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Abstract

A central experimental task in executive control research is the Stop-signal task, which

allows measuring the ability to inhibit dominant responses. A crucial aspect of this task con-

sists of varying the delay between the Go- and Stop-signal. Since the time necessary to

administer the task can be long, a method of optimal delay choice was recently proposed:

the PSI method. In a behavioral experiment, we show a variant of this method, the PSI mar-

ginal method, to be unable to deal with the Go-response slowing often observed in the Stop-

signal task. We propose the PSI adjusted method, which is able to deal with this response

slowing by correcting the estimation process for the current reaction time. In several sets of

behavioral simulations, as well as another behavioral experiment, we document and com-

pare the statistical properties of the PSI marginal method, our PSI adjusted method, and the

traditional staircase method, both when reaction times are constant and when they are line-

arly increasing. The results show the PSI adjusted method’s performance to be comparable

to the PSI marginal method in the case of constant Go-response times, and to outperform

the PSI marginal method as well as the staircase methods when there is response slowing.

The PSI adjusted method thus offers the possibility of efficient estimation of Stop-signal

reaction times in the face of response slowing.

Introduction

Among executive functions, the ability to inhibit and change actions in order to regulate

impulses and attain long-term goals has a central place. A core experimental method used to

measure the concept of response inhibition is the Stop-signal task, originally developed by

Logan and Cowan [1]. In this task, on a majority of trials (Go-trials) a Go-signal is presented,

to which participants have to respond as quickly as possible, producing the Go-reaction time

(Go-RT). On a minority of trials (Stop-trials), the Go-signal is followed at some delay (the

Stop-signal delay, SSD) by a Stop-signal, which instructs the participant to withhold the Go-
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response. A fundamental result is that withholding the Go-response becomes more difficult

with longer SSDs [1].

An influential model of the Stopping-process in the Stop-signal task is the independent

horse-race model [1]. The horse-race model assumes that there are two independent processes

at play during a Stop-trial: the Go-process, which starts with presentation of the Go-signal and

concludes with a Go-response, and the Stop-process, starting with the presentation of the

Stop-signal and concluding with the withholding of the Go-response. Both processes race to

conclusion and whichever finishes first determines the response. Since a longer delay between

Go- and Stop-signal gives the Stop-process less time to finish, trials with longer SSDs make it

harder to correctly withhold the Go-response. In a common Stop-signal experiment, a partici-

pant will manage to withhold the Go-response only on some Stop-trials, but not on others,

producing an erroneous response. The Go- and Stop-process are thought to be largely inde-

pendent (for a review, see [2]).

The horse-race model allows computation of the time the stopping process takes (the Stop-

signal reaction time, SSRT). The SSRT can be computed by determining the SSD at which the

likelihood of producing an erroneous Go-response (referred to as p(error)) is 0.5, and then sub-

tracting that SSD from the mean Go-RT during simple Go-trials. The SSD for which p(error) is

0.5 is referred to as the critical SSD. To estimate the critical SSD, the staircase tracking proce-

dure is often used. With this method, a correctly withheld Go-response increases the SSD by a

certain duration, while an erroneously executed Go-response decreases the SSD by a certain

amount. In practice, this method usually converges on an SSD at which p(error) is at 0.5, such

that this SSD can be subtracted from the mean Go-RT (this form of computing the SSRT is

known as the mean method). Should the method converge at a p different from 0.5, the Go-RTs

are rank-ordered, and the SSD is subtracted from the nth Go-RT, where n is the total number of

Go-RTs multiplied by p (the so-called integration method, [2]). An illustration of the horse race

model’s different quantities can be found in the supplementary material (S1 Fig).

One disadvantage of the Stop-signal task is its potential length, especially if different condi-

tions are included, because for every Stop-trial several Go-trials have to be included to make

the Go-response the prepotent response, and because it takes a relatively large number of

Stop-trials to reliably estimate the SSRT [3]. As a possible solution to this problem, Livesey and

Livesey [4] proposed a different method to select an upcoming Stop-trial’s SSD and estimate

the critical SSD used for computing the SSRT, based on an adaptive Bayesian estimation algo-

rithm known in the psychophysical literature as the PSI method [5].

In the following, our description of the method closely follows the original work of Kontse-

vich and Tyler [5], which should be consulted for further detail. We present the full algorithm

here so that changes in its application to the Stop-signal task discussed later in this article will

be easier to follow.

In short, the relationship between SSD and the likelihood of a response in a Stop-trial fol-

lows a psychometric function, such as the Weibull cumulative density function chosen by Live-

sey and Livesey [4]:

p successjSSD;Threshold; Slope;ErrorRateð Þ

¼ 1 � 2 � ErrorRateð Þ þ 1 � 2
� SSD

Thresholdð Þ
Slope

� �

þ ErrorRate ð1Þ

pðerrorjSSD;Threshold; Slope;ErrorRateÞ
¼ 1 � pðsuccessjSSD;Threshold; Slope;ErrorRateÞ ð2Þ

The Threshold parameter governs at which SSD p(error) is 0.5, the Slope determines the rise of

The PSI adjusted method
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the function, and the ErrorRate determines the minimum and maximum the function can take

on.

A participant’s performance in the task is described by a vector λparticipant = (Thresholdparticipant,
Slopeparticipant, ErrorRateparticipant) in this three-dimensional parameter space. Our knowledge of a

participant’s performance λparticipant at the start of the task is formalized as a probability distri-

bution p0(λ) over the parameter space, which assigns each possible performance vector λ a

probability p0 of matching the participant’s performance λparticipant. When having no prior

knowledge, at the outset of the task we can set p0(λ) as the uniform distribution.

Step 1: At the outset of Stop-trial 1, p0 represents our prior knowledge of the participant’s

performance. For each SSD and response that is possible in trial 1, we can compute the poste-

rior probability of each parameter vector λ, according to Bayes’ theorem:

p
0
ljSSD; responseð Þ ¼

p
0
ðlÞ � pðresponsejl; SSDÞ

P
l
p

0
ðlÞ � pðresponsejl; SSDÞ

ð3Þ

where p(response|λ,SSD) is the psychometric function in Eqs 1 and 2. Thus, for each SSD we

might present in the upcoming trial 1, and for each response the participant might give in

return, we compute the posterior distribution over the parameter space.

Step 2: For each of these possible SSD-response combinations we compute the entropy H0

of the resulting posterior distribution p0(λ|SSD,response) as:

H0ðSSD; responseÞ ¼ �
X

l

p0ðljSSD; responseÞ � logðp0ðljSSD; responseÞÞ ð4Þ

The entropy function stems from information theory and quantifies the amount of informa-

tion necessary to fully specify the state of a system [6]. In the current context, the entropy of

each posterior distribution quantifies how much information is still needed to completely

specify which vector λ in parameter space corresponds to our participant’s performance vector

λparticipant. When deciding which SSD to offer on Stop-trial 1, we choose that SSD which yields

the lowest entropy, and thus the most information about the participant’s performance.

