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Abstract

Coastal storms have consequences for human lives and infrastructure but also create

important early successional habitats for myriad species. For example, storm-induced over-

wash creates nesting habitat for shorebirds like piping plovers (Charadrius melodus). We

examined how piping plover habitat extent and location changed on barrier islands in New

York, New Jersey, and Virginia after Hurricane Sandy made landfall following the 2012

breeding season. We modeled nesting habitat using a nest presence/absence dataset that

included characterizations of coastal morphology and vegetation. Using a Bayesian net-

work, we predicted nesting habitat for each study site for the years 2010/2011, 2012, and

2014/2015 based on remotely sensed spatial datasets (e.g., lidar, orthophotos). We found

that Hurricane Sandy increased piping plover habitat by 9 to 300% at 4 of 5 study sites but

that one site saw a decrease in habitat by 27%. The amount, location, and longevity of new

habitat appeared to be influenced by the level of human development at each site. At three

of the five sites, the amount of habitat created and the time new habitat persisted were

inversely related to the amount of development. Furthermore, the proportion of new habitat

created in high-quality overwash was inversely related to the level of development on study

areas, from 17% of all new habitat in overwash at one of the most densely developed sites

to 80% of all new habitat at an undeveloped site. We also show that piping plovers exploited

new habitat after the storm, with 14–57% of all nests located in newly created habitat in the

2013 breeding season. Our results quantify the importance of storms in creating and main-

taining coastal habitats for beach-nesting species like piping plovers, and these results sug-

gest a negative correlation between human development and beneficial ecological impacts

of these natural disturbances.
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Introduction

Barrier islands are the product of highly dynamic environments and change naturally in

response to wind, wave action, water levels, currents, and vegetation [1–4]. Coastal storms

(e.g., Nor’easters, extratropical storms, tropical cyclones) often are the main agents of both

short- and long-term change for these landforms [5]. These natural disturbances can transfer

sand and other materials from the beach to the nearshore zone, erode backshore areas, flatten

dunes, carry sediments to the back-barrier in overwash fans (or ‘washover’), and open inlets

[1, 2, 6, 7]. Immediately following a major storm, a barrier island typically has a narrow, flat

beach scoured of vegetation with extensive overwash [7–9]. From this post-storm geomorphic

state, barrier islands with limited anthropogenic modifications have the capacity for recovery

following storm events [8, 10].

Coastal storms often carry negative connotations due to loss of human lives and property

(e.g., [11, 12]). Studies in the ecological literature also frequently focus on the negative conse-

quences of storms, including wetland degradation [13], damage to coastal forests [14], and spe-

cies-specific mortality and population declines [15–18]. In many areas of the world, barrier

islands with important infrastructure are ‘hardened’ (i.e., stabilized with seawalls, jetties, artifi-

cial dunes, and other structural engineering techniques) or are routinely replenished with sedi-

ment from other sources with the intention of reducing negative storm impacts. In the United

States, over 14% of the nation’s coastline has been hardened [19, 20]. However, these anthro-

pogenic shoreline modifications—which are intended to protect coastlines from storm-

induced erosion and flooding—can ultimately prevent some types of early successional habi-

tats from forming [21] while more generally adversely affecting an island’s coastal ecosystems

[22] and resiliency to storms [23].

Storm impacts to barrier islands can also be beneficial. For example, storm-induced over-

wash is important for marsh accretion, allowing these ecosystems to keep pace with changes in

sea level [24]. Furthermore, species that rely on early successional habitat for one or more life

history phase, such as piping plovers (Charadius melodus) and other shorebirds (e.g., Ameri-

can oystercatchers, Haematopus palliatus; least terns, Sternula antillarum) depend on storms

as critical habitat creation or maintenance events [21, 25–28]. Therefore, management of

coastal landforms, particularly as related to storms, may often need to consider conflicting

objectives related to economic, social, and ecological issues [29].

In this study, we focus on one potential benefit of storms on coastal ecosystems, the

creation and maintenance of early successional habitat used by ground-nesting shorebirds,

specifically the piping plover. Our objectives were to evaluate how the quantity and location

of piping plover nesting habitat changed along both anthropogenically modified and unmodi-

fied coastlines in New York, New Jersey, and Virginia (USA) during the period before and

after Hurricane Sandy (Fig 1). The presence of habitat was determined for these areas in 2010

or 2011 (prior to Hurricane Sandy), immediately after the storm in November 2012, and

approximately 2 years after the storm in 2014 or 2015. Exact months and years evaluated were

dependent on the availability of required remotely sensed spatial datasets (e.g., lidar, ortho-

photographs) for each study area. We observed that habitats created immediately after the

storm were quickly colonized by nesting piping plovers but that human development may

have affected the amount, longevity, and location of newly created, early successional habitat.

This work offers insights over a relatively broad spatial scale into the important ecological role

that storms play in shaping barrier island habitats and into how human development may

influence that role.

Habitat availability following Hurricane Sandy
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Materials and methods

Study species

Piping plovers are migratory shorebirds with discrete breeding populations on the Atlantic

coast, the Great Lakes, and the Northern Great Plains of Canada and the United States, where

they are considered either federally threatened or endangered. Here, we consider subpopula-

tions within the Atlantic coast breeding population. These birds typically establish nests in

washovers, backshore areas, and low elevation dune complexes [28, 30–34] where substrate is

predominantly sandy or a mixture of sand, shell, gravel, or cobble [31, 32, 34–38] and where

there is either no vegetation or sparse herbaceous vegetation [31, 32, 34, 35, 38, 39]. Breeding

pairs lay up to four eggs in small depressions made in the sand, and precocial chicks hatch

after approximately 27–30 days of incubation (reviewed in [40]). Adults and chicks forage

largely along low-energy ocean- or bay-side intertidal zones and ephemeral pools, where they

consume marine worms, arthropods, mollusks, and crustaceans [25–27]. Chicks fledge by

August, when adults and fledglings begin migrating back to wintering grounds in the Carib-

bean and the southeastern Atlantic and Gulf of Mexico coasts (reviewed in [40, 41]).

