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Abstract

It is evident that some perfluoroalkyl acids (PFAAs), a group of globally dispersed pollutants,

have long biological half-lives in humans and farm animals. However, the effects of PFAAs in

domestic animals have not been fully elucidated. The present study investigated how expo-

sure to a single dose of a mixture of 10 PFAAs influenced hepatic and renal gene expression

and histopathology, as well as plasma clinical biochemistry, in microminipigs (MMPigs) over

21 days. In animals treated with PFAAs, the mRNA expression of twelve genes related to

fatty acid metabolism was upregulated in the kidney, while only few of these genes were

induced in the liver. The expression of several kidney injury-associated genes such as,

IGFBP1, IGFBP6, GCLC X2, GCLC X3, MSGT1, OLR1 was upregulated in the kidney. Inter-

estingly, the expression of IGFBP-genes was differentially altered in the liver and kidney. Our

findings thus identified hepato-renal gene expression changes in MMPigs that were associ-

ated with various molecular pathways including peroxisome proliferation, lipid metabolism,

kidney injury, and apoptosis. Furthermore, serum HDL levels were significantly decreased

following exposure to PFAAs, whereas no significant histopathological changes were

detected, as compared to the vehicle group. Taken together, the present study provided the

first indication that a single exposure to a mixture of PFAAs can produce changes in MMPig

renal gene expression that were observed three weeks post exposure, suggesting that more

attention should be paid to the kidney as a primary target organ of PFAAs.

Introduction

For several decades, perfluoroalkyl acids (PFAAs) have been used in a wide range of domestic and

industrial applications because of their excellent physical and chemical properties. Consequently,
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residues of numerous PFAAs have been detected at various concentrations in almost every envi-

ronmental compartment around the world. For instance, they have been detected in human

blood around the globe [1–7]. This ubiquitous distribution, environmental persistence, and

potential human health concerns led to the listing of perfluorooctane sulfonate (PFOS) as a Persis-

tent Organic Pollutant (POP) by the Stockholm Convention in 2009, within Annex B (Restric-

tion). Guideline concentrations of PFOS and perfluorooctanoic acid (PFOA) have also been

stipulated for food and drinking water [8,9] to restrict human consumption of these compounds.

PFAAs have been detected in livestock animals [10,11]. In beef cattle, PFOS mostly concen-

trates in the liver, followed by the kidney, which showed the longest elimination half-life of 385

days; the PFOS half-life in muscle was 165 days [12]. In pigs, the whole animal elimination half-

lives are 634 days for PFOS and 236 days for PFOA [13]. These time periods are much longer

than the commercial pig rearing period because these animals are normally slaughtered at

approximately 180 days old within the pork industry. In chickens, the blood half-lives of PFOA

and PFOS were 4.6 days and 125 days, respectively, and high concentrations of these chemicals

were found in the kidney and liver, respectively [14]. Sex- and species-specific renal transporter

proteins may play an important role in the renal clearance and resorption of PFAAs in humans

and other animal species [15, 16]. Epidemiological studies further suggest that elevated human

blood levels of PFOA and PFOS may be associated with kidney disease in adults and kidney dys-

function in children [17–18]. This suggests that the kidney is both important for the elimination

of PFAAs and also a target organ for the effects of these compounds. Exposure experiments in

animals reported that PFAAs elicited transcript signatures that included many known gene tar-

gets of peroxisome proliferator-activated receptor alpha (PPARα), indicating effects on lipid

metabolism [19]. Humans exposed to PFOA and PFOS showed altered blood expression of

genes involved in cholesterol metabolism [20]. Nevertheless, the organ-specific effects of PFAAs

on the transcriptome have not been elucidated for pigs.

