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Abstract

Aspergillus niger and other filamentous fungi are widely used in industry, but efficient

genetic engineering of these hosts remains nascent. For example, while molecular genetic

tools have been developed, including CRISPR/Cas9, facile genome engineering of A. niger

remains challenging. To address these challenges, we have developed a simple Cas9-

based gene targeting method that provides selectable, iterative, and ultimately marker-free

generation of genomic deletions and insertions. This method leverages locus-specific “pop-

out” recombination to suppress off-target integrations. We demonstrated the effectiveness

of this method by targeting the phenotypic marker albA and validated it by targeting the glaA

and mstC loci. After two selection steps, we observed 100% gene editing efficiency across

all three loci. This method greatly reduces the effort required to engineer the A. niger

genome and overcomes low Cas9 transformations efficiency by eliminating the need for

extensive screening. This method represents a significant addition to the A. niger genome

engineering toolbox and could be adapted for use in other organisms. It is expected that this

method will impact several areas of industrial biotechnology, such as the development of

new strains for the secretion of heterologous enzymes and the discovery and optimization of

metabolic pathways.

Introduction

The recombinant production of enzymes at high titers using various hosts, such as filamentous

fungi, is an important aspect affecting costs for many commercial applications today, includ-

ing pharmaceuticals [1], food processing [2], biofuels [3], and detergents. Despite the wide-

spread deployment of these fungal strains in industry, the genetic toolbox by which they can
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be efficiently optimized for any given application, such as improved recombinant protein pro-

duction from gene expression, remains challenging and time consuming [4]. One of the indus-

trial approaches to the conversion of starches and polysaccharides into monomers suitable for

subsequent bioconversion into biofuels relies on the use of hydrolytic enzymes, such as amy-

lases, cellulases, and hemicellulases that are naturally found in fungi and bacteria [5,6]. In

order for recombinant enzymes of this type to be produced at the commercial scale, they must

be produced at high titers and yields in order to reduce costs. While these enzymes could be

produced by the filamentous fungi in which they are found in naturally or in recombinant

hosts, these fungi may not secrete enough of the targeted enzymes needed and therefore

genetic engineering and optimization of these strains is an important component of commer-

cial viability [7].

Aspergillus niger is a filamentous ascomycete fungus utilized industrially for the production

of citric acid and for its ability to produce and secrete high levels of endogenous and recombi-

nant enzymes [8]. It is generally recognized as safe at the commercial scale, its genome is

sequenced and it is amenable to standard genetic modification techniques [9]. The genomic

integration of exogenous DNA via homologous recombination (HR) has been widely applied

in A. niger and other filamentous fungi [8]. Typically, genes are replaced with a “fixing tem-

plate” containing a selectable marker, thereby permitting selection of the integration event.

The pyrG gene, encoding encodes orotidine-50-monophosphate decarboxylase, an intermedi-

ate in the pyrimidine pathway forming uridine monophosphate, is both positively and nega-

tively selectable; the integration of pyrG can be selected for by culturing in the absence of

uracil/uridine while the absence of pyrG can be selected for in the presence of 5-fluoroorotic

acid (5-FOA) [10,11]. pyrG converts 5-FOA into fluoroorotidine monophosphate which is

subsequently converted into fluorodeoxyuridine by ribonuclease reductase. Fluorodeoxyuri-

dine is a suicide inhibitor of the thymidylate synthase and therefore inhibits DNA synthesis

and leads to cell death. 5-FOA is non-toxic in the absence of pyrG. The positive/negative selec-

tion of pyrG can be exploited to permit iterative targeting by selecting for the “pop-out” exci-

sion of pyrG via HR after integration [12].

Targeting double stranded breaks (DSBs) to the site of DNA integration is known to

increase the efficiency of HR [13–16]. Originally a bacterial defense system, the now-ubiqui-

tous CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats; CRISPR asso-

ciated protein 9) was engineered for rapid targeting of DSBs [17]. In this system, a small guide

RNA (sgRNA) targets the Cas9 endonuclease to its complementary DNA. In addition to facili-

tating HR, CRISPR/Cas9 can be used to introduce deletions and point mutations without nec-

essarily introducing foreign DNA [18,19]. CRISPR/Cas9 was previously demonstrated to be

effective in several filamentous fungi, e.g. A. niger, A. oryzae, A. fumigatus, and Neurospora
crassa [20–22].