We use piping plovers as a focal species for understanding habitat change because of their

reliance on low-lying, coastal habitats and their rapid population-level responses to habitat

Fig 1. Study sites off the coasts of New York (Rockaway Peninsula, Fire Island), New Jersey (Pullen and Long Beach islands), and Virginia

(Cedar Island) USA, where we modeled piping plover habitat before and after Hurricane Sandy using a Bayesian network approach.

https://doi.org/10.1371/journal.pone.0209986.g001
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change [28]. Furthermore, Maslo et al. [42] demonstrated that piping plovers have value as an

umbrella species when considering nesting habitat vulnerability at the local scale for other spe-

cies, such as American oystercatchers (Haematopus palliatus), black skimmers (Rynchops
niger), and least terns (Sterna antillarum).

Study sites and hurricane properties

We examined piping plover habitat and change at five sites in New York, New Jersey, and Vir-

ginia that have varying levels of shoreline development (Fig 1). The two study sites in New

York include ‘Fire Island’ and the ‘Rockaway Peninsula.’ The Fire Island study site, off the

coast of Long Island, USA, extends from Democrat Point (at the Fire Island Inlet) in Robert

Moses State Park past the Moriches Inlet and Smith Point into Cupsogue County Park on the

adjacent barrier. Fire Island itself, which comprises the entire site with the exception of Cupso-

gue County Park, is a micro-tidal, wave-dominated island [43]. This site is a patchwork of

state, county, and federal parks interspersed with private lands and includes the Fire Island

National Seashore. The approximately 50-km study area contains a mix of anthropogenically

modified coastlines—with communities, housing developments, roads, and infrastructure—

interspersed with federal, state, and county lands with minimal development near the primary

dune-line. According to Rice [44], all ocean-front shoreline in this study area, with the excep-

tion of Democrat Point, has experienced beach replenishment (also known as beach fill or

renourishment) in the last 10–15 years, and approximately 9 small areas of the coastline were

armored with hard shoreline stabilization structures prior to Hurricane Sandy.

The 18-km Rockaway Peninsula study area spans from the Breezy Point Unit of the Gate-

way National Recreation Area and Rockaway Point to the Far Rockaways off of the Long

Island coast (Fig 1). The majority of this study area is densely developed, with housing and

commercial developments and infrastructure spanning all but the western-most point of the

peninsula managed by the U.S. National Park Service. The shoreline along all of the Rockaway

Peninsula east of Jacob Riis Park has periodically experienced beach replenishment since 1977,

and approximately 14 km of the shoreline was armored with hard stabilization structures in

some way prior to Hurricane Sandy [44].

The two study areas in New Jersey include ‘Long Beach Island’ and ‘Pullen Island’ (Fig 1).

Pullen Island is a short (6 km), tide-dominated barrier with extensive marsh development and

a narrow sandy shoreline [45]. This island forms the Little Beach Unit of the Edwin B. Forsythe

National Wildlife Refuge, is undeveloped (i.e., it lacks housing communities or recreational

facilities), and has experienced very little direct anthropogenic shoreline modification [44].

Long Beach Island, immediately north of Pullen Island, is a long (34 km), narrow wave-

dominated island. Here, the back-barrier is characterized by fringe marshes on remnant

storm-surge platforms while the ocean-side contains dune systems dissected by overwash—

characteristics indicative of the strong influence waves have on shaping this island [45]. The

southern-most tip of this island forms the Holgate Unit of the Edwin B. Forsythe National

Wildlife Refuge. With the exception of a 1962 beach replenishment project [44], the Holgate

portion of Long Beach Island has experienced little direct anthropogenic modification. The

northern-most tip of Long Beach Island is also protected as part of the Barnegat Light State

Park; however, this area has experienced anthropogenic modification, including a ca. 2-km

terminal groin at Barnegat Inlet and four beach replenishment projects from 1962–1991 [44].

The remaining 26 km of Long Beach Island is heavily developed with residential and commer-

cial structures. The shoreline along this portion of the study area has periodically experienced

beach replenishment since the 1950s and was armored with hard shoreline stabilization struc-

tures prior to Hurricane Sandy [44].

Habitat availability following Hurricane Sandy
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The final study area, Cedar Island, is part of an island chain off of the Delmarva Peninsula

and is bounded by the Metompkin and Wachapreague inlets (Fig 1). This site is a short (12

km), mixed-energy, tide-dominated island with a mesotidal (mean tide range ca. 2 m) coast-

line and an average wave height of 0.55 m ([43], reviewed in [46]). Most of Cedar Island has a

wide back-barrier marsh, and extensive overwash is prevalent along much of this low elevation

island (reviewed in [46]). This island has decreased in area in recent years due to high erosion

rates [47]. Most of Cedar Island is jointly managed by the U.S. Fish and Wildlife Service, The

Nature Conservancy, and the Commonwealth of Virginia. Although there are a few private in-

holdings remaining throughout the island, it is minimally affected by development, beach

replenishment, or hard shoreline stabilization structures [44].

Hurricane Sandy first made landfall near Brigantine, New Jersey on 29 October 2012 with

maximum sustained winds of 130 km/hr [9, 48]. Tropical storm-force winds reached from

Wallops Island, Virginia (ca. 25 km north of the Cedar Island study area) to Montauk, New

York (ca. 81 km north of the Fire Island study area) at the time of landfall [9]. Maximum water

levels, which include storm surge and tide, exceeded normal tide levels by 1.1–2.9 m at tide

gauges from the mouth of the Chesapeake Bay to The Battery in New York [9] and were high-

est in New Jersey, New York, and Connecticut [49]. This storm directly impacted 24 states and

was responsible for 125 deaths and over 570,000 destroyed buildings [48].