Microminipigs (MMPigs) are the smallest pig species. These animals provide an attractive

model for toxicological studies because they are easy to handle and cost-effective. We previ-

ously reported the blood elimination half-lives of 10 PFAAs, which are frequently detected in

the environment, in MMPigs, in addition to their organ-specific accumulation patterns, fol-

lowing the administration of a single oral dose of mixed PFAAs [21]. However, the biological

effects of exposure to PFAAs have not been evaluated in MMPigs. Moreover, we still lack an

understanding of how PFAAs exposure regulates genes in farm animals. Therefore, the present

study investigated the histopathological and transcription-level effects of a single PFAAs dose

on MMPig hepatic and renal tissues, in addition to conducting analyses of their plasma clinical

biochemistry. Previous animal exposure experiments have focused on hepatic, rather than

renal, effects, even though substantial levels of PFAAs accumulate in the kidney, where they

exhibit longer biological half-lives than those observed in the liver. To address this, we studied

the expression of several genes associated with kidney injury, in addition to those involved in

fatty acid metabolism.

Materials and methods

Animals and sample storage

The present study used frozen liver and kidney tissues from five sexually mature female

MMPigs (Fuji Micra Inc., Shizuoka, Japan) aged 5.6-8.5 months and weighed 9–14 kg; these

tissues were collected during a previous study [21]. In brief, the animals were separated into a

control group (n = 2; C1 and C2) and an exposure group (n = 3; E1, E2, and E3). The animals

were individually kept in stainless steel open-stall-type cages before and during the exposure.

The exposure group was treated orally with a single gelatin capsule (100% pig) containing
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3 mg kg-1 body weight of a nominal mixture of each 10 PFAAs (30 mg kg-1 body weight

PFAAs) mixed with sugar powder. These compounds were perfluorobutanoic acid (PFBA),

perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid

(PFHpA), PFOA, perfluorononanoic acid (PFNA), perfluorononanoic acid (PFDA), perfluor-

odecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), and PFOS. Blood samples

were collected before and after exposure, at 0, 1, 2, 4, 11, 15, and 21 days, and plasma samples

were stored at -20˚C until use. At 20 days, food was removed from the animals over 24 h before

euthanasia under deep anesthesia with sodium pentobarbital, and the animals were necropsied

to collect tissue samples. Details of the exposure protocol and the concentrations of PFAAs in

blood and tissue samples have been reported previously [21]. This experiment was conducted

according to the guidelines for animal experiments of the National Institute of Animal Health

(NIAH, Tsukuba, Japan). The protocol was approved by the committee on the ethics of animal

experiments of the NIAH (Protocol Number: 11–076).

Tissues (liver and kidney) were stored in RNAlater (Ambion Inc., Texas, USA) at -20˚C for

the evaluation of gene expression and were also fixed in 10% neutral buffered formalin and

embedded in paraffin for histological examination. Paraffin sections were stained with hema-

toxylin and eosin.

Clinical biochemical measurements in plasma

The plasma levels of aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-gluta-

myl transpeptidase (γ-GTP), total bilirubin (T-Bil), alanine aminotransferase (ALT), total

protein (TP), blood urea nitrogen (BUN), albumin (Alb), uric acid (UA), creatinine (Cre),

total cholesterol (T-Chol), triglycerides (TG), high-density lipoprotein cholesterol (HDL),

lactate dehydrogenase (LDH) in plasma were investigated by SPOTCHEMTMEZ SP-4430

(ARKRAY, Inc., Kyoto, Japan). Low-density lipoprotein (LDL) was estimated by LDL

(mg/dl) = (T-Chol)–(HDL + TG/5).

RNA isolation and analysis by reverse transcription-quantitative PCR

RNA was extracted from approximately 30 mg of each tissue using the Quick Gene RNA tissue

kit S II (Kurabo Industries Ltd, Osaka, Japan) in accordance with the manufacturer’s protocol

and including DNase treatment.