Step 3: Since the entropy function in Eq 4 is also dependent on the participant’s response,

we compute the current likelihood of the two possible responses (success, error) for each SSD,

using the prior probability distribution p0(λ) and the psychometric functions in Eqs 1 and 2:

p
0
ðsuccessjSSDÞ ¼

X

l

pðsuccessjl; SSDÞ � p
0
ðlÞ ð5Þ

p
0
ðerrorjSSDÞ ¼

X

l

pðerrorjl; SSDÞ � p
0
ðlÞ ð6Þ

With these, we can compute the expected entropy E[H0(SSD)] as

E½H0ðSSDÞ� ¼ H0ðSSD; successÞ � p0ðsuccessjSSDÞ þH0ðSSD; errorÞ � p0ðerrorjSSDÞ ð7Þ

Step 4: In Stop-trial 1, we present the SSD yielding the lowest expected entropy and record

the participant’s response.

Step 5: After having finished trial 1, our updated prior knowledge p1(λ) is the posterior dis-

tribution p0(λ|SSD,response) from Eq 3 corresponding to the SSD we eventually offered in trial

1 and the response the participant gave. We now continue with the following trials t = 2, 3 . . .

n, and on each trial, in order to determine the SSD to offer, steps 1 to 4 are now repeated,

except that where we used our previous prior distribution p0(λ), we now use our updated prior

distribution pt−1(λ).

The PSI adjusted method
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Step 6: At the end of the task, after n Stop-trials have been concluded, we derive the parame-

ter vector most likely to match our participant’s parameter vector λparticipant by computing the

expected value of λ:

E½l� ¼
X

l

l � pnðlÞ ð8Þ

In a number of Stop-signal task simulations and behavioral experiments, Livesey and Livesey

[4] showed that the PSI method can quickly and accurately estimate the SSRT. In terms of cor-

relation with the actually simulated SSRT, as well as mean absolute deviation, the PSI method

was comparable to the traditional staircase. However, the staircase was shown to provide a sys-

tematically biased estimate of the SSRT, overestimating short SSRTs and underestimating long

SSRTs, even at more than 30 Stop-trials, while the PSI method arrived at a relatively unbiased

estimate already after 10 Stop-trials. The PSI method thus promises as a viable alternative to the

staircase method when quick and unbiased estimation of the SSRT is required.

The purpose of this study is to investigate the influence of Go-response slowing on the PSI

method. In Livesey and Livesey [4], the Go-RTs in both the simulations and the behavioral

tasks are constant over the course of the experiment. However, it is known that the Stop-signal

task can invite a gradual slowing of the Go-RTs over the course of the experiment [7, 8]. There

is a strategic element to this slowing, since participants will sometimes try to slow their Go-

responses in order to still catch the Stop-signal. Since this increases the participant’s chance of

correctly responding, the staircase algorithm will respond to this by further increasing the

SSD, motivating the participant to further slow the Go-response. In this way, the staircase even

promotes this strategic slowing. It is an open question how the PSI method can deal with this

slowing effect in the Stop-signal task. In order to test this, we employ a version of the so-called

Stop-change task, a variant of the Stop-signal task we have previously found to elicit strong

Go-response slowing. Previous research has shown the processes involved in stopping and

changing to be partly overlapping [9–12].

In the following behavioral study we implement a slightly modified version of the PSI

method, the so-called PSI marginal method [13, 14]. In the original PSI method, as used by

Livesey and Livesey [4], the error rate determining the minimum and maximum p(error) the

psychometric function can take on is usually fixed. Prins [13] showed that this can lead to a

biased estimation of the threshold parameter, which is central to estimating the SSRT in the

Stop-signal task. As a remedy, Prins proposed also adding the error rate-parameter to the

parameter space, thus estimating three free parameters instead of two. As a further refinement,

he proposed minimizing the entropy of a posterior distribution that is marginalized over irrel-

evant parameters (e.g. in the Stop-signal task, minimizing entropy of a posterior that includes

the threshold parameter but is marginalized over slope and error rate, since these are not rele-

vant to SSRT estimation).

In terms of the formulation above, this means changing Eq 4 so as not to compute the

entropy H0(SSD,response) of the full posteriors, but instead to compute:

H0� marginalðSSD; responseÞ ¼ �
X

l

p
0
ðThresholdjSSD; responseÞ � logðp

0
ðThresholdjSSD; responseÞÞ ð9Þ

where p0(Threshold|SSD,response) is the marginalized posterior distribution:

p
0
ðThreshold ¼ tjSSD; responseÞ ¼

X

s

X

e

p
0
ðThreshold ¼ t; Slope ¼ s;ErrorRate

¼ ejSSD; responseÞ ð10Þ

Since we implement these recommendations, we will refer to the method we tested as the PSI

The PSI adjusted method
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marginal method from now on, and will refer to the method proposed by Livesey and Livesey

as the original PSI method.

Behavioral experiment 1: the PSI marginal method

Methods

Participants. Participants were 24 students or former students (Mage = 23.8 ± 2.9, 14

male, 1 left-handed) with normal or corrected-to-normal vision and no history of neurological

or mental illness. Participants were paid 15 € for their participation and provided written

informed consent after receiving information about the general aims and risks associated with

participation as well as their right to withdraw consent at any time. The experiment was

approved by the ethics committee of the university hospital of the RWTH Aachen and con-

ducted in accordance with the Declaration of Helsinki.

Task. Participants performed a Stop-change task, in which they had to not only inhibit a

response but also change it to another one. The Go-stimuli were two filled green squares, one

on the left and one on the right side of the screen, to which participants responded by pressing

the ‘f’- and ‘j’-keys on the keyboard with left and right index fingers simultaneously and as

quickly as possible. On Change-trials, one of the green squares turned red, indicating that on

this side, the index finger response should be inhibited and replaced by a middle finger

response to the ‘d’- or ‘k’-key.

Before each Go-signal, a cue appeared that could give different degrees of information

about the upcoming trial. The cue consisted of two hollow squares. In the foreknowledge con-

dition, the cue would indicate on which side the Change-signal could appear (i.e. a green hol-

low square left and a red hollow square right, indicating a Change-signal might appear on the

right). The cue was not completely informative, since the upcoming trial might still be a Go-

trial, but if a Change-signal appeared, it was always on the cued side. In the no-foreknowledge

condition, both hollow squares were red, such that on both sides a Change-signal might

appear. The factor foreknowledge [yes, no] was crossed with the factor side [left, right], which

corresponds to the side on which the Change-signal appeared. Consequently, there were four

experimental conditions: foreknowledge-left; foreknowledge-right; no-foreknowledge-left; no-

foreknowledge-right. In addition to these Change-related conditions, another condition was

included (“certain Go”), which did not include Change-trials. In this condition, the fore-

knowledge cue consisted of two hollow green squares, indicating that no Change-signal was

going to appear.

While these different conditions are usually used to gauge the influence of foreknowledge

and certainty of the stopping process, they are not relevant to our further discussion of the

task, which we mainly used because it evokes substantial response slowing. However, a sum-

mary table of behavioral performance of the different conditions can be found in the supple-

mentary materials (S1 and S2 Tables). The foreknowledge cue remained on the screen for 1500

ms, followed by a 500 ms fixation cross, followed by the Go-stimulus. The Go-stimulus ended

with the response or after 2500 ms, followed by an 850 ms inter trial interval. The experiment

was performed using Presentation software (Version 18.0, Neurobehavioral Systems, Inc.,

Berkeley, CA, www.neurobs.com).