The hurricane’s effects on barrier island geomorphology were closely monitored from

North Carolina to New York [9] and particularly on Fire Island [10]. These studies noted high

spatial variability in storm effects, likely influenced by each area’s coastal geomorphology, off-

shore geology, nearshore processes, and density of human development [9]. The undeveloped

barrier islands off the Delmarva Peninsula generally experienced a continued landward depo-

sition of sand and shoreline retreat, which was the prevailing long-term trend before the storm

[9]. The majority of the New Jersey coastline experienced severe dune erosion, with many

areas losing 1–6 m in vertical dune-height [9]. However, positive shoreline change, beach pro-

gradation, and increases in sand volume were observed along some areas of the New Jersey

shoreline, approximately 45 km north of where the storm made landfall. In this region, swash

bars fused back on to the beach as part of natural beach recovery processes [9]. Overwash and

dune erosion were also prevalent along the New York coastline, with an average loss in vertical

dune-height from 1–2 m from the New York/New Jersey border through Fire Island [9]. On

Fire Island, beaches and dunes lost more than 54% of their pre-storm volume, and dunes expe-

rienced overwash along 46% of the island [10]. Although the island experienced 7 additional

storms with significant wave heights > 4 m during the winter of 2012–2013, the majority of

beaches rapidly returned to pre-Sandy conditions; by April 2013, 90% of beach profiles exam-

ined had beach volumes similar to those immediately before Sandy [10]. Given the spatial vari-

ability in storm effects and ultimate geomorphological recovery from Virginia to New York,

we expected to find site-specific patterns of change to beach habitats used by piping plovers in

this study.

We also note that some of our inferences relating to habitat creation and availability

through time were likely confounded by spatial variations in Hurricane Sandy’s direct impacts.

Landfall occurred in Brigantine, New Jersey, and impacts differed across study sites due to

expected changes in morphological and habitat responses [50]. Pullen and Long Beach islands

were closest to the point of storm landfall at ca. 6 and 12 km, respectively, while the Rockaway

Peninsula (137 km from landfall), Fire Island (192 km) and Cedar Island (234 km) were

located substantially farther from the point of landfall. However, controlling for direct storm

impact in this natural experiment was not possible, and the massive size of this storm pro-

duced widespread impacts associated with storm-force wind, waves, and surge [9].

Habitat availability following Hurricane Sandy
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Bayesian network. We used a Bayesian network (BN) to investigate piping plover habitat

availability before and after Hurricane Sandy in our study areas. An initial version of this BN

and its underlying training data are described in Zeigler et al. [34]. In general, a BN is a

directed acyclic graph composed of nodes and edges that organize knowledge about a system.

Nodes represent variables describing relevant system components. Nodes are further broken

down into discrete characteristics or, for continuous variables, discretized into bins. Edges

connect nodes to convey dependencies, correlations, or causal influences among nodes (e.g.,

Fig 2) (e.g., Fig 2; [51]). Conditional probability distributions are calculated for each node

based on empirical data according to Bayes Theorem, and the set of all possible node-value

combinations forms a conditional probability table that underlies a ‘trained’ BN (e.g., Fig 2).

Once trained, the BN can be used to predict the value of an unknown node given incomplete

data. In such cases, the BN is used to determine the probability of observing specific states for

nodes in which the true state is unknown, with epistemic uncertainty represented in the even-

ness of the predicted conditional probabilities [51]. BNs are generally considered powerful

tools because they are robust to many common issues (e.g., missing data, multicollinearity

and nonlinearity in variables) that can otherwise violate assumptions in other multivariate

approaches [51, 52].

We constructed a BN for delineating piping plover habitat (‘Plover Habitat BN’; Fig 2) in

Netica (version 5.12, Norsys Software Corp.) after Gieder et al.’s [53] model for Assateague

Island National Seashore and Zeigler et al.’s [34] simplified regional habitat model. In our net-

work, we connected (i) four nodes representing discretized continuous variables (Distance to

Fig 2. Configuration of nodes and edges in the Plover Habitat Bayesian network used to predictively map habitat for piping plovers. Prior

probability distributions for this network were derived from data collected at piping plover nests and random points at sites in 2014 and 2015

using the iPlover data collection application. The network as shown in this figure illustrates prior probability distributions for instances where

nests were present (i.e., characteristics associated with habitat).

https://doi.org/10.1371/journal.pone.0209986.g002
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Ocean, Beach Width, Elevation, and Distance to Foraging); (ii) four nodes representing cate-

gorical landcover characteristics (Geomorphic Setting, Substrate Type, Vegetation Type, Vege-

tation Density); and (iii) an output node for the probability that a specific combination of

landscape characteristics in i and ii would be associated with landcover suitable for nesting

(Habitat Designation; Table 1; Fig 2).

We followed guidelines for the development of BN structure outlined in Marcot et al. [52].

Network structure, including nodes and their connections, was based on an extensive review

Table 1. Landscape variables considered as nodes in the Plover Habitat Bayesian network used to model habitat for piping plovers along the coasts of New York,

New Jersey, and Virginia. Variables were associated with data collected at piping plover nest and random points through the smartphone application iPlover and were

also individually mapped for our study areas. Continuous variables were discretized into bins shown in Fig 2.

Variable Variable
Type

Possible Values Definition

1. Distance to

Ocean

Continuous 0 to1 (meters) When referring to points in the iPlover dataset, this is the Euclidean distance from a nest or

random point to the nearest point on the mean high water (MHW) ocean shoreline. For

raster coverages, this refers to the Euclidean distance from the center of each 5 x 5 m raster

cell to the nearest point on the MHW ocean shoreline.