Reverse transcription was carried out using total RNA (50 ng/μL) with PrimeScript RT

Master Mix (Perfect Real Time) (Takara Bio Inc., Shiga, Japan) in accordance with the manu-

facturer’s instructions. Real-time PCR reactions were carried out using SYBR Premix Ex Taq

II (Tli RNaseH Plus) (Takara Bio Inc., Shiga, Japan) using the protocol provided by the manu-

facturer. The real-time PCR conditions were 95˚C for 30 sec, followed by 40 cycles of 95˚C for

5 sec and 60˚C for 30 sec. A melting curve analysis of the amplicons was then conducted at

95˚C for 15sec, 55˚C for 60 sec followed by 55–95˚C at a heating rate of 0.5˚C/sec. Genes were

analyzed using a Mx3000P real-time qPCR system (Agilent Technologies, La Jolla, CA). The

primer details are shown in Table 1 [22].

The PCR reactions were carried out using primers for cytochrome P4504A21 (CYP4A21),

catalase (CAT), glycogen phosphorylase L (PYGL), stearoyl-CoA desaturase (SCD), fatty acid

desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2), acyl-CoA dehydrogenase (ACADM),

enoyl-CoA hydratase (EHHADH), carnitine palmitoyltransferase 1A (CPT1A), acyl-CoA oxi-

dase 1 (ACOX), peroxisome proliferator activated receptor alpha (PPARα), and ATP binding

cassette subfamily D member 3 (ABCD3). The primer sets for kidney injury biomarkers,

including insulin like growth factor binding proteins (IGFBPs; 1, 2, 3, 4, 5, 6), glutamate-cyste-

ine ligase catalytic subunit (GCLC), transcript variant X2 and X3, microsomal glutathione
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S-transferase 1 (MGST1), oxidized low density lipoprotein receptor 1 (OLR1), milk fat glob-

ule-EGF factor 8 protein (MFGE8), and lipocalin 2 (LCN2), were additionally used. The level

of each gene transcript was normalized to the expression of glyceraldehyde-3-phosphate dehy-

drogenase (GAPDH), and calculated using the 2−44Ct method, where ΔΔCt was the difference

between the target gene cycle threshold [Ct]—GAPDH Ct of the exposure and control groups.

Statistics

The biochemical data were presented as the mean ± standard error of the mean, and were ana-

lyzed by F-test and either Student’s t-test or Welch’s t-test. The statistical significance threshold

was p = 0.05.

Results

Physiological status and the accumulation of PFAAs

No exposure-related clinical signs were observed during the 21-day study period [21]. The

mean total concentration (± standard error) of PFAAs in the liver, blood and kidney was

75677±22660, 39307±6700 and 23075±3286, respectively [21].

Clinical biochemistry in plasma

Biochemical analyses of plasma samples revealed significant differences in lipid metabolism.

The HDL level was significantly lower in the exposure group, as compared to the control

Table 1. Primer sequences for real-time qPCR.

Gene Symbol Forward Primer Reverse Primer Reference

CYP4A21 TTTTCCCGCTTGAGGAGTGC ACTCGGTCTGTGTGTTGATGGA This study

CAT GTCCTGAGTCTCTGCATCAGGTT GTTCATGTGCCTGTGTCCATCT [22]

PYGL GAAATTCTCCAGTGACCGAACAA AGGTCGGAAGGCTCCATGT This study

SCD CTCTGGGCGTTTGCCTACTA GGGGCAGTCGAGCTTTGTAA [22]

FADS1 CCGCGACACAACTACCACAA CTTGGACTGGTACTCTATACCATGCTT [22]

FADS2 CGCGACCTTGATTTAGTGCG AGTTCTTGGTGCGATCCTGG [22]

ACADM TGGCAATGAAAGTTGACCTAGCTA TCGGCGACCAGAATCAATC [22]

EHHADH CCTCTGGAGCATCCTGGAAA CAAGCCGAGAATGCCAACA [22]

CPT1A GGACATCCCGGAGGAGTGT CACGTCGTCCGCCAGAA [22]

ACOX CTTTGTGCAGCGAGGACATC CAAGGTGGGCAGGAACATG [22]