Procedure. The experiment started with a training run, introducing participants to the

different conditions of the Stop-change task. Subsequently, participants completed two runs of

the full task, one with the SSD controlled by the traditional staircase tracking procedure, the

other controlled by the PSI marginal algorithm. The staircase tracking procedure used a step-

size of 50 ms, starting at 250 ms and being limited to 50 ms to the low end, and 1200 ms at

the high end. The PSI marginal method employed a Weibull function as a model for the

The PSI adjusted method

PLOS ONE | https://doi.org/10.1371/journal.pone.0210065 December 31, 2018 5 / 28

http://www.neurobs.com/
https://doi.org/10.1371/journal.pone.0210065


psychometric function. It considered SSDs ranging from 50 to 1200 ms in steps of 50 ms, and

considered those same values as possible threshold parameters. The slope parameters consid-

ered were ranged from 1 to 13 in steps of 1. Error rates considered ranged from 0 to 0.5 in

steps of 0.05.

The order of the two blocks was counterbalanced, each run took approximately 30 minutes,

containing in total 300 trials: for each of the four foreknowledge-side conditions, there were 17

Change-trials and 51 Go-trials (25% Change-trials per condition), making 272 trials. Addition-

ally, there were 28 certain-Go trials. In both runs, after approximately 75 trials, participants

could take a break. The order of trials was quasi-randomized, with the restrictions that no

more than 3 Change-trials followed each other, that the first 6 trials of a run were Go-trials,

and that the first trial after a break was a Go-trial. The trial list in the second run was the

reverse of the trial list in the first run, with the actual list used for first and second run being

counterbalanced over participants. Between the two runs, there was a longer break during

which demographic- and handedness information was collected.

Comparison: Slowing versus non-slowing. In order to compare the performance of slow-

ing and non-slowing participants, all participants were grouped based on the PSI method

block. Participants could show both progressive slowing during the course of the block as well

as slowed reactions from the outset. To take both kinds of slowing into account during group-

ing, a plot including all participants’ behavior was created, with the slope of Go-RTs through-

out the block on the x-axis and the Go-RTs’ intercept on the y-axis. The two groups were

created by choosing a separating diagonal resulting in two roughly similarly sized groups. A

visualization of this grouping can be found in S2 Fig.

Results

Experiment 1 was mostly explorative in nature to elucidate the behavior of the PSI marginal

method in a task involving Go-response slowing. See Fig 1 for an example participant with

gradual Go-response slowing in the PSI marginal method’s block. Since the maximum SSD

offered was 1200 ms, the Go-RTs of this participant exceeded this SSD after about half the

experimental run. In terms of the two methods’ response to Go-RT slowing, the behavior illus-

trated in Fig 1 causes a problem for the PSI method. As can be seen in Fig 2, when Go-RTs

exceed the maximum threshold considered by the algorithm (at Change-trial 9), the critical

SSD (equal to the threshold parameter) receiving the highest probability reaches the upper end

of the parameter space, in this case 1200 ms, and the method is not able to estimate the partici-

pant’s true critical SSD. In effect, the PSI marginal method is not able to keep up with the slo-

wed Go-RTs. Notice that the SSRT is ultimately computed with the expected parameter

combination, not the maximum probability parameters, but nevertheless reaching the bound-

ary of the parameter space invalidates the method’s SSRT estimates. Furthermore, when the

mean Go-RT has slowed down considerably, the critical SSD estimated by the method is, after

a sufficient number of trials, based on this slowed Go-RT. However, when computing the

SSRT, the mean Go-RT of the entire block is usually used. Thus, the critical SSD subtracted

from the mean Go-RT might only be based on a slowed subset of Go-RTs toward the end of

the experimental block. Although we only tested the PSI marginal method, both of these prob-

lems equally exist for the original PSI method.

A further consequence arising from response slowing in the Stop-signal task is the overall

accuracy of the participants. Although the staircase method is designed to converge on an

accuracy of around 0.5 and can to some degree “follow” the participant’s slowed Go-responses,

if responses are being slowed down too quickly, they can escape the staircase and allow the par-

ticipant to attain an accuracy substantially higher than 0.5. This is especially true if the

The PSI adjusted method
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experiment contains multiple conditions and thus, the amount of response slowing between

the different conditions’ interleaved trials is larger. However, an accuracy of around 0.5 is nec-

essary for an accurate computation of the SSRT. Although the PSI marginal method is not

explicitly designed to converge at 0.5, it also usually settles around this value. In Fig 3, the pro-

portion of successful change trials is plotted, averaged over bins of 8 Change-trials, for the two

different methods and with participants split into two groups, based on whether they showed

substantial Go-response slowing. From the figure it becomes clear that only the staircase

Fig 1. Go-RT slowing in Experiment 1. A participant’s Go-RTs for one condition. The line indicates the increasing

number of Change-trials in that condition, the circles are Go-RTs.

https://doi.org/10.1371/journal.pone.0210065.g001

Fig 2. Likelihood estimates during Experiment 1. The PSI marginal method’s posterior distributions for the example participant. Probabilities are averaged over the

error rate dimension, colors indicate the probability of a parameter combination, the point of maximum probability is indicated in black. Colors range from minimum

to maximum probability per distribution. Around Change-trial 9, the most likely threshold parameter reaches the boundaries of the method’s parameter space.

https://doi.org/10.1371/journal.pone.0210065.g002

The PSI adjusted method
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method for non-slowing participants was able to maintain an accuracy of about 0.5 throughout

the experiment. Slowing participants were able to achieve a substantially higher accuracy, for

both the staircase and PSI marginal method. Non-slowing participants for the PSI marginal

method, on the other hand, stayed below 0.5 performance for the length of the experiment.

What is striking, furthermore, is that in the PSI marginal method’s block, slowed subjects

initially achieve a higher accuracy (around 0.5) than non-slowing subjects (0.2). This is owed

to the extensive parameter range for critical SSDs (50 ms– 1200 ms) we used in order to allow

some response slowing. Before gaining knowledge about a participant’s behavior, the method

tends to choose SSDs from the center of its parameter range, which in this case is between 600

and 650 ms, since these are most informative. These SSDs are already too large for non-slow-

ing subjects, leading to their poor performance, while slowing subjects are better able to deal

with these trials.

We have included further visualization of the relation between SSRT estimates of the stair-

case- and PSI method in the supplementary material (S3 Fig).

Since it is clear the PSI marginal method has considerable problems with participants slow-

ing their Go-responses in the Stop-signal task, we propose the PSI adjusted method, which

keeps a running estimate of the current mean Go-RT during the experiment. This adjusted

method does not estimate the critical SSD, but the difference between estimated mean Go-RT

and the critical SSD, thus in effect estimating SSRT directly. In this way, the method’s esti-

mated SSRT is always based on the current mean Go-RT, and also does not change substan-

tially over the course of the experiment, thus not reaching the boundaries of the considered

parameters. Additionally, even dramatic Go-response slowing should not be able to cause an

accuracy substantially larger than 0.5.