2. Beach Width Continuous 0 to1 (meters) Beach widths were measured along transects placed in 50 m intervals perpendicular to the

shoreline as part of the U.S. Geological Survey’s National Assessment of Coastal Change

Hazards (https://marine.usgs.gov/coastalchangehazards/). Along each transect, beach width

was measured as the Euclidean distance between the MHW ocean shoreline and the nearest

dune toe or anthropogenic modification (e.g., dune fencing, seawall, etc.). Points within the

iPlover dataset and raster cells within spatial coverages were assigned the beach width value

for the nearest transect. When no dune toe or anthropogenic modification existed along a

transect, beach width for that transect was given a no data value.

3. Elevation Continuous -1 to1 (meters) Denotes elevation corrected for MHW offset [55] at each nest or random point. For study

area coverages, each raster cell was given the average elevation within the 5 x 5 m area

covered by that cell.

4. Distance to

Foraging

Continuous 0 to1 (meters) When referring to points in the iPlover dataset, this is the least cost path distance from a

point to the nearest foraging area (e.g., intertidal zone along inlets or sandy bay-side

beaches, ephemeral pools, etc.). Foraging areas did not include ocean intertidal zones. For

raster coverages, distance to foraging refers to the least cost path distance from the center of

each 5 x 5 m raster cell to the nearest foraging area. The least cost path routine assumed that

areas of moderate or dense vegetation, water, or development served as barriers that blocked

access to foraging grounds. Distances, therefore, assume paths that wind around these

barriers. When no possible route existed between a nest, random point, or raster cell to a

foraging area, this variable was given a fill value denoting ‘no access’ to foraging grounds.

5. Geomorphic

Setting

Categorical Beach; Backshore;

Dune Complex; Washover; Barrier

Interior; Marsh; Ridge/Swale

The geomorphic setting that best described the location of a nest, random point, or 5 x 5 m

raster cell. More detailed definitions of the possible categorical values are given in Zeigler

et al. [34].

6. Substrate Type Categorical Sand; Shell/Gravel/Cobble; Mud/

Peat; Water; Development

The substrate type that best described the 5 x 5 m area surrounding a nest or random point

in the iPlover dataset or a raster cell in spatial coverages. We selected Development as the

substrate type for any point or cell that fell within areas obviously influenced by

anthropogenic activities (e.g., housing developments, paved roads or parking lots,

recreational sports fields, etc.). More detailed definitions of the possible categorical values

are given in Zeigler et al. [34].

7. Vegetation

Type

Categorical None; Herbaceous; Shrub;

Forest; Development

The vegetation type that best described the 5 x 5 m area surrounding a nest or random point

in the iPlover dataset or a raster cell in spatial coverages. We selected Development as the

vegetation type for any point or cell that fell within areas obviously influenced by

anthropogenic activities (e.g., housing developments, paved roads or parking lots,

recreational sports fields, etc.). More detailed definitions of the possible categorical values

are given in Zeigler et al. [34].

8. Vegetation

Density

Categorical None; Sparse (0–20% coverage);

Moderate (20–90%); Dense (> 90%);

Development

The approximate percentage of the 5 x 5 m area surrounding a nest or random point in the

iPlover dataset or a raster cell that was covered by vegetation. We selected Development as

the vegetation density for any point or cell that fell within areas obviously influenced by

anthropogenic activities (e.g., housing developments, paved roads or parking lots,

recreational sports fields, etc.). More detailed definitions of the possible categorical values

are given in Zeigler et al. [34].

https://doi.org/10.1371/journal.pone.0209986.t001
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of the published literature [28, 30–39] and consultation with species and geomorphology

experts. In particular, structuring node correlations through expert consultation is recom-

mended over using case data to automatically establish correlations in order to avoid data

overfitting and spurious statistical correlations (reviewed in [52]). We also ensured to the

extent possible that no child node had more than three parent nodes (with the exception of the

Vegetation Density and Habitat nodes), all nodes were observable or quantifiable, and the

number of discrete states was minimized to five or fewer (with the exception of Geomorphic

Setting) [52]. Prior probability distributions and the conditional probability table for each

node in the BN were derived from field data supplemented with remotely sensed information

(see sub-section Training Data). Hence, while the BN approach does not specifically tease

apart ecological and biological process—such as explicitly examining what led to individual

bird nesting decisions—it frames hypotheses tests for the importance of factors at a macro-

scopic scale that have been proposed as being causal to these decisions.

We examined the accuracy or classification power of the BN using two different approaches

and evaluated the BN’s sensitivity to individual nodes. For BN validation, we first determined

the receiver operating characteristic (ROC) curve, which calculates the prediction accuracy of

the network over the full continuum of prediction thresholds (instead of over an arbitrary

probability threshold like 0.5) [52]. We also calculated the BN’s predictive accuracy through

10-fold cross-validation in the Python module CVNetica according to Fienen and Plant [54].

For the node sensitivity analysis, we systematically removed nodes for each variable contained

in the model and recalculated the mean error rate through 10-fold cross-validation. A full

description of the methodologies used to assess the BN’s predictive accuracy and the results of

this testing are contained in Supporting Information (S1 File). In brief, validation demon-

strated that the BN had high accuracy in predictions of landcover characteristics associated

with piping plover nest habitat selection (mean error rate = 0.23; ROC curve in top-left quad-

rant of plot with AUC = 0.90; S1 Fig). The network was not sensitive to the removal of any one

node, with the removal of the node for Beach Width resulting in the largest change in mean

error rate (error rate = 0.18; S1 Table).

Training data. We developed the smartphone application ‘iPlover’ [56] and partnered

with individuals representing the U.S. Fish and Wildlife Service, U.S. National Park Service,

several state wildlife or environmental agencies, and several private conservation organizations

[34] to collect data on piping plover nesting habitat-use patterns that could be used to parame-

terize the Plover Habitat BN. Under our collection protocol, each iPlover user, after finding a

nest in the course of monitoring efforts, used the smartphone’s internal sensors within iPlover

to record the nest’s geolocation coordinates and observation date and time. The user com-

pleted a simple habitat assessment by assigning categorical values to a fixed set of variables

listed in iPlover. Habitat variables considered included Geomorphic Setting, Substrate Type,

Vegetation Type, and Vegetation Density (Table 1). iPlover records were locally stored on

smartphones while users were in the field and uploaded to a centralized database as soon as

internet connectivity was available. An identical protocol was employed at the locations of ran-

dom, non-nesting points disseminated to our partners at the start of each breeding season. For

additional details on the smartphone application, protocol, and dataset, see Thieler et al. [56],

Zeigler et al. [34], and Sturdivant et al. [57].