Nevertheless, this method requires extensive screening as off-target integrations, mediated

by non-homologous end-joining (NHEJ), lead to an overwhelming rate of false positives [21].

Several strategies have been employed to increase the efficiency of HR, including the adjust-

ment of length of the HR arms [23], engineering the RAD52 HR protein [24], or knocking out

the Ku70 genes responsible for NHEJ [25]. Complete disruption of NHEJ can lead to genomic

instability and increases the risk of DNA damage [26]. Therefore, high-efficiency specific gene

editing in A. niger and other filamentous fungi remains a significant challenge. Editing effi-

ciency has been reported to be from anywhere between 1 and 100% efficient depending on the

CRISPR/Cas9 setup and the target locus [21]. Targeting non-phenotypic genes requires labori-

ous sequencing of transformants.

To address these challenges, we have developed reusable, transiently-selectable donor DNA

for a specific integration system. After validating this methodology using the phenotypic
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marker albA, we sequentially targeted two genes likely to improve heterologous enzyme pro-

duction. We replaced glaA (glucoamylase) with the Thermotoga petrophila β-glucosidase des-

ignated A5IL97 [27]. We then interrupted the sugar transporter mstC [28] and observed 100%

efficiency of the desired mutations at all three loci using positive and negative selection pres-

sure. This approach allows for the efficient engineering of A. niger and eliminates the need for

screening hundreds of transformants. To the best of our knowledge, this is the first published

report on this new Cas9 approach and applying it in A. niger (or any fungi) and significantly

reduces the time required for the screening of positive mutants at high efficiencies.

Results

Our approach relies on the induction of a genomic DSB with a targetable Cas9/sgRNA com-

plex, incorporation of a selectable marker via HR, and selection of pyrG-containing mutants

by culturing in the absence of uracil/uridine. To validate this approach, we targeted albA, a

polyketide synthase responsible for the production of a black spore pigment [29]. When albA
is disrupted, colonies present a white rather than black spore phenotype, providing a conve-

nient and commonly used selection technique.

We generated a fixing template cDNA006, with 1,500 bp homology arms for targeting albA
(Fig 1). cDNA006 contains a 5’ stop codon repeat for disrupting translation and the pyrG gene.

To generate a “recyclable” marker system, pyrG was flanked with direct repeat sequences [12].

Upon exposure to 5-FOA, transformants containing pyrG should undergo “pop-out” recombi-

nation to remove the marker, thereby permitting additional rounds of gene targeting using

pyrG selection.

While some methods contain the fixing template and sgRNA on the same plasmid as Cas9,

this necessitates additional cloning steps when targeting new genes and leads to off target

effects due to constitutive expression [21]. We therefore opted for in vitro preparation of the

sgRNA and fixing template (see Methods). cDNA006, an albA-targeting small guide RNA

Fig 1. Design and application of cDNA006 for disruption of albA. (A) of cDNA006 contains pyrG flanked by 300bp repeats at 1000 bp homology arms

to albA. After integration, pyrG is excised by homologous recombination in the presence of 5-FOA. (B) and (C) Phenotypes obtained before 5-FOA and

after 5-FOA. (D) Representative sequence showing the integration of the stop codon at the albA locus in a white colony.

https://doi.org/10.1371/journal.pone.0210243.g001
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(sgRNA001) and plasmid pFC332, containing a constitutively expressed A. niger codon-opti-

mized Cas9, were simultaneously transformed into ATCC 1015 pyrG -. Transformants were

plated onto minimal media without uracil/uridine and with 300 μg/mL hygromycin to select

for the integration of pyrG and the maintenance of pFC332, respectively. After 4 days, 79% of

the colonies had the white spore phenotype, indicating successful targeting of albA (Fig 1). We

then isolated black and white colonies and re-streaked them on minimal media containing

uracil/uridine and 5-FOA, to select for the “pop-out” recombination of pyrG (Fig 1A, step 2).