Fig 3. Accuracy throughout Experiment 1. The proportion of successful Change-trials (averaged over bins of 8 trials)

of the PSI marginal and Staircase methods. Participants were split into two groups based on whether they showed

substantial Go-response slowing.

https://doi.org/10.1371/journal.pone.0210065.g003
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The PSI adjusted method

In the following the PSI adjusted method, which can also deal with slowed Go-RTs, will be

explained in more detail. A participant’s performance is now characterized by a three-dimen-

sional vector ω = (SSRTparticipant,Slopeparticipant,ErrorRateparticipant). Thus, we estimate SSRT

directly, instead of the threshold parameter. The relation between SSRT and threshold is:

Threshold ¼ meanGoRT � SSRT ð11Þ

Since the psychometric function is defined in terms of the threshold parameter, we use Eq 11

to convert a given SSRT value to its corresponding threshold value. In order to do that, we

need an estimate of the participant’s mean Go-RT. Since during response slowing, the Go-RT

changes throughout the task, the first step in each Stop-trial is to estimate the current mean

Go-RT. This is done via linear regression: over a sliding window including the last several Go-

trials, the Go-RTs are regressed on their respective trial numbers. The resulting linear regres-

sion equation is used to predict the Go-RT of the current trial, which serves as an estimate of

meanGo-RT in Eq 11.

The logic behind this is that a participant’s SSRT is a characteristic not changing with

response slowing. The slowing only affects the threshold parameter, which indicates the SSD

at which p(error) = 0.5. This threshold trails behind the continuously slowing Go-RT, while

the distance between the Go-RT and the threshold (the SSRT) remains constant. By estimating

the changing Go-RT and adjusting the threshold parameter for it, we can estimate the

unchanging SSRT.

After having estimated the current Go-RT at the outset of the Stop-trial, we also need to

adjust our SSD range. Until now we have not touched upon the range of SSDs to choose from,

but since we now adjust for slowing Go-RTs, we have to ensure that the SSDs that can be

offered in our Stop-trial match the range of threshold values that are possible under our cur-

rent estimate of the Go-RT and the range of SSRT parameters in our parameter space. On each

Stop-trial, we let SSDs range from

meanGoRT � maxðSSRTÞ to meanGoRT � minðSSRTÞ

where min(SSRT) and max(SSRT) are the minimum and maximum SSRTs of our parameter

space. In practice, we also truncate negative SSDs to 0. After these adjustments at the start of a

Stop-trial, the method follows the PSI marginal method outlined earlier, except that all distri-

butions are now defined over ω parameter space.

In order to compare the properties of our PSI adjusted method during the Stop-signal task

to the PSI marginal method as well as the classic staircase method, we ran three sets of simula-

tions. The first set is very similar to those presented by Livesey & Livesey [4] and investigates

the qualities of the SSRTs estimated by the different methods under the condition of stationary

Go-RTs. The second and third set of simulations investigate the effects of Go-RT slowing on

the different methods.

Simulations 1: Constant reaction times

Methods

Simulations. In order to quantify and compare the performance of our PSI adjusted

method, the PSI marginal method and the staircase method, we simulated several Stop-signal

experiments. In each, per trial human performance was simulated by randomly drawing a Go-

RT from an ex-Gaussian distribution with parameters μ = 360, σ = 40 and ν = 40. These

parameters remained constant over the experiment. If it was a Go-trial, this was the Go-RT. If
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it was a Stop-trial, the outcome of the trial was taken to be an erroneous response if the Go-RT

was smaller than the simulated SSD plus the participant’s SSRT; otherwise it was a successfully

inhibited trial. In each experiment there was a fixed error rate, which governed how many per-

cent of trials a participant’s response was inverted, i.e. successful inhibition becoming errone-

ous response and vice versa. The error rate varied across experiments but was the same for all

participants. Each experiment contained 100 Stop-trials and 200 Go-trials. In each experiment,

41 participants were simulated, each with a different SSRT ranging from 50 to 250 in steps of 5

ms. In each experiment, three different methods ran in parallel (classic staircase method, the

PSI marginal method, our PSI adjusted method), each determining on its own which SSD

should be presented next, and each receiving responses based on separately drawn Go-RTs.

After each Stop-trial, two Go-trials were simulated, and all participants shared the same Go-

RT per Go-trial. Three different error rates of 0, 0.05, and 0.1 were simulated, with 50 experi-

ments per error rate. The performance measures for the four different methods were averaged

over error rates and experiments. The staircase started at an SSD of 250 ms, was increased or

reduced by 50 ms after successful or unsuccessful Stop-trials, respectively, and was limited to 0

ms at the low end. For the staircase, the SSRT was computed in two ways, once with the mean

method and once with the integration method. All simulations were programmed using the R

programming language and environment (R Core Team, 2017).

In contrast to the behavioral experiment, in the simulations we used a function of the form

p errorð Þ ¼ ErrorRateþ
1 � 2 � ErrorRate

1þ e� Slope�ðSSD� ThresholdÞ
ð12Þ

to model the psychophysical performance. This function follows the form of the logistic func-

tion but lets the error rate govern both the minimum and maximum the function can take on.

The PSI marginal method used possible SSDs ranging from 0 to 500 ms in steps of 50 ms. The

threshold parameters estimated as the critical SSDs ranged from 0 to 500 ms in steps of 5 ms,

the slope parameters were 0.003, 0.0052, 0.01, 0.019, 0.029 and 0.04, the error rates ranged

from 0 to 0.3 by steps of 0.05. Our PSI adjusted method estimated SSRTs ranging from -100 to

400 ms in steps of 5 ms (thus being centered on the actually simulated SSRTs, exceeding them

by 150 ms to both sides, similar to the PSI marginal method under the stated Go-RT distribu-

tion parameters). The slope values and error rates were identical to the PSI marginal method.

SSDs were updated each trial based on the current predicted Go-RT estimate, as described ear-

lier, ranging from the current predicted Go-RT minus the longest SSRT estimate, until the pre-

dicted Go-RT minus the shortest SSRT estimate, in steps of 50 ms rounded to the nearest full

50 ms and set to 0 ms for negative values. The running estimate of the Go-RT was computed

by linearly regressing the Go-RTs of the last several Go-trials (at least 15, at most 40; covering

the last 7–20 Stop-trials) on their trial’s number, and then predicting the upcoming Go-RT

from the linear regression equation. If not enough trials had been passed to make a linear pre-

diction, a scalar estimate of the Go-RT was used, set at 400 ms.

Analysis. Per experiment, we computed how the SSRT estimate of each method devel-

oped over the course of the experiment, so per trial we computed each method’s estimate of

the SSRT up to that trial, using the Go-RTs obtained up to that trial. For the staircase method,

SSRTs were computed both according to the mean- and the integration method. We then

computed three measures of performance for these SSRT estimates, similar to Livesey & Live-

sey [4]: the correlation of a method’s SSRT estimate with the actually simulated SSRT (over

participants), the mean absolute deviation of SSRT estimate from the simulated SSRT (aver-

aged over participants), and the slope of the linear regression line relating the different partici-

pants’ SSRTs to the estimated SSRTs. These parameters, developing over the course of each

experiment, were then averaged over the different simulated experiments.

The PSI adjusted method
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Results

As Fig 4A shows, the correlations between all four methods’ SSRT estimates and the true

SSRTs develop similarly over the course of the experiment, reaching the 0.9 mark around 18

trials and further increasing from there. No substantial differences between the methods are

obvious.

Fig 4B shows the mean absolute deviation of SSRT estimates for the different methods.

Again, the time course over the experiment is generally similar for the different methods, with

only a small underperformance of the PSI methods between trials ten to 25, corresponding to

a mean absolute deviation of around 2.5 ms after 12 trials.