The iPlover dataset used for model training in this study contained habitat assessments at

287 nest and 269 random points collected during the breeding seasons (March to July) of 2014

and 2015 at Fire Island (71 nest, 40 random), the Rockaway Peninsula (40 nest, 39 random),

Pullen Island (43 nest, 54 random), Long Beach Island (50 nest, 34 random), Cedar Island (49

nest, 59 random), Cobb Island (1 nest, 10 random; Virginia, USA), and Smith Island (33 nest,

33 random; Virginia, USA). All data are available at: http://dx.doi.org/10.5066/F70V89X3.
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Within this dataset, we assumed that landcover characteristics of nest points were associated

with habitat and characteristics of random points were associated with unsuitable landcover,

or non-habitat. Because we used nest presence as a proxy for habitat instead of, for example,

egg fate or fledging rate, we cannot make conclusions regarding whether selected habitat was

optimal for nesting or acted as an ecological trap [58].

In order to derive prior probability distributions for the remaining continuous variables in

the BN, we supplemented the dataset with additional landscape data. We refer to this dataset

as the ‘supplemented iPlover dataset’. To do this, we used remotely sensed lidar and aerial pho-

tographs captured during the appropriate study periods (S2 Table) to create raster layers cov-

ering an entire study area for each of the habitat variables considered in the Plover Habitat BN

[59]. All spatial data are available in Sturdivant et al. [60]. In ArcGIS, we overlaid the iPlover

dataset points over these raster layers and used the ‘Extract Multi-Values to Points’ tool in Arc-

ToolBox. This tool extracts the cell values from the underlying raster layers at locations speci-

fied in a point feature class (i.e., the iPlover points) and records those values to the attribute

table of the point feature class.

Spatial analyses

The trained network was then used to map habitat according to Zeigler et al. [34]. For each

study area and year, we used orthoimagery and lidar (S2 Table) to create eight geographic

information system (GIS) layers in ArcGIS (version 10.4) that represented each input node in

the Plover Habitat BN. We combined the eight layers to form a single GIS layer, where every

5x5 m cell had an attribute for each of the input nodes for a given year. Spatial data and a

detailed description of how each individual GIS layer was created are provided in Zeigler et al.

[59], and GIS layers are available in Sturdivant et al. [60]. For this study, we ultimately derived

120 individual GIS layers (8 GIS layers x 3 years x 5 study sites) and 15 combined GIS layers

for the study sites and years considered (5 study sites x 3 years). The attribute table associated

with each combined GIS layer in ArcGIS showed every unique combination of the eight land-

scape variables. This table was used as a case file, where every row in the table presented an

individual case for probabilistic interpretation by the BN. We ran the case file through the

trained Plover Habitat BN with the Process Cases function in Netica. This analysis generated a

probability value for the Habitat Designation node for each combination of characteristics that

we joined back to the original attribute file in ArcGIS for mapping purposes.

The final result was a habitat map for each year and study site, where every 5 x5 m raster

cell had a probability reflecting that cell’s likelihood of containing piping plover habitat given

its underlying landscape characteristics in a given year. In post-processing, we defined thresh-

olds for which probabilities indicated the presence of habitat based on the Intergovernmental

Panel on Climate Change’s (IPCC’s) likelihood scale [61]. Under this scale, a landscape cell

was considered ‘very likely habitat’ if it had a probability� 0.90 of being habitat, ‘likely habitat’

with a probability 0.66–0.90, ‘uncertain’ with a probability 0.33–0.66, and ‘unlikely habitat’

with a probability� 0.33. Landscape cells with probabilities� 0.66 were considered habitat,

while cells with probabilities� 0.33 were considered non-habitat. We show that these thresh-

olds proved meaningful for identifying the likelihood of actual piping plover nesting in Sup-

porting Information (S1 File; S3 Table).

Landcover in the probability range spanning 0.33–0.66 could have two interpretations. In

the first interpretation, the combination of habitat variables was either not present in the sup-

plemented iPlover dataset or there was insufficient information in the ‘case’ presented to the

BN for analysis. In these instances, there was not enough information to make an accurate pre-

diction, and the resulting model prediction—which is truly uncertain—was centered tightly
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around 0.50. In the second interpretation, as probabilities move from 0.50 toward 0.66 or 0.33,

the combination of landcover characteristics may be associated with landcover of marginal

suitability. Where possible, we differentiate between what are uncertain model predictions

based on a lack of information (p = 0.50) and where landcover may be of marginal suitability

(0.50< p> 0.66; 0.33< p> 0.50).