These colonies were then re-plated on MMA + uracil. Sequencing the specific locus revealed

that the 100% of the black colonies were free of mutations at the albA locus, while 100% of the

white colonies contained the integrated stop codon exact protospacer location of the sgRNA

(Fig 1) (S1 Fig).

We observed efficient, selectable gene deletion with successful excision of pyrG. Neverthe-

less, 21% of colonies did not have mutations at the albA locus but survived on MMA + hygro-

mycin without uracil/uridine supplied (Fig 1B and 1C), indicating NHEJ-mediated off-target

integration of the fixing template [30]. While NHEJ-mediated repair can be suppressed by

knocking out genes in the NHEJ pathway, this can lead to genomic instability and mutagenic

sensitivity [26]. Therefore, we sought to engineer a fixing template to screen positive mutations

at the correct integration locus.

Developing a specific pop-out marker

We designed a fixing template (cDNA008) that will excise pyrG when it is specifically inte-

grated at the albA locus (Fig 2A). Rather than inserting a stop codon, cDNA008 was designed

to delete 1000 bp of albA to disrupt the gene. Like cDNA006, cDNA008 contains the pyrG
gene. A 300 bp cassette was placed in front of the pyrG gene that are homologous to the 3’

region of albA. After integration and exposure to 5-FOA, pyrG should undergo pop out

recombination if it is correctly integrated into the albA locus. HR loses efficiency as the dis-

tance between homologous sequences increases [31]. Therefore, HR-mediated excision of

pyrG will be inefficient for off-target integrations, and cells with off-target integrations should

die in the presence of 5-FOA.

After transformation of Cas9, sgRNA001, and cDNA008, 71% of the colonies had the white

spore phenotype (Fig 2B). 7 white and 3 black colonies were re-streaked on plates containing

5-FOA. The white colonies survived on plates containing 5-FOA, while there was no detectable

growth of the black colonies after one week (Fig 2C) (S2 Fig). PCR amplification of the albA
locus at each stage showed (#2) the integration of pyrG, and (#3) the pop-out recombination of

pyrG and deletion of 1000bp of albA (Fig 2D). Sequencing the albA locus of all mutants con-

firmed the integration of pyrG and subsequent recombination upon 5-FOA treatment. There-

fore, on the 10 analyzed colonies, we observed 100% of correct albA locus modifications after

treatment with 5-FOA, suggesting the method suppresses off-target integrations (S2 and S3

Figs).

Targeting a non-phenotypic gene

After demonstrating the feasibility of our method at the albA locus, we then targeted the non-

phenotypic gene glaA, and replaced it with another gene, A5IL97, in a single procedure. The

glaA gene encodes the glucoamylase enzyme, a natural highly secreted enzyme of A. niger [32],

which has a strong promoter, PglaA [33], that can be used to produce heterologous enzymes

[28]. As a proof of concept, we used the gene that encodes for the β-glucosidase A5IL97 that

has been previously shown to be secreted by A. niger [28]. We designed a construct, cDNA009,

to target the glaA locus. cDNA009 resembles the cDNA008 with the addition of the open
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reading frame (ORF) for A5IL97 (Fig 3A). After transformation, 10 colonies were isolated on

MMA selecting for the integration of pyrG. After PCR amplification at the glaA locus, only 8

colonies of the 10 selected on MMA had integration of the pyrG marker at the locus. After

5-FOA selection, only the 8 colonies containing previously pyrG survived on 5-FOA. Sequenc-

ing of 5-FOA resistant mutants confirmed 100% efficient deletion of glaA, integration of

A5IL97 and the pyrG marker was removed at the locus (Table 1) (S4 Fig).