The most interesting result is depicted in Fig 4C, where the linear slope between a method’s

SSRT estimate and the true SSRT is plotted over the course of the experiment. This can be seen

as an index of biased SSRT estimation, with slopes smaller than one meaning lower SSRTs are

being overestimated or higher SSRTs being underestimated, or both. An unbiased estimation

would result in slopes of one. As can be seen, there is a clear ordering of performance for the

different methods, with the PSI methods performing best and equally well, the staircase inte-

gration method performing worse and the staircase mean method performing worst. The dif-

ferences in performance are larger in the lower trial numbers. Since the staircase- and PSI

methods settle on different ultimate slope values, it will take progressively longer for the stair-

case methods to reach the same slope values as the PSI methods the closer that value is to one.

For example, it takes the staircase integration method 4 trials longer than the PSI methods to

reach a slope of 0.9, but 11 trials longer to reach a slope of 0.95, and 21 trials longer to reach a

slope of 0.97.

Simulations 2: Increasing reaction times

Methods

In most respects, the second set of simulations is identical the those presented thus far, except

that now only one error rate was simulated (0.05), and that Go-RTs now slowed down over the

course of the experiment. Three different extents of slowing were simulated: Go-RTs slowing 5

ms per Stop-trial, 10 ms or 15 ms (the first two extents corresponding roughly to the degrees

of slowing simulated by Verbruggen, Chambers and Logan [3] and the third representing a

more severe kind of slowing that can be found in experiments containing multiple conditions).

Slowing was simulated by increasing the μ parameter of the ex-Gaussian distribution used to

draw Go-RTs from. The results will be presented averaged over the different degrees of slow-

ing, the results split up for the different amounts of slowing can be found in the supplementary

materials (S4 Fig).

Results

As Fig 5A shows, when Go-responses are slowed over the course of the experiment, the corre-

lations for the staircase and PSI adjusted method are fairly similar to when responses are not

being slowed. The PSI marginal method’s performance, however, deteriorates from around

trial 12 onwards, due to it not being able to react to the slowing Go-responses (and changing

critical SSDs). Not visible in the graphic, the correlation coefficients for the PSI marginal

method decrease until 0.2 at trial 100.

In Fig 5B, it can be seen that the staircase-integration method, the staircase-mean method

and the PSI marginal method all at some point deteriorate in performance due to not being

able to keep up with the slowing Go-RTs. The staircase-integration method performs best

until around trial 30, while the staircase-mean method stops improving at a mean absolute
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deviation of around 35 ms. While initially performing worse than the staircase-integration

method, the PSI adjusted method is able to keep up with slowing Go-RTs and steadily decrease

absolute deviation. The deviations for the staircase- and PSI marginal method eventually

increase to around 80 and 275 ms, respectively.

In terms of the slope between estimated and actual SSRTs, the staircase-mean method stays

consistently below one. The PSI marginal method deteriorates in performance around trial 12.

Not shown in the graphic, the slope eventually decreases down to almost 0 at trial 100. The

staircase integration method quickly surpasses a slope of one, again not able to keep up with

response slowing. The PSI adjusted method quickly rises towards a slope of one and stays

there for the remainder of the trials. As can be seen in the supplementary materials (S4 Fig),

the stronger the response slowing, the stronger and earlier the adverse effects on SSRT estima-

tion occur.

Generally, while in the case of constant RTs (simulations 1) the PSI methods simply attain a

given degree of precision in SSRT estimates in fewer trials than the staircase methods, with

increasing Go-RT slowing it becomes more a question of being able to deal with the slowing at

all.

Simulations 3: “Pure” slowing

Methods

In simulations 2, we saw that Go-response slowing has a clear detrimental effect on the PSI

marginal method, which the PSI adjusted method can correct for. However, this leaves open

the question of whether this decrement in performance results simply from the RTs increasing

(“pure” slowing), or whether the cause of the problem is the behavior of the participant reach-

ing and crossing the boundaries of the method’s parameter space, specifically the threshold

parameter’s boundaries. These two issues are separable, since pure slowing can occur while the

participant’s behavior is still well within the parameter space, and since a certain degree of

pure slowing can be accommodated by simply increasing the range of threshold parameters

available to the PSI marginal method.

To investigate the effect of pure slowing on the PSI marginal and PSI adjusted methods in

the absence of reaching the parameter space’s boundaries, we performed an additional set of

simulations building on simulations 2.

The simulations were generally identical to simulations 2, again with 3 different degrees of

response slowing being simulated (5, 10 and 15 ms per Stop-trial), but now for each participant

only the PSI marginal method and PSI adjusted method ran in parallel. Both methods worked

as described in simulation 2, except that now, the parameter space of the PSI marginal method

was changed in a way that until Stop-trial 100, all participants’ behavior stayed within the

parameter space despite the Go-RTs increasing. For example, with a Go-response slowing of 5

ms per Stop-trial, after 100 Stop-trials, the mean Go-RT lies at the initial 400 ms + 500

ms = 900 ms. Since the critical SSD = Go-RT–SSRT, and since the fastest SSRT simulated was

50 ms, at the end of the 100 trials the largest critical SSD of the simulated participants lies at

850 ms. To accommodate for this increase of the critical SSD (and thus, the increasing thresh-

old parameter of the PSI marginal method), we set the threshold parameter space of the PSI

Fig 4. Different methods’ performance with stationary GO-RTs. Performance of the PSI marginal method, PSI

adjusted method, and the staircase method with stationary Go-RTs. (A) Correlations of estimated SSRTs with

simulated SSRTs. (B) Mean absolute deviation between estimated and simulated SSRTs. (C) Linear slope between

estimated and simulated SSRTs. Filled areas indicate the standard error of the mean over the 150 simulated

experiments.

https://doi.org/10.1371/journal.pone.0210065.g004
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marginal method to range from 0 to 1000 ms (in steps of 5 ms). Since the smallest critical SSD

at the start of the task lies at 400 ms– 250 ms = 150 ms, the 0 ms lower end of the parameter

space leaves a buffer of 150 ms. Similarly, the 1000 ms upper end exceeds the largest critical

SSD at the end of the experiment by 150 ms. This principle was adhered to by all three simu-

lated degrees of response slowing. Thus, for a slowing of 10 ms per Stop-trial, the threshold

parameter space for the PSI marginal method ranged from 0 to 1500 ms in steps of 5 ms, while

for a slowing of 15 ms per Stop-trial, the PSI marginal method’s parameter space ranged from

0 to 2000 ms in steps of 5 ms. The possible SSDs always spanned the same range in steps of 50

ms. The PSI adjusted method did not need an adjusted parameter space.

To also see the effect of crossing the parameter space’s boundaries, the tasks were simulated

further than the initial 100 Stop-trials, until the point when all participants had left the PSI

marginal method’s parameter space. For 5 ms of slowing per Stop-trial, this resulted in 170

simulated trials. For 10 and 15 ms of slowing, 135 and 124 trials were simulated respectively.

Results

The results can be seen in Figs 6–8. Correlations, mean absolute deviations and linear slopes

were computed as for simulations 1 and 2. To compare the performance of the two methods to

the case of no Go-response slowing, we also show the results of simulation 1 again (in black),

in which Go-RTs were constant.