PPARα GGCACTGAACATCGAATGTAGAAT TGCAACCTTCACAGGCATGA [22]

ABCD3 CGCGCTGGTGCACTCAT TGGCGATGGCAAGACTGTT [22]

IGFBP1 CACAGCAAACAGTGCGAGAC CATTTGGGGTCCCCTCTGAC This study

IGFBP2 CCAGGAGTTCTGACATGCGT CATCTCCAGCTGGGCATCTC This study

IGFBP3 ACAAGAAAAAGCAGTGCCGC CCGTACTTATCCACGCACCA This study

IGFBP4 CAGCCCTCTGACAAGGACGAG GCTCCGGTCTCGGATCTTGG This study

IGFBP5 CTGTGACCGCAAGGGATTCT GGCAGCTTCATCCCGTACTT This study

IGFBP6 CCCTCGGGGGAGAATCCTAA GAGGGAGTGGTAGAGGTCCC This study

GCLC X2 TCCAGGTAACGTTCCAAGCC TCAATGGGACAATTGGGCAG This study

GCLC X3 ACATCTACCACGCCGTCAAG GAGAGAGAACCAACCTCGTCG This study

MGST1 CTCCTGCTCAGATCCACAATTC ATAGGAGGCAAAGGCCATGAA This study

OLR1 GCGGCAAACTTTTCAGGTCC AGCAGTTCTCCCGGCTTTTT This study

MFGE8 TTCGCCTTCTCCGGTGACTTC TGGGGATCCTGGTCCAACAA This study

LCN2 AAACCACGCTTTACGGGAGG GACTTGGCAAAGCGGACAAA This study

GAPDH CCAGGTTGTGTCCTGTGACT GCTTGACGAAGTGGTCGTTG This study

https://doi.org/10.1371/journal.pone.0210110.t001
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group, at day 21 post exposure (p< 0.05, Fig 1). The T-Chol level in the exposure group

tended to be higher than that of the control group on post exposure day 1 (p < 0.1), but no

subsequent differences were observed during the study period (Fig 1). The ALP activity in the

exposure group tended to be lower than that observed in the control group (S1 Fig), and this

difference was significant at 15 days post exposure (exposure group: 370.7 ± 22.4 IU/L, control

group: 676.5 ± 59.5 IU/L; p< 0.05). However, no differences were observed in the other

plasma biochemistry parameters examined in the exposure and control groups (e. g. TG and

LDL in Fig 1).

Histopathology

Histopathological examination revealed a slight decrease in the liver glycogen content in the

exposure group, as compared to the control animals, but no other significant differences were

detected in the liver or kidney tissues (Fig 2).

Metabolism-associated gene expression

The mRNA levels of metabolism-associated genes are shown in Fig 3. In the liver, the gene

expression of CPT1A, PPARα, and ABCD3 was increased (>1.5-fold) in the exposed MMPigs,

as compared to the control group (CPT1A: 2.3 ± 0.3-fold; PPARα: 1.7 ± 0.1-fold; ABCD3:

1.8 ± 0.3-fold) (mean ± standard deviation); FADS2 expression was also increased by

1.5 ± 0.3-fold. Interestingly, the mRNA levels of all metabolism-associated genes were

Fig 1. Levels of lipid metabolism markers in plasma. a) Total cholesterol (T-Chol); b) triglycerides (TG); c) high-density lipoprotein (HDL); d) Estimated Low-density

lipoprotein (LDL). †p< 0.1, �p< 0.05 for the comparison between the control group (Cont.) and the exposure group (Exp.).

https://doi.org/10.1371/journal.pone.0210110.g001
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upregulated in the kidneys of the exposure group, as compared to the control group:

CYP4A21 (5.3 ± 3.1-fold), CAT (7.5 ± 1.4-fold), PYGL (1.7 ± 0.7-fold), SCD (8.4 ± 2.1-fold),