As 5-FOA exposure led to the excision of pyrG and the genotype A. niger ΔglaA/PglaA-
A5IL97 pyrG−, this method is inherently recyclable. After successfully replacing glaA with

A5IL97, we verified the iterative nature of this method by targeted disruption of a second gene,

mstC, in this strain (Fig 3B). mstC encodes a glucose transporter that, once disrupted, has been

identified to enhance the PglaA for heterologous enzyme production [28]. With an off-target

suppressing construct, we targeted mstC and observed 100% deletion after 5-FOA (Table 1),

making the strain A. niger pyrG− ΔglaA/PglaA-A5IL97 ΔmstC (S5 Fig).

Fig 2. Design and application of a specific construct cDNA008 for disruption of albA. (A) Design of cDNA008 construct inserted at the albA locus to

delete 1,000 bp making A. niger pyrG−albA–, use of sgRNA001. (B) and (C) Results obtained before 5-FOA and after 5-FOA. (D). PCR amplification of the

albA gene in wild type (WT) strain #1, before 5-FOA insertion of pyrG at the albA locus #2, and deletion of 1000 bp of albA after 5-FOA #3.

https://doi.org/10.1371/journal.pone.0210243.g002
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Discussion

We have designed and demonstrated a technique that efficiently edits the genome of A. niger
based on CRISPR/Cas9. We targeted the non-phenotypic genes glaA and mstC on the same

strain and obtained 100% efficiency after selection on 5-FOA. Despite the 100% efficiency

observed at these three different loci using the method, there is no guarantee that 100% effi-

ciency will be observed for all loci. Many factors influence the probability of genomic modifi-

cation, including the essentiality and accessibility of a gene [34]. The originality of this

technique is in the design of the construct which leads to a simple counter selectable method

for in-target integration, allowing us to tolerate loss of efficiency due to the organism, the gene

target [35], the choice of the sgRNA or the way in which it is delivered (in vitro or in vivo,

choice of the promoter), and the Cas9 expression method. It should be noted that other off-tar-

get effects, such as the generation of point mutants caused by Cas9, are not suppressed. The

method presented here should overcome limitations in genome editing in filamentous fungi

such as low efficiency editing for some loci and the time required to screen mutants when the

gene in target is not phenotypic. The described method is a worthwhile addition to the tools

available for genome editing in filamentous fungi such as the use of short recombination arms

[36], and reduction of off-target effects by knockout of the NHEJ protein KusA [37].

Fig 3. Design and application of cDNA009 (glaA locus) and cDNA010 (mstC locus). (A) cDNA009 construct inserted at the glaA locus to insert A5IL97
gene making A. niger pyrG− ΔglaA/PglaA-A5IL97, use of sgRNA002 and sgRNA003. (B) Design of cDNA010 construct inserted at the mstC locus to delete

mstC on the A. niger pyrG− ΔglaA/PglaA-A5IL97, resulting in the strain A. niger pyrG− ΔglaA/PglaA-A5IL97 ΔmstC.

https://doi.org/10.1371/journal.pone.0210243.g003

Table 1. Efficiency obtained before and after selection of 5-FOA by PCR amplification at the mutated locus and sequence verified.

Gene targeting Constructs sgRNA Method Before 5-FOA After 5-FOA

albA−
Codon stop insertion

cDNA006

X-pyrG-X

sgRNA001 Non-selective 19 white colonies

5 black colonies

(79% white colonies)

8 white colonies

2 black colonies

albA−
Deletion of 1000 bp

cDNA008

X-pyrG

sgRNA001 Selective 20 white colonies

8 black colonies

(71% white colonies)

7 white colonies

0 black colonies

ΔglaA
Gene replacement with A5IL97

cDNA009

A5IL97-X-pyrG

sgRNA002

sgRNA003

Selective 8 colonies with pyrG at the locus

2 colonies without pyrG at the locus

8 on target

0 off target

ΔmstC
Gene deletion

cDNA010

X-pyrG

sgRNA004

sgRNA005

Selective 7 colonies with pyrG at the locus

3 colonies without pyrG at the locus

7 on target

0 off target

https://doi.org/10.1371/journal.pone.0210243.t001
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We used the Cas9 plasmid under a constitutive promoter but not with the sgRNA on the

plasmid to reduce the risk of off-target effects [19,38] and facilitate the preparation of the

sgRNA for the transformation. For our purposes in vitro sgRNA preparation was sufficient for

100% gene editing, which is in line with other reports demonstrating the efficiency of in vitro
sgRNA [30,39]. The choice of the sgRNA is crucial for the Cas9 targeting efficiency. A simple

test in vitro with Cas9 can demonstrate the efficiency of each individual sgRNA (see Methods).