As can be seen in Fig 6, the effects of Go-RT slowing on the PSI marginal method’s perfor-

mance are already apparent before the boundaries of the parameter space are reached (trial 1

to 100): the stronger the response slowing, the lower the correlation between simulated and

estimated SSRTs (Fig 6A), ranging from around 0.9 between trials 25 and 75 for 5 ms slowing,

to around 0.75 for 15 ms of slowing. When the boundaries of the parameter space are reached

(and crossed; after the red line), correlation coefficients start to decrease more strongly.

The same effect of response slowing is apparent for mean absolute deviation (B) between

simulated and estimated SSRTs: the stronger Go-RT slowing, the larger the deviation becomes,

even before reaching the parameter space’s boundaries. At trial 100, when the end of parame-

ter space is reached, the mean absolute deviation for 5 ms of slowing lies at around 100 ms; for

10 ms, it lies at around 430 ms; for 15 ms, it lies just below 700 ms. Not shown here, the results

also indicate that the increased absolute deviation during the first 100 trials is mainly due to

incorrect estimation of the Go-RT and only to a lesser extent the result of erroneous estimation

of the critical SSD.

In the linear slopes between simulated and estimated SSRTs (Fig 6C), the pattern is not so

clear while participants remain inside parameter space: while slopes seem to slightly oscillate

around 1, especially for stronger response slowing, the marked deterioration of performance

for the PSI marginal method only begins after the threshold parameter space was left, with

slopes sharply declining.

As visible in Fig 7, the PSI adjusted method is able deal with response slowing both when

participants remain inside the parameter space as well as when they leave parameter space. In

mean absolute deviation as well as linear slopes, some gradation is visible, with stronger

response slowing leading the decreased performance (insets), but the size of these effects is not

comparable to the PSI marginal method’s deterioration of performance.

Fig 5. Different methods’ performance with slowing GO-RTs. Performance of the PSI marginal method, PSI

adjusted method, and the staircase method with increasing Go-RTs. (A) Correlations (B) Mean absolute deviation (C)

Linear slope. Filled areas indicate the standard error of the mean.

https://doi.org/10.1371/journal.pone.0210065.g005
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In Fig 8, we show the entropy of the PSI marginal method’s posterior distributions over the

course of the simulated experiments, separately for 5, 10 and 15 ms response slowing per Stop-

trial. Furthermore, for each degree of response slowing, we separately show the entropy for

threshold parameter (summed over slope and error rate), slope (summed over threshold and

error rate) as well as error rate (summed over threshold and slope parameters). The parameter

dominating the overall entropy, which can be envisioned as the sum of all three entropies, is

the threshold parameter. It is clear that after a short drop in entropy for the threshold parame-

ter (until trial 25 for 5 ms), the value increases gradually until trial 100. Starting at trial 100,

when the boundaries of the parameter space are hit, overall entropy decreases again, which is

largely driven by the threshold parameter. This shows that while response slowing leads to an

increase in entropy when the parameter space has not been left yet, especially for the threshold

parameter, the event of hitting the boundaries of parameter space and leaving it leads to

decreased entropy, most likely due to the probabilities of the posterior distributions concen-

trating at the outer edges of parameter space.

Behavioral experiment 2: The PSI adjusted method

As the results of Experiment 1 showed, the presence of strong response slowing caused differ-

ent problems for the PSI marginal method. After finding a good performance of the PSI

adjusted method in the simulations, we wanted to put the method to the test in human partici-

pants and see whether these problems persisted. As in Experiment 1, a group of participants

completed two blocks of the Stop-change task, one with SSDs controlled by the staircase

method, and one controlled by the PSI adjusted method described above.

Methods

Participants. Participants were 20 students or former students (Mage = 23.4 ± 3.2, 6 male,

3 left-handed) from the same population as Experiment 1, with normal or corrected-to-normal

vision and no history of neurological or mental illness. Participants were paid 15 € for their

participation. Informed consent procedures were the same as in Experiment 1, the local ethics

committee of the university hospital of the RWTH Aachen had approved the experiment.

Task. Participants completed the same Stop-change task described in Experiment 1.

Procedure. Again, participants started with a training run, followed by two consecutive

runs of the Stop-change task, one controlled by the staircase procedure and one controlled by

the PSI adjusted method. The settings for the staircase procedure were generally identical to

Experiment 1, with the lowest SSD now 0 ms and the largest SSD now 2300. The largest SSD

was increased since the PSI adjusted method now also allowed for further response slowing

compared to Experiment 1. The PSI adjusted method used the same psychometric function as

described for the simulations. The SSRTs considered as parameters ranged from 0 to 600 ms

in 24 equally sized steps, rounded to the nearest millisecond. The slope parameters considered

were 0.003, 0.0052, 0.01, 0.019, 0.029 and 0.04, and the error rates considered ranged from 0 to

0.5 in steps of 0.05. The possible SSDs were updated each trial as described above, and the cur-

rent predicted Go-RT was estimated based on the last 15 to 40 Go-trials. Less than 40 trials

were usually used at the beginning of the task, when not enough Go-RTs had been collected

Fig 6. PSI marginal method’s performance for different degrees of slowing inside parameter space. Panel A shows

correlation coefficients between simulated and estimated SSRTs, panel B shows mean absolute deviation between

simulated and estimated SSRTs, panel C shows mean linear slope relating simulated and estimated SSRTs. Colors

indicate different degrees of response slowing. Until trial 100 (red line), all simulated participants are inside the

method’s respective parameter space.

https://doi.org/10.1371/journal.pone.0210065.g006
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yet. The certain-Go condition was excluded from Go-RT prediction, since Go-RTs in this con-

dition are known to differ from those in the change-conditions. Although the possible SSDs

computed in this fashion can increase indefinitely, they were capped at 2300 ms. At the begin-

ning of the PSI method’s run, the Go-RTs from the preceding block, either training or stair-

case, were used to initially predict Go-RT.

All other procedures were kept identical to Experiment 1.

SSRT computation. For the staircase block, SSRTs were computed using the integration

method, with all Change-trials containing erroneous responses considered signal-respond tri-

als. For the PSI adjusted method, SSRTs were estimated directly, and thus the expected SSRT

was derived from the ultimate posterior distribution.

Results

We present the results of Experiment 2 in a similar manner to Experiment 1. Figs 9 and 10 are

taken from a participant showing Go-response slowing similar to the example participant

from Experiment 1 (Figs 1 and 2). Even though there is considerable slowing, the SSRT esti-

mate of the PSI adjusted method is fairly stable across change trials, allowing the method to

optimally sample SSDs despite Go-responses being slowed.

Fig 11 compares the PSI marginal and PSI adjusted method with respect to their parameter

estimates over the course of the experiment. For the PSI marginal method (Experiment 1),

there is a considerable number of participants, specifically those slowing their Go-responses,

for which the threshold parameter receiving the highest probability in the posterior distribu-

tion reaches the method’s upper boundary, thus limiting the method’s ability to estimate the

true SSRT. Furthermore, a smaller number of participants reach the lower boundary of the PSI

marginal method’s parameter space. These are participants showing particularly fast Go-

responses.

While for the PSI marginal method strong response slowing causes a parameter drift

toward the upper boundary, in the PSI adjusted method the maximum probability parameters

are visibly more stable over time, both for slowing and non-slowing participants. There is,

however, a small number of participants in the slowing group whose parameter estimates in

the PSI adjusted method drift toward the lower end of the parameter space. There thus appears

to be some residual influence of response slowing on parameter estimation. Importantly, this

problem is far less pronounced than in the PSI marginal method used in Experiment 1. We

come back to the reasons behind this effect in the discussion.