For each study site, we then compared the pre-Sandy to the post-Sandy habitat maps and

the post-Sandy to the ca. 2-year post-Sandy habitat maps to denote areas of habitat creation

and loss. For example, when landcover in a given 5x5 m cell transformed from habitat to non-

habitat or from habitat to uncertain between the pre-Sandy and the post-Sandy periods, we

classified that change as a loss in habitat that occurred during that period. If landcover trans-

formed from non-habitat to habitat or from uncertain to habitat during that period, we classi-

fied that change as habitat creation. We evaluated habitat change between the post-Sandy and

the ca. 2-year post-Sandy periods in the same manner. In general, we assume that substantial

changes in habitat availability that occurred between study periods (2010/2011 to 2012, 2012

to 2014/2015) were the result of Hurricane Sandy and each barrier island’s subsequent recov-

ery from that event. Because the Bayesian network only evaluates the presence of habitat and

not the driver of habitat creation, events other than Hurricane Sandy (e.g., management or

habitat restoration, nor’easters, other tropical storms) may have also contributed to our

observed changes in habitat amount and location. However, habitat changes not driven by

Hurricane Sandy were likely minimal. According to storm records by the National Oceanic

and Atmospheric Administration [62], the mid-Atlantic and northeastern United States expe-

rienced the effects of tropical storm Irene (2011) prior to Hurricane Sandy as well as extratrop-

ical storm Andrea (2013) after Hurricane Sandy. Records on winter storms (or nor’easters) are

less organized, but databases by the National Weather Service (available https://w2.weather.

gov/climate/) suggest that one nor’easter in 2010 and two nor’easters in 2012 could have

affected habitat prior to Hurricane Sandy while one nor’easter two weeks after Hurricane

Sandy (2012) and two nor’easters in 2014 could have affected habitat. Other known restora-

tion/management activities are discussed in the Results and Discussion.

Because development can influence the geomorphological behavior and storm response of

barrier islands ([19, 63, 64], reviewed in [65, 66]), we placed our habitat modeling results in

the context of the degree of development in study areas. To do this, we hand-digitized a rough

outline or ‘footprint’ in ArcGIS that encompassed areas of development based on the orthoi-

magery [59, 60] for each study area. Areas within the development footprint included beach

habitats directly abutting housing developments and paved recreational infrastructure. This

development footprint covered 88% of 33-km2 Long Beach Island, 73% of 25-km2 Rockaway

Peninsula, and 31% of 32-km2 Fire Island. Development was not present on Cedar or Pullen

islands as of 2014. Therefore, our study sites represented a spectrum from densely developed

(Long Beach Island, Rockaway) to moderately developed (Fire Island) to undeveloped (Cedar

and Pullen islands). We report area and change in habitat both inside and outside of these

development footprints, with the caveat that habitat within footprints may be functionally

unsuitable as a result of human disturbance (e.g., due to human-plover interactions).

Finally, we also examined where habitat was created between the pre- and post-Sandy peri-

ods within different geomorphic settings in each study area. To do this, we used the Geomor-

phic Setting raster layer [59, 60] for the post-Sandy period for each study area and calculated

the area of habitat gained within that setting between the pre- and post-Sandy periods.

For reference, we discuss changes in annual piping plover population size, average produc-

tivity, and locations of piping plover nests at each study site. Nest locations in 2014 and 2015

were contained in the iPlover dataset [34]. All population abundance and productivity data

and nest locations (when available) prior to 2014/2015 were obtained from the unrelated
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research and monitoring efforts of outside partners [67–69]. Piping plover nests presented or

discussed in this study do not necessarily represent all nests found in a given study area for

that year. For example, portions of the Rockaway Peninsula were not surveyed by our partners,

and nests located in those unsurveyed areas are not accounted for here. Nest locations con-

tained here are those that were available to us and our partners at the time of this study. Meth-

odology for nest and population surveys is summarized elsewhere [67–70], and nest surveys

were primarily conducted in the undeveloped portions of study areas considered here.

Results and discussion

Habitat change following Hurricane Sandy

The amount of piping plover nesting habitat increased immediately following Hurricane

Sandy at four of five sites, adding 0.1 km2–1.6 km2 (or a 9–300% increase) of new habitat

depending on the site (Tables 2 and 3). Previous studies have also illustrated the importance of

storms for the creation and maintenance of early successional coastal habitats on Long Island,

New York [28, 71], the North Brigantine Natural Area, New Jersey [72], and on Assateague

Island, Maryland [73]. However, these studies used increases in piping plover abundance or

productivity to approximate for changes in breeding habitat (but see [28] for habitat estimates

on Long Island). Our study uniquely quantifies the increase in habitat following a storm across

entire islands and considers a broad spatial scale. Patterns of habitat creation are further sup-

ported by Rice [20], who found that Hurricane Sandy likely increased piping plover habitat

along 103 miles of sandy beaches, at 33 new tidal inlet locations, and in new bare sand habitat

at 4 closed inlets.

We observed the greatest total increase in habitat at Fire Island; the amount of habitat

increased from 1.4 km2 pre-Sandy to 3.0 km2 immediately post-Sandy (Fig 3a). Areas where

habitat was created can be seen in the example shown in Fig 4. Here, the amount of landcover

predicted to be habitat (p� 0.66; shown in shades of medium and dark green) increased from

panel (a) to (b), and swaths of blue in panel (d) show where new habitat was created immedi-

ately after the storm (Fig 4). Approximately 2 years after the storm, the amount of habitat at

Fire Island was 2.5 km2 (Tables 2 and 3). This marked a decline from post-Sandy habitat levels,

but habitat amount ca. 2 years post-Sandy remained higher than pre-Sandy levels (Fig 3a).

Examples of areas where habitat was lost between the post- and ca. 2 years post-Sandy periods

are shown in pink and red in Fig 4e.

U.S. Army Corps of Engineers (USACE) and landowner actions between the post- and ca. 2

years post-Sandy periods affected habitat change during that period on Fire Island. Mechanical

closures of two breaches and placement of multiple rows of sand fence along undeveloped

beaches [20] likely inhibited the amount of post-storm habitat growth (such as occurred on

undeveloped portions of Long Beach Island). However, the model also predicted 0.1 km2 of

piping plover nesting habitat at Democrat Point in an area where dredge material was stock-

piled and graded adjacent to a steep intertidal zone (location shown in Fig 4). In addition, the

USACE mechanically created two experimental habitat enhancement zones within Smith

County Park prior to the 2015 nesting season in an effort to partially offset habitat loss due to

beach nourishment and artificial dune construction (S. Papa, U.S. Fish and Wildlife Service,

pers. comm.). Our model predicted that these activities created an additional 0.2 km2 of nest-

ing habitat (based on orthoimagery captured in April 2015). However, one of these zones

revegetated before the conclusion of the 2015 breeding season, and contouring along the other

restoration zone—intended to create moist foraging areas—quickly disappeared (S. Papa, U.S.