Looking forward, in vitro sgRNA preparation may be the easiest method for testing many

sgRNAs without the need for extensive sub cloning [30].

The primary focus of this study was to reduce the workload of screening for positive

mutants and to generate a recyclable rescue marker for iterative mutation, which we have dem-

onstrated. This method can be adopted to generate point mutants by incorporating the muta-

tion in the fixing template. In this study we only used the auxotrophic marker pyrG vs 5-FOA,

but there are more rescue markers available that have not been tested, such as amdS. This

method may be applied to multiplex genome engineering in the same recyclable, specific man-

ner. Many of the pre-existing CRISPR/Cas9 methods work in multiple filamentous fungi [21].

While we have only tested these methods on A. niger, these methods may likely be applied to

other species. In conclusion, this novel method greatly simplifies genome editing in A. niger
and will enable the rapid generation of genomic mutants and libraries for the investigation of

biology and further improve the use of A. niger as an important heterologous production host.

Materials and methods

Reagents

All chemicals were purchased from Sigma unless otherwise noted.

Strains

The strains used in this paper are listed in Table 2. The genome sequence of strain ATCC 1015

v4.0 is accessible from the Joint Genome Institute (JGI).

Plasmids

This study builds off of pre-existing Cas9 expression of the pFC332 shuttle plasmids for A.

niger [22]. The plasmids express an A. niger codon optimized Cas9 under expression of the

TEF-1 promoter. These contain the A. nidulans AMA1 replication cassette which mediates

replication in multiple species of filamentous fungi [40]. The plasmid contains an hygromycin

(hph) resistance marker for the selection of the plasmid. All plasmids were re-sequenced before

proceeding further. Each transformation has been executed with a positive control, using two

plasmids pFC330 (pyrG marker) and pFC332 (hph marker), and a negative control, using

water.

Table 2. A. niger strains used in this study and their accession information.

Name Genotype Source Access

JBEI-14377 ATCC 1015 pyrG - [29] https://registry.jbei.org/folders/1399

JBEI-099147 ATCC 1015 pyrG−albA – This study. https://registry.jbei.org/folders/1399

JBEI-099148 ATCC 1015 pyrG−albA – This study. https://registry.jbei.org/folders/1399

JBEI-099149 ATCC 1015 pyrG− ΔglaA/PglaA-A5IL97 This study. https://registry.jbei.org/folders/1399

JBEI-099151 ATCC 1015 pyrG− ΔmstC ΔglaA/ PglaA-A5IL97 This study. https://registry.jbei.org/folders/1399

https://doi.org/10.1371/journal.pone.0210243.t002
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Construction of sgRNA

All of the sgRNA used, except for the albA sgRNA [22], were designed using the CRISPOR

algorithm [41] and chosen to minimize off-target mismatches (Table 3). Once the sgRNA were

chosen using the CRISPOR algorithm, they were prepared and tested in vitro using the Guide-

it sgRNA Screening Kit (Takara). After the sgRNA were validated in vitro, they were amplified

for transformation using the GeneART gRNA synthesis (Thermo Fisher). The concentration

of sgRNA obtained after purification was ~10 μg/μL (Nanodrop). 20 μg sgRNA were used for

each transformation to reach an optimal efficiency.

Donor DNA

DNA design. Each donor DNA (cDNA) contained the pyrG gene and was flanked with

1000 bp or 1500 bp HR arms for efficient integration [25].