Another problem we noted for the PSI marginal method and staircase in Experiment 1 was

that for slowing participants, accuracy levels substantially deviated from 0.5. As Fig 12 shows,

the PSI adjusted method is successful at maintaining accuracy at roughly 0.5 throughout the

experiment, for both slowing and non-slowing participants. As in Experiment 1, the staircase

method is only able to maintain this intended accuracy level for non-slowing participants.

As for experiment 1, we included further results on the relation between SSRT estimates of

the staircase- and PSI method in the supplementary material (S5 Fig).

A further question relevant to the PSI adjusted method is how many trials are optimal

when estimating Go-RTs through linear regression. While the up-to 40 trial long window used

by us to predict current mean Go-RT appears to have worked fine, we present additional anal-

ysis of Go-RTs in supplementary S6 Fig, in which mean and standard deviation of the residuals

of the RT prediction are shown, as a function of different window sizes. While the variability

Fig 7. PSI adjusted method’s performance for different degrees of slowing inside parameter space. As in Fig 6, but

now the performance of the PSI adjusted method is depicted.

https://doi.org/10.1371/journal.pone.0210065.g007
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of residuals reaches a stable minimum with window sizes larger than 10 to 15 trials for both

slowing and non-slowing subjects, the mean residual stays between -1 and 1 ms roughly

between window sizes of 1 and 30 trials. Thus, according to our behavioral data, window sizes

over 10 to 15 trials, but not substantially larger than 30 trials, are recommended. It should be

noted that the optimal window size depends on the timescale and form of changes in RTs,

which in turn likely depend on the specific task, such that other numbers of trials might be bet-

ter suited to predict Go-RT in different tasks.

Discussion

The original PSI method for the Stop-signal task [4] was proposed to allow optimal sampling

of SSDs in Stop-trials, thus allowing shorter experimental lengths. In this article, we showed

that the PSI marginal method, and by implication the original PSI method, cannot adequately

deal with the kind of response slowing often found in Stop-signal tasks. We proposed a PSI

adjusted method that continuously estimates Go-RTs and adjusts for possible slowing, thereby

allowing optimal sampling of SSDs despite slowing. In three sets of Stop-signal task simula-

tions, we compared the performance of this adjusted method to the PSI marginal method as

well as the classic staircase method. Furthermore, we tested how the PSI adjusted method fares

when employed with human participants showing strong Go-response slowing.

From the simulation results, it is clear that when there is no response slowing, the PSI meth-

ods offer improved performance in estimating SSRTs, especially for small trial numbers and

Fig 8. Marginal entropy of the PSI marginal method over the course of the task. The marginal entropies of the

threshold, slope and error rate parameters are shown, over the course of the task, for the PSI marginal method. Line

pattern indicates which parameter’s entropy is shown. The upper panel shows the results for 5 ms of slowing per Stop-

trial, the middle panel for 10 ms, and the lower panel for 15 ms.

https://doi.org/10.1371/journal.pone.0210065.g008

Fig 9. Go-RT slowing in Experiment 2. As Fig 1, a participant’s Go-RTs for one condition in the PSI adjusted

method’s block. The line indicates the increasing number of Change-trials, the circles are Go-RTs.

https://doi.org/10.1371/journal.pone.0210065.g009
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when unbiased estimation of the spectrum of SSRTs is important. In the face of response slow-

ing, as is common in Stop-signal tasks, it is crucial to correct the PSI method for the changing

response speed. When this is achieved, as in our proposed PSI adjusted method, this method

can offer improved performance over the staircase method even under considerable response

slowing.

Another interesting result most clearly visible in Fig 4 is that the traditional staircase com-

bined with the mean method is considerably worse for estimating SSRTs at low trial numbers

than when combined with the integration method. This performance decrement is visible

when inspecting the slope between simulated and estimated SSRTs, showing that either

smaller SSRTs are overestimated or larger SSRTs are underestimated. The cause of this behav-

ior is that when using the mean method, it is assumed that the SSDs offered up to this point

correspond to a performance of 0.5. However, since the staircase takes a certain time to reach

that performance level, the SSDs subtracted from the mean Go-RT will introduce a certain

bias, which varies depending on the true SSRT of the participant. With the integration method,

on the other hand, this bias is corrected for by using not the mean Go-RT, but a percentile of

the RT distribution that corresponds to the participant’s behavior.

A further benefit of the PSI methods not discussed so far is that for every point during the

experiment, they provide a likelihood distribution over the parameters underlying the partici-

pant’s performance, and thus a likelihood distribution over the SSRT estimate at that point.

This allows computing a confidence interval of sorts around the updated SSRT estimate after

every Stop-trial (similar to the illustration of SSRT estimation in Fig 7). This opens up interest-

ing new experimental opportunities, such as only running a Stop-signal task until a certain

level of confidence in SSRT has been reached, or dynamically controlling stimulus presenta-

tion based on the SSRTs that are likely or unlikely for a participant.

As shown in the results section of Experiment 2, there appears to be a residual effect of Go-

response slowing on SSRT estimation even for the PSI adjusted method. This is likely the result

of less than optimal estimation of Go-RTs for this method, particularly an underestimation of

Go-RTs. The mechanism behind this is the following: when participants have longer Go-RTs

than estimated by the method, they are capable of still stopping for SSDs that would be too

long under their actual SSRT, thus leading to a reduced estimated SSRT. Since the PSI adjusted

method presented here predicts Go-RTs by linearly regressing previous RTs on trial number,

Fig 10. Likelihood estimates during Experiment 2. As Fig 2, the PSI adjusted method’s posterior distribution for the example participant. Colors indicate probability

of the parameter combinations, the error rate dimension was averaged over. Despite considerable Go-response slowing, the parameters receiving the highest

probability do not reach the upper boundaries of the parameter space.

https://doi.org/10.1371/journal.pone.0210065.g010
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it is clear that any kind of non-linear change in response times cannot be accommodated. Fur-

thermore, the PSI adjusted method only predicts mean Go-RTs, thereby ignoring other prop-

erties of the Go-RT distribution, such as variance and skewness, which would be taken into

account under the ex-Gaussian parameterization of the RT distribution. As a future improve-

ment to the method, more flexible and behaviorally realistic models of response slowing could

be used to better capture changes in RTs throughout the experiment. It stands to reason that

this would further improve the statistical properties of the PSI adjusted method.