Fig 2. Results of histopathological examination. 1) Control group, 2) Exposure group. a) Sections of area around the central vein in liver. � shows a central vein, b):

Sections of glomerulus in kidney. Arrows show mesangial cells and area., a2: Livers in exposure group have slightly low levels of glycogen granules compared to those in

control group (a1). b1: and b2: Mesangial cells in glomerulus slightly increased in both control group and exposure group. Magnification x 400.

https://doi.org/10.1371/journal.pone.0210110.g002

Fig 3. Relative mRNA expression in a) liver; and b) kidney tissues, expressed as fold change in the exposed group (n = 3; E1, E2, and E3). The genes analyzed were

associated with fatty acid metabolism.

https://doi.org/10.1371/journal.pone.0210110.g003
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FADS1 (2.3 ± 0.7-fold), FADS2 (8.2 ± 2.9-fold), ACADM (3.0 ± 0.8-fold), EHHADH

(8.9 ± 0.2-fold), CPT1A (6.4 ± 0.6-fold), ACOX (5.0 ± 0.2-fold), PPARα (4.6 ± 0.1-fold), and

ABCD3 (2.4 ± 0.2-fold).

Kidney injury-associated gene expression

The mRNA levels of kidney injury-associated biomarkers are shown in Fig 4. In the liver, the

expression of IGFBP1 was 2.3 ± 1.3-fold higher in the exposure group, as compared to the control

group. In contrast, the expression of IGFBP2 (0.5 ± 0.1-fold), IGFBP3 (0.5 ± 0.1-fold), IGFBP4

(0.3 ± 0.1-fold), and IGFBP5 (0.4 ± 0.0-fold) was lower in the exposure group than in the control

group. Moreover, the expression of OLR1 (0.6 ± 0.2-fold), MFGE8 (0.7 ± 0.1-fold), and LCN2

(0.5 ± 0.2-fold) also tended to be lower in exposed MMPigs, as compared to control animals.

In the kidney, IGFBP6 (4.1 ± 1.3-fold) showed the greatest upregulation of the IGFBP fam-

ily members; IGFBP1 (1.7 ± 0.8-fold) tended to increase slightly, while IGFBP2 tended to

decrease (0.4 ± 0.2-fold), as compared to the control group. The expression levels of GCLC X2

(1.9 ± 0.6-fold), GCLC X3 (1.5 ± 0.2-fold), MSGT1 (1.5 ± 0.2-fold), and OLR1 (1.9 ± 0.5-fold)

exhibited slight upregulation, as compared to the control group. No clear changes in the

expression levels of IGFBP3, 4, 5, MFGE8, or LCN2 were observed in the exposure group, as

compared to the control group (Fig 4).

Discussion

In the current study, we investigated changes in plasma clinical biochemistry, histopathology,

and the expression of genes related to fat metabolism and kidney injury in MMPigs following

the administration of a single dose of a mixture of PFAAs. We employed only 5 animals (con-

trol = 2 and treated = 3) to minimize the number of experimental animals. Although hyperpla-

sia, vacuole formation, and atrophy have been reported in rats fed with PFOS [9], we only

observed a slight decrease in the liver glycogen content in MMPigs (Fig 2), 21 days after expo-

sure. In an earlier study, the liver glycogen content was reduced in pigs that had been fasted

for 24 h or treated with clofibric acid (a potent peroxisome proliferator) for one week [22].

Hence, the minor effects on liver glycogen observed in the present study may have been influ-

enced by exposure to PFAAs. The PFOS and PFOA concentrations in blood of MMPigs in this

study were within the range of those reported in sera for occupationally exposed workers [1,

23].