DNA preparation. The preparation of the donor cDNA was performed via PCR cloning

or purchased from Genscript (https://www.genscript.com/) (Table 4). The cDNA was inte-

grated into the plasmid pUC57, transformed into DH10b competent cells (New England Bio-

labs, NEB) and selected on LB with 100 μg/mL carbenicillin plates. The resulting plasmids

(Table 4) were sequence verified by Quintara (https://www.quintarabio.com/). The plasmids

were used as the template to generate linear cDNAs by PCR amplification using Phusion Hot

Start II (Thermo Fisher) and their respective primers (S1 Table). The four cDNAs PCR prod-

ucts were purified and concentrated to 1 μg/μL and 10 μg was used per transformation as

described below.

Transformation

Before transformation, A. niger was prepared for a protoplast-mediated transformation (PMT)

[42], which consist of degrading the cell wall using VinoTaste Pro. After simultaneous trans-

formation of Cas9, sgRNA, and the donor DNA into A. niger pyrG−, the mixture was incu-

bated on ice for 20 minutes in a transformation solution (25% polyethylene glycol (6,000), 50

mM CaCl2, and 10 mM Tris HCl, pH 8.0). The mixture was plated on a 1% glucose minimal

media containing agar and 1M sorbitol (MMA) + 300 μg/mL hygromycin, and the plates were

incubated at 30˚C. After transformation, the colonies were isolated on plates containing MMA

Table 3. Sequence of sgRNAs with original source.

Gene targeting Sequencing name Source

albA AGTGGGATCTCAAGAACTAC sgRNA001 [22]

glaA 5’ CTGTGCAGACGAGGCCGCTC sgRNA002 CRISPOR.tefor.net

glaA 3’ TCTACACGAAGGAAAGACCA sgRNA003 CRISPOR.tefor.net

mstC 5’ TCCGCGTTGTATGAATCCAC sgRNA004 CRISPOR.tefor.net

mstC 3’ GTGCCAGGCAGCCTGACCGG sgRNA005 CRISPOR.tefor.net

https://doi.org/10.1371/journal.pone.0210243.t003

Table 4. cDNA features and their accession information.

Strains Plasmid Amplicon Gene target Homology arms (bp) Selectable marker Sequence

JBEI-099138 pllk034 cDNA006 albA 1500 pyrG https://registry.jbei.org/folders/1399

JBEI-099142 pllk036 cDNA008 albA 1000 pyrG https://registry.jbei.org/folders/1399

JBEI-099144 pllk038 cDNA009 glaA 1000 pyrG https://registry.jbei.org/folders/1399

JBEI-099146 pllk039 cDNA010 mstC 1000 pyrG https://registry.jbei.org/folders/1399

https://doi.org/10.1371/journal.pone.0210243.t004
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+ 300 μg/mL hygromycin. After visible growth but before the appearance of the first spores,

the colonies were scooped out and isolated on slants containing only MMA. The Cas9 plasmid

is lost in the absence of selective pressure (hygromycin). Once the colonies in the slants formed

spores, the spores were isolated on plates containing MMA + 1.3 mg/mL 5-FOA + 1.2 mg/mL

uracil. If the colonies were growing, they were re-isolated using MMA + 1.3 mg/mL 5-FOA

+ 1.2 mg/mL uracil plates again, then before the appearance of the first spores the colonies

were scooped out and placed on slants containing MMA + 1.2 mg/mL uracil/uridine. For each

transformation a minimum of 10 colonies were isolated, transformed on 5-FOA then re-iso-

lated for analysis by PCR and sequencing (S6 Fig). To determine the efficacy of 5-FOA, the col-

onies were lysed and analyzed before and after exposure to 5-FOA. Note that if the pyrG
marker needs to be recycled, it is recommended that the fungi recover between experiments.

Also, manipulation of spores often leads to contamination and requires great care during the

transformation [43]. The detail protocol “Transformation Aspergillus niger using Cas9, AMA1

vector, pyrG rescue marker and sgRNA in vitro” is available on protocols.io.