S3 and S5 Figs show the relationship between the SSRT estimates of the staircase blocks and

the PSI method’s blocks, separately for Experiment 1 and 2. While the number of data points

is not very large, it is clear that the correlations between estimates from the staircase method

and the PSI methods are far from perfect. This is likely caused by response slowing, since the

correlation coefficients are larger in the non-slowing groups, both for Experiment 1 and 2. In

these groups, the adjusted PSI method produces SSRT estimates more in line with the staircase

method than the PSI marginal method does. It is an open question to which degree the correla-

tion-diminishing effects of response slowing are stemming from the PSI methods’ SSRT esti-

mates or the staircase method’s estimates. Both the PSI methods and the staircase method

Fig 11. Parameter estimates for Experiment 1 and 2. Highest probability parameters for the PSI marginal method (Experiment 1) and PSI

adjusted method (Experiment 2) over the course of the experiment. The participants were split intro groups depending on whether the

showed go-response slowing. Every line represents one of the stop-change task’s conditions of one participant; thus, there are four lines per

participant. Black lines indicate a parameter reaching the upper end of the parameter space, red lines indicate parameters reaching the lower

end. Parameter estimates were slightly smoothed using a cubic spline to facilitate visual inspection. Note that while maximum probability

parameters are shown, SSRTs are eventually computed based on the expected parameters.

https://doi.org/10.1371/journal.pone.0210065.g011
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might contribute to this deviation of estimates: the PSI marginal method does not take into

account response slowing, and the adjusted PSI method’s estimate of Go-RTs might be

suboptimal, while the staircase method might just as well not be able to deal effectively with

Go-RT slowing. Future research might elucidate the source of these incongruencies in SSRT

estimates.

While the method of optimal RT estimation is of technical relevance, there is also the more

theoretical question of whether Go-response slowing invalidates the Stop-signal and related

tasks. Indeed, it has often been pointed out that the independent horse race model underlying

the analysis of behavior in this task assumes independence between the Go-process driving the

Go-response and the Stop-process responsible for inhibiting this response. Since Go-response

slowing in this task is generally related to the presence and prevalence of Stop-trials [15], this

might call into question the validity of Stop-signal tasks that provoke considerable response

slowing. We think these tasks are nevertheless important precisely because of this slowing.

While the mathematical independent horse race model understands the Go- and Stop-pro-

cess as independent, it has been noted that pure independence can be paradoxical when

addressing the instantiation of response stopping in the brain [16]. After all, the Stop-process

must exert some form of influence over the Go-process in order to prevent its execution. Inter-

estingly, Boucher et al. [17] showed that effects explained by the independent horse race model

can be captured in an interactive horse race model where Go- and Stop-process do interact in

a delayed and pronounced manner. We think that when discarding Go-response slowing sim-

ply as a nuisance when estimating SSRT, one is discarding a property inherent in the very neu-

ral inhibition system that is being studied. In this point we agree with other authors who have

made Go-response slowing in Stop-signal tasks an explicit subject of experimental investiga-

tion [15, 18–20]. In this area of research, response slowing in the context of Stop-signals has

often been taken as an indicator of proactive inhibition, and some results suggest that the

Fig 12. Accuracy throughout Experiment 2. As Fig 3, the proportion of successful Change-trials for the PSI adjusted

and Staircase methods, separately for slowed and non-slowed participants.

https://doi.org/10.1371/journal.pone.0210065.g012
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neural processes involved in reactive response inhibition are also partly involved in proactive

inhibition and can be indexed by response slowing [19, 21]. Indeed, quantifying not just reac-

tive but also proactive inhibition in the same task has been useful in analyzing neural data and

providing a more complete picture of the inhibition system [21, 22].

This is not to say, of course, that response slowing cannot be an obstacle to correct estima-

tion of SSRT, as has been shown previously [3]. If precise estimation of only SSRT is para-

mount, experimental methods of preventing slowing can be crucial, such as giving participants

feedback on their RTs. However, we think that in order to investigate the entire response inhi-

bition system, Go-RT slowing must also be accounted for, which necessitates methods of SSRT

estimation in the presence of slowed Go-responses.

A criticism that could be levelled against our behavioral experiments is that we used a non-

traditional Stop-task, namely the Stop-change task, and included different conditions, which

simulation studies usually do not. However, as described earlier, the processes involved in

changing a response to another one have been found to partly overlap those of outright stop-

ping a response [9–12]. Furthermore, while simulation studies often do not acknowledge dif-

ferent experimental conditions for lack of a clear way of simulating them, many behavioral

experiments do include multiple conditions. Since this can increase the amount of response

slowing per Stop-trial, it is important to consider the influence this has on estimating SSRTs.

We have presented behavioral as well as simulation data showing that the PSI marginal

method and even the traditional staircase method in the Stop-signal task have problems

accommodating excessive Go-response slowing. Consequently, we proposed an extension of

the PSI method that accommodates this often observed behavior. Our results show this PSI

adjusted method to be an advantageous alternative to previous methods of SSD choice espe-

cially when the number of Stop-trials that can be presented is limited.

Supporting information

S1 Fig. Illustration of the horse race model. The relationship between Go-signal, Stop-signal,

SSD, SSRT and the Go-RT distribution in the Stop-signal task.

(TIF)

S2 Fig. Initial- and progressive slowing of Go-RTs. Linear regression of Go-RTs on trial

number throughout the PSI method’s task blocks were performed, separately for Experiment 1

(left) and Experiment 2 (right). In order to split participants into a slowed and non-slowed

group, regression coefficients (progressive slowing) and intercepts (initial slowing) per partici-

pant were used as x- and y-coordinates, respectively. Then, a separating line along the main

diagonal was found that splits the participants of each experiment into roughly two equally

sized groups. The upper-right group is referred to as “slowing”, wheres the lower-left is

referred to as “non-slowing”. The example participants from Figs 1 and 9 are shown in red.

(TIF)

S3 Fig. Relationship between staircase- and PSI marginal method’s SSRT estimates in

Experiment 1. The two methods’ SSRT estimates are plotted against each other, separately for

slowed and non-slowed subjects. SSRTs were averaged over the four different experimental

conditions. The two groups were determined as described for experiment 1, but based on the

intercept and slope parameters averaged over the staircase- and PSI method’s run. Correlation

coefficients are displayed, but due to the reduced sample size were non-significant.

(TIFF)

S4 Fig. Different method’s performance for different degrees of response slowing. Perfor-

mance of the four different methods (purple–staircase, mean method; blue–staircase,
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integration method; green–PSI marginal method; red–PSI adjusted method) under different

degrees of response slowing.

(TIF)

S5 Fig. Relationship between staircase- and PSI adjusted method’s SSRT estimates in

Experiment 2. As in S3 Fig, but for experiment 2. Correlation coefficients were again non-sig-

nificant due to small sample size.

(TIFF)

S6 Fig. Accuracy of Go-RT prediction for different trial numbers. Accuracy of RT predic-

tion is visualized as mean residual of predicted Go-RT (in ms; left column) and standard

deviaiton of residuals (right column), for slowed (top row) and non-slowed subjects (bottom

row) separately, for different trial window sizes.

(TIFF)

S1 Table. Summary of behavioral performance in Experiment 1. Behavioral performance in

the staircase- and PSI marginal method’s block of Experiment 1. The side (left, right) is the

side on which the reaction had to be changed in the event of a Change-signal. The Go-trials of

the no foreknowledge- and certain go conditions did not contain the side factor, and thus do

not distinguish between left and right. CSRTs are the Change-signal task equivalent of SSRTs.

For the staircase block the CSRTs were computed using the integration method, for the PSI

marginal block the expected parameter corresponding to the critical SSD was derived from the

ultimate posterior distribution and subtracted from the mean Go-RT. CIEs are the Change-

signal task equivalent of the Stop interference effect (SIE) and are computed by subtracting a

hand’s regular Go-RT from that hand’s RT when the other hand has to be inhibited.

(DOCX)

S2 Table. Summary of behavioral performance in Experiment 2.

(DOCX)
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