Fish and Wildlife Service, pers. comm.). As a result, far fewer nesting pairs have colonized this

area than expected [74]. Thus, human activities may have impeded natural growth of some
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Table 2. Predicted habitat, according to the Plover Habitat Bayesian network1, for piping plover nesting before Hurricane Sandy, immediately following Sandy,

and ca. 2 years post-Sandy at study areas in New York, New Jersey, and Virginia, USA. For reference, we indicate the number of nests2 that were established in what

the model predicted to be habitat, non-habitat, or uncertain landcover (where a suitability designation could not be made). Sites are listed in decreasing level of anthropo-

genic development.

Imagery Acquisition Year

(nest data breeding season)

Predicted Habitat

Area–All Habitat (km2)

Predicted Habitat Area–

Habitat in patches > 0.1 km2

(km2)

Number of Nests (% of nests) in:

Habitat Landcover where Suitability Uncertain
[Landcover where p = 0.5]3

Non-Habitat

Long Beach Island, New Jersey
Pre-Sandy: Spring 2010

(breeding season 2010)

0.2 0.2 0 17 (89%)

[14 had p = 0.5]

2 (11%)

Post-Sandy: Oct. 2012

(breeding season 2013)

0.7 0.4 8 (57%) 6 (43%)

[5 had p = 0.5]

0

ca. 2-years Post-Sandy: April 2014

(breeding season 2014)

1.5 1.5 14 (100%) 0 0

Rockaway Peninsula, New York
Pre-Sandy: Spring 2011

(breeding season 2011)

1.1 0.9 11 (79%) 3 (21%)

[2 had p = 0.5]

0

Post-Sandy: Oct. 2012

(breeding season 2013)

1.2 1.0 15 (71%) 6 (29%)

[0 had p = 0.5]

0

ca. 2-years Post-Sandy: April 2014

(breeding season 2014)

1.0 0.9 11 (65%) 4 (23%)

[3 had p = 0.5]

2 (12%)

Fire Island, New York
Pre-Sandy: Oct. 2011

(breeding season 2012)

1.4 1.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Post-Sandy: Oct. 2012

(breeding season 2013)

3.0 2.6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

ca. 2-years Post-Sandy: April 2015

(breeding season 2015)

2.5 2.1 37 (79%) 5 (10.5%)

[3 had p = 0.5]

5 (10.5%)

Pullen Island, New Jersey
Pre-Sandy: Spring 2010

(breeding season 2010)

0.1 0.1 2 (11%) 16 (89%)

[15 had p = 0.5]

0

Post-Sandy: Oct. 2012

(breeding season 2013)

0.4 0.3 12 (36%) 21 (64%)

[14 had p = 0.5]

0

ca. 2-years Post-Sandy: April 2014

(breeding season 2014)

0.6 0.6 22 (96%) 1 (4%)

[1 had p = 0.5]

0

Cedar Island, Virginia
Pre-Sandy: Spring 2011

(breeding season 2011)

2.2 2.2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Post-Sandy: Spring 2013

(breeding season 2013)

1.6 1.5 42 (74%) 15 (26%)

[14 had p = 0.5]

0

ca. 2-years Post-Sandy: April 2014

(breeding season 2014)

1.4 1.4 28 (100%) 0 0

1Habitat was defined as landcover that had a� 0.66 probability of being habitat for piping plover nesting, according to the Plover Habitat Bayesian network. Non-

habitat was defined as landcover that had a� 0.33 probability of being habitat for piping plover nesting. Landcover considered as likely as not habitat was defined as

landcover that had a 0.33–0.66 probability of being habitat for piping plover nesting.
2Sources for nest data: (1) Rockaway and Fire Island: K. Jennings, 2010–2016. Long Island colonial waterbird and piping plover survey results, annual reports for 2010 to

2016. New York State Department of Environmental Conservation; (2) Long Beach and Pullen islands: Pover, T. and C. Davis. 2010–2016. Piping plover nesting results

in New Jersey, annual reports for 2010 to 2016. Conserve Wildlife Foundation of New Jersey and New Jersey Division of Fish and Wildlife; (3) Cedar Island: Boettcher,

R. 2010–2016. Piping plover nesting results in Virginia, annual reports for 2010 to 2016. Virginia Department of Game and Inland Fisheries. We were unable to obtain

georeferenced nest data for Fire Island in the 2012 and 2013 breeding seasons and for Cedar Island in the 2011 breeding season.
3For nests located in areas where suitability is uncertain, a habitat probability of 0.5 suggests that the model did not have training data for that particular combination of

habitat variables or that there was missing information in the underlying combination of landcover variables associated with the nest point. Therefore, the best

interpretation would be that the model was unable to make a prediction based on a lack of data, not that nests were found in marginal (lower suitability) habitat.

https://doi.org/10.1371/journal.pone.0209986.t002
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habitats while also creating habitat that may have degraded shortly after imagery used in this

analysis was taken. A larger decrease in habitat—an additional loss of 0.3 km2 on top of the 0.5

km2 lost as documented in this modeling work—could have been evident between the post-

and ca. 2 years post-Sandy periods at Fire Island without these activities.

Table 3. Changes in piping plover habitat availability1 for landcover conditions present before Hurricane Sandy, immediately following Sandy, and ca. 2 years post-

Sandy at study areas in New York, New Jersey, and Virginia USA. For reference, we indicate the number of nests that were established in habitat where landcover

became habitat, became non-habitat, did not change in suitability, or became uncertain in suitability level between the pre-Sandy to post-Sandy (nests: 2013 breeding sea-

son) and between the post-Sandy and ca. 2-year post-Sandy (nests: 2014/2015 breeding season) study periods. Sites are listed in decreasing level of human development.

