of the Itoigawa-Shizuoka tectonic line (ISLT) at around 20 Ma [5], [66]. The speciation of

aquatic insects was often observed to be influenced by these two geological events [2]. Addi-

tionally, species diversification—from eastern or western Japan of the Fossa Magna region—

showed recent diversification events (3 to 5 Ma) corresponding with the formation of the

small islands in northeastern or southwestern edge areas of Japan (Fig 1). The northeastern
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islands created land bridges between the Japanese Archipelago and China or Korea, whereas

the southwestern islands connected Taiwan or the Philippines with the Japanese Archipelago

[5], [66]. This connectivity promoted immigration events in Japan that might have contributed

to the formation of the current genetic diversity, as previously observed in mayflies [13] and

beetles [10].

The evolutionary divergence of the Nemouridae family was promoted by the complex geo-

logical formation of the Japanese Archipelago. Despite the different evolutionary rate of both

molecular markers, Bayesian analysis found congruence between them; however, failed to find

congruence with their morphological taxonomy. The main morphological character used for

identification of adult stoneflies species is its genital morphology. The evolution of genital

morphology is; however, governed by within-population sexual selection rather than environ-

mental or geological history of the locations [67]. Conversely, the genetic variation of natural

populations has been observed to be directly associated with environmental [68] and geologi-

cal variations [2]. Therefore, the genetic variation could reflect an independent course in the

evolutionary history of Indonemoura than do the morphological characters used for their tax-

onomy. However, we detected that N. sanbena shared haplotypes from different lineages,

revealing a possible introgression or incomplete sorting of ancestral polymorphisms [10]. This

is an often reported phenomenon in stoneflies [40], [69], [70], which remains as unresolved

species. Resolving the problems between the process of evolution of morphological characters

and the genetic variation within species will improve our future understanding of the origin of

the species and the local species distribution.

Finally, our inference of divergence time was based on the coalescent simulation approach.

Despite the frequent use of this approach, a biased sampling of lineages and extreme state-

dependent molecular substitutions rate heterogeneity are known to potentially cause errone-

ous inference of divergence time [71]. One of the causes of biased sampling is under-sampling

(i.e. the incomplete-coverage samples included in the phylogenetic tree). Previous studies

demonstrated that under-sampling increases the estimates of the posterior probabilities (i.e.

variance of age estimates become less precise) [72] and led to bias and low precision of the

divergence time of shallow nodes (i.e. evolutionary recently divergent taxa) [73], [74]. How-

ever, under-sampling tends not to affect deep nodes (i.e. internal nodes close to the root) time

scales estimations or the tree shape [75], [76], [77]. Therefore, in order to confirm the accuracy

of the time scales estimations of the recently divergent taxa in our study, additional taxonomic

samples would be required to be included in the molecular clock analysis. Conversely, the

state-dependent molecular substitution rate heterogeneity could be address by combining

node calibrations generated by more than one calibration analyses, as recommended by [71],

[78]. A cautious method such as the combined uses of fossil records and biogeographic ages as

employed in our analysis may minimize the risk of such erroneous inference.
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the GNU free Documentation License with political boundaries from the Global Database of
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