Fig 4. Relative mRNA expression of genes associated with kidney injury in a) liver and b) kidney, expressed as fold change in the exposed group (n = 3; E1, E2, and

E3).

https://doi.org/10.1371/journal.pone.0210110.g004
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Our observation of significantly lower plasma HDL concentrations in MMPigs exposed to

PFAAs is consistent with previous sub-chronic PFOS exposure studies conducted in monkeys

[24] and chickens [14]. The reason for the significant increase in total cholesterol level

observed on day 1 post exposure is not known; however, a reduction relative to the controls

was observed after 21 days. Seacat et al. [24] reported that although the serum levels of T-Chol

and HDL varied during the exposure period, both of these levels were reduced by the end of

the sub-chronic PFOS exposure period in monkeys, consistent with the present observation in

MMPigs.

Exposure to PFAAs has been reported to interfere with a large number of PPARα-depen-

dent and -independent genes involved in fatty acid metabolism in rodents [25–27]. For instant,

ACADM and CYP4A14 were upregulated in wild-type mice while ACOX1 and EHHADH

were upregulated in both wild-type and PPARα-null mice exposed to PFOS [26]. Nevertheless,

gene-level effects on pigs exposed to PFAAs have not been documented. We noted that the

average kidney/liver concentration ratio of PFAAs was 0.305 in these MMPigs [21]. However,

the expression of genes related to fatty acid metabolism were highly upregulated in the kidney,

as compared to the liver; this upregulation was disproportionate to the accumulation of

PFAAs. These findings suggested that PPARα and genes related to its oxidant pathway can be

upregulated in the liver, and also in other important organs such as the kidneys, in pigs.

PPARα can be upregulated in the pig liver by peroxisome proliferators, and also by fasting.

The expression of genes responsible for PPARα-mediated fatty acid metabolism such as

CPT1A, ABCD3, ACOX, ACADM, and EHHADH was significantly or moderately increased

in the pig liver in response to both fasting and clofibric acid treatment, while SCD expression

was downregulated in fasted pigs, as compared to those receiving a normal diet [22]. In the

present study, the expression of PPARα, CPT1A and ABCD3 was upregulated in the liver and

kidney of the exposure group, as compared to the control group. In addition, the kidney

expression of ACOX, ACADM, and EHHADH also increased in the group exposed to PFAAs.

Nevertheless, the duration of fasting may also have influenced these observations to some

extent because food was removed from all animals 24 h before euthanasia, and the control

group necropsy was carried out before that of the exposure group [21]. Moreover, we found an

increased hepato-renal expression of FADS2 in the exposure group, as compared to the control

group (Fig 3). In addition, CYP4A, CAT, PYGL, SCD, and FADS1 expression was upregulated

in the kidney in the exposure group, as compared to the control group (Fig 3). It was previ-

ously reported that expression of CYP4A, CAT, PYGL, SCD, FADS1, and FADS2 genes was

significantly increased by exposure to a peroxisome proliferator, but not by fasting, in pigs

[22]. Collectively, these data suggest that PPARα-mediated fatty acid metabolism was exten-

sively elevated in MMPigs treated with PFAAs.

Epidemiological studies also suggested that kidney function may be associated with the

blood levels of PFAAs [28]. As reported previously, higher levels of PFAAs in serum were

linked with chronic kidney disease in domestic cats [29]. Hence, we analyzed twelve genes that

were known to be associated with kidney function and injury. Expression of IGFBP1, IGFBP6,

GCLC X2, GCLC X3 (GCLCs), MGST1, and OLR1 were upregulated in the kidney following

exposure to PFAAs, as compared to the control group (Fig 4). The expression levels of IGFBPs,

GCLCs, MGST1, and OLR1 genes are used as biomarkers of kidney injury [30–34]. Moreover,

the growth hormone-insulin-like growth factor- (GH-IGF) axis plays a role in the mainte-

nance of renal function and in the pathogenesis and progression of chronic kidney disease

[32]. IGFBPs not only enhance the effects of IGFs, but also have IGF-independent activities;

for instance, IGFBP1 and IGFBP6 levels increase in chronic renal failure [30]. The levels of