Lysis

20 μL spores were harvested in 0.1% of tween buffer and mixed in 500 μL a solution containing

400 mM of Tris-HCl pH 8.0, 60 mM of ethylene diaminetetraacetic acid (EDTA) pH 8.0, 150

mM NaCl and 1% (v/v) sodium dodecyl sulfate (SDS). After incubation at room temperature

for 10 minutes, 100 μL of a second solution containing 2 M potassium acetate, and 7.6% glacial

acetic at pH 4.8 was added to the mixture. After centrifugation at 10,000 rpm, the supernatant

containing the DNA was cleaned using isopropyl alcohol followed by 70% ethanol (EtOH).

The ethanol was evaporated in a rotavapor (Vacufuge Plus Eppendorf) and the DNA was

resuspended into 50 μL dH2O. The detail protocol “Lysis Aspergillus niger, extracting and puri-

fying DNA” is available on protocols.io.

PCR

Every transformation was analyzed by PCR (AB Applied Biosystems/Veriti 96 well Thermal

Cycler) before 5-FOA and after 5-FOA (S1–S3, S4 and S5 Figs). We used LongAmp Taq DNA

polymerase purchased from NEB and the primers synthesized by Integrated DNA Technology

(IDT) (S2 and S3 Tables). The protocol followed was provided by NEB.

Supporting information

S1 Fig. Representative cDNA006 PCR before and after 5-FOA. (A) cDNA006 before

5-FOA, 5 colonies after transformation PCR amplification with 350/590, 3’125 bp. (B) After

5-FOA, 5 white colonies undergone pyrG excision, 1’386 bp, using both 1 kb Plus Ladder

(Thermo Fisher/ 1kb Plus ready-to-use).

(DOCX)

S2 Fig. 5-FOA plates of cDNA008 transformation. (A) First black colony after re-streaking

on 5-FOA. (B) Second black colony after re-streaking on 5-FOA (C) First white colony after

re-streaking on 5-FOA. (B) Second white colony after re-streaking on 5-FOA.

(DOCX)

S3 Fig. Representative cDNA008 PCR before and after 5-FOA. (A) cDNA008 before

5-FOA, 5 colonies after transformation PCR amplification with 629/631, 3’434 bp. (B) After

5-FOA, 5 white colonies undergone pyrG excision, 695 bp. 1 kb Plus Ladder (Thermo Fisher/

1kb Plus ready-to-use).

(DOCX)
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S4 Fig. Fig: Representative β-glucosidase (A5IL97) PCR and cDNA009 PCR after 5-FOA.

(A) Amplification of the A5IL97 cassette of 5 colonies after transformation PCR with 608/609,

1’713 bp. (B) cDNA009 after 5-FOA of 5 colonies undergone pyrG excision, 719 bp. 1 kb Plus

Ladder (Thermo Fisher/ 1kb Plus ready-to-use).

(DOCX)

S5 Fig. Representative cDNA010 PCR before and after 5-FOA. (A) cDNA010 before

5-FOA, 5 colonies after transformation PCR amplification with 624/627, 3’753 bp. (B) After

5-FOA 5 colonies undergone pyrG excision, 1’024 bp. 1 kb Plus Ladder (Thermo Fisher/ 1kb

Plus ready-to-use).

(DOCX)

S6 Fig. Transformation. Schematic depiction of the process used for PMT transformation of

A. niger using pyrG (-) auxotrophic marker.

(DOCX)

S1 Table. Primers cDNA preparation.

(DOCX)

S2 Table. Primers B5FOA and A5FOA. Primers used for the amplification of amplicons

before exposure of 5-FOA (B5FOA), after exposure of 5-FOA (A5FOA) and WT, to verify the

length and the sequence (S5 Fig: Amplicons B5FOA and A5FOA).

(DOCX)

S3 Table. Amplicons B5FOA and A5FOA. Amplification of amplicons before exposure of

5-FOA (B5FOA), after exposure of 5-FOA (A5FOA) and WT, to verify the length and the

sequence.

(DOCX)
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