IGFBP6 are particularly high in children with chronic renal failure, and correlate inversely

with the glomerular filtration rate [35]. In addition, GCLCs, MGST1, and OLR1 can be
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employed as markers of oxidative stress [31, 34, 36]. GCLC mediates the synthesis of glutathi-

one S-transferase and thus plays an important role in the intracellular antioxidant defense sys-

tem [37–38]. MGST1 is activated by oxidative stress and neutralizes lipid peroxides, as well as

conjugating other reactive intermediates to glutathione [39]. Our present data suggest that the

expression of these genes was upregulated due to oxidative stress, which occurred as a result of

the PFAAs retained in the MMPigs, even 21 days post-exposure. LCN2, a neutrophil gelati-

nase-associated lipocalin, is a small glycosylated protein that is regarded as a biomarker of

acute kidney injury and is thought to associate with chronic kidney disease progression in

humans [40–43]. In addition, LCN2 is overexpressed by mesangial cells in the damaged kidney

[40, 44]. Our histological analyses indicated that both control MMPig pigs and those exposed

to PFAAs had mesangial lesions (Fig 2). However, this lesion might reflect age-related glomer-

ulonephritis, as these animals were approximately 6 months old [45]. We did not observe any

upregulation of LCN2 expression; however, as indicated above, upregulation of several other

injury markers was observed in the absence of any histological evidence of kidney damage.

Hence, our data suggested that transcriptional changes were observed in the kidney 3 weeks

after a single exposure of MMPigs to a mixture of PFAAs, without any significant

nephropathy.

The IGFs and IGFBPs play an important role in cell growth and differentiation [46]. The

present study identified differential alterations in the expression of IGFBPs in the liver and

kidney. The expression of IGFBP1 increased in both the liver (2.3 ± 1.3-fold) and kidney

(1.7 ± 0.8-fold), IGFBP6 expression only increased in the kidney (4.1 ± 1.3-fold), while reduced

expression of IGFBP2 was observed in the liver (0.5-fold average) and kidney (< 0.5-fold

Fig 5. Hypothesized mode of action of PFAAs in MMPigs. The lines indicate major changes in gene expression and the downstream phenotypic responses noted in this

study. The dashed lines indicate potential connections that remain to be verified.

https://doi.org/10.1371/journal.pone.0210110.g005
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average), and the expression of IGFBP4 and IGFBP5 was decreased in the liver (< 0.5-fold in

average) (Fig 4). On the other hand, kidney expression of the oxidative stress biomarker,

OLR1, was upregulated (1.9-fold average) while the serum level of HDL, which has antioxidant

properties, was downregulated (Figs 1 and 4). Oxidative stress can lead to apoptosis, which is a

process that inhibits tumor development. IGFBP2, 3, 4, and 5 are related to apoptosis, and

IGFBP3 is known to have proapoptotic effects [30, 47]. We found that the expression of

MFGE8, which is also related to apoptosis, and IGFBP3 was slightly decreased in the livers of

the exposure group, as compared to the control group (MFGE8: 0.7 ± 0.1-fold, IGFBP3:

0.5 ± 0.1-fold, Fig 4). Taken together, these data suggest that exposure to PFAAs may link to

the inhibition of apoptosis pathway in MMPigs.

Fig 5 shows the hypothesized mode of action of PFAAs in organs with special reference to

the kidney of MMPigs, based on the observations made in this study. Our findings revealed

that MMPigs exposed to PFAAs showed hepato-renal changes in the transcription of genes

that were associated with cell proliferation, peroxisome proliferation, lipid metabolism, kidney

injury, and apoptosis. Specifically, the present study revealed that a single exposure to a mix-

ture of PFAAs was associated with changes in kidney gene expression at 21 days post exposure,

in the absence of significant histological lesions. Nevertheless, further studies including micro-

array analysis are required to elucidate the molecular pathways involved in the potential

adverse effects triggered by the exposure of large animals to PFAAs.
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