Period of

Change

Area of

Landcover that

Became Habitat

(km2)

Area of Landcover

that Became Non-

Habitat (km2)

Area of Landcover

where Suitability

became Uncertain

(km2)

Net Change in

Amount of

Habitat (km2)

[% change]

Number of Nests (% of nests) in landcover that:

Became
Habitat

Became Non-
Habitat

Did Not Change
in Suitability

Became
Uncertain in

Suitability Level
Long Beach Island, New Jersey
Pre-Sandy to

Post-Sandy

0.6 0.0 0.1 +0.5 [+250%] 8 (57%) 0 5 (36%) 1 (7%)

Post-Sandy

to ca. 2-years

Post-Sandy

1.0 0.0 0.2 +0.8 [+114%] 8 (57%) 0 6 (43%) 0

Rockaway Peninsula, New York
Pre-Sandy to

Post-Sandy

0.6 0.1 0.4 +0.1 [+9%] 11 (52%) 0 10 (48%) 0

Post-Sandy

to ca. 2-years

Post-Sandy

0.3 0.1 0.4 -0.2 [-17%] 4 (23.4%) 2 (11.8%) 9 (53%) 2 (11.8%)

Fire Island, New York
Pre-Sandy to

Post-Sandy

2.1 0.1 0.5 +1.6 [+114%] - - - - - - - - - - -2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Post-Sandy

to ca. 2-years

Post-Sandy

1.13 0.2 1.2 -0.5 [17%] 17 (36%) 0 28 (60%) 2 (4%)

Pullen Island, New Jersey
Pre-Sandy to

Post-Sandy

0.4 0.0 0.1 +0.3 [+300%] 12 (36%) 0 19 (58%) 2 (6%)

Post-Sandy

to ca. 2-years

Post-Sandy

0.5 0.1 0.1 +0.2 [+50%] 15 (65%) 0 8 (35%) 0

Cedar Island, Virginia
Pre-Sandy to

Post-Sandy

0.4 0.0 1.0 -0.8 [-27%] 8 (14%) 0 38 (67%) 11 (19%)

Post-Sandy

to ca. 2-years

Post-Sandy

0.4 0.0 0.6 -0.2 [-13%] 7 (25%) 0 21 (75%) 0

1We designated changes in suitability according to the following criteria: (1) ‘Became Habitat’, landcover in a given cell transformed from As Likely As Not Habitat to

Habitat or from Non-Habitat to Habitat; (2) ‘Became Non-Habitat’; landcover in a given cell transformed from Habitat to Non-Habitat; (3) ‘Did Not Change in

Suitability’, the suitability level of landcover in a given cell (whether Non-Habitat, Habitat, or As Likely As Not Habitat) did not change or ‘Non-Habitat’ became ‘As

Likely As Not Habitat’ (or vice versa), and (4) ‘Became Uncertain in Suitability Level’, the suitability level of landcover in a given cell transformed from Habitat to As

Likely As Not Habitat. For example, if landcover in a landscape cell that was Non-Habitat in 2010 was considered Habitat in 2012 after Hurricane Sandy, we designated

this as a location that Became Habitat. Because we were primarily interested in the creation and loss of habitat, we designated a change from As Likely As Not Suitable to

Non-Habitat and vice versa as ‘No Change in Suitability’.
2Dashed lines indicate that data necessary to complete this analysis were unavailable.
3The creation of a dredge material area and a conservation restoration zone resulted in 0.1 km2 and 0.2 km2, respectively, of new habitat between 2012 and 2015 for the

Fire Island study area.

https://doi.org/10.1371/journal.pone.0209986.t003
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We observed a similar general pattern to that of Fire Island on the Rockaway Peninsula.

Habitat increased immediately following Hurricane Sandy to 1.2 km2 but then declined below

pre-Sandy levels to 1.0 km2 by the ca. 2 years post-Sandy period (Tables 2 and 3; Fig 3a). Exam-

ples of where habitat was created and lost for this study area are shown in Fig 5.

Both New Jersey sites also saw an increase in habitat area between the pre- and post-Sandy

periods (Tables 2 and 3; Fig 3a), with Pullen Island experiencing a net gain of 0.3 km2 (e.g., Fig

6) and Long Beach Island experiencing a net gain of 0.5 km2 (e.g., Fig 7). Unlike the New York

sites, both New Jersey sites continued to experience habitat gains through the ca. 2 years post-

Sandy period (Tables 2 and 3; Fig 3a). Pullen Island gained another 0.2 km2 as Long Beach

Island gained an additional 0.8 km2 of habitat (e.g., Figs 6 and 7). The continued increase in

habitat through 2014 at these New Jersey sites may have been an artifact of the timing in which

aerial imagery used in modeling was captured. According to 2012 imagery used to predict hab-

itat on the two New Jersey sites (S2 Table), beaches within the undeveloped portions of the

study areas were narrow and partially underwater in the days immediately following the

storm, with swash bars that had not yet welded back on to the islands. Such areas were pre-

dicted to be uncertain or non-habitat by the Plover Habitat BN. Although swash bars may

have welded onto the island and beaches may have dried to create nesting habitat in the days

or weeks following the storm, habitat was not apparent in this analysis until the 2014 aerial

imagery (S2 Table). Therefore, larger amounts of plover habitat could have been available for

Fig 3. (a) Changes in the area of piping plover habitat, as predicted by the Plover Habitat Bayesian network, before Hurricane Sandy,

immediately after the storm, and ca. 2 years after the storm at study sites in New York (Rockaway Peninsula, Fire Island), New Jersey (Long

Beach and Pullen islands), and Virginia (Cedar Island). Sites are shown in order of proportion of human development on the study site, from

Long Beach Island (most developed) to Cedar Island (undeveloped), and bars are divided as the area of habitat found along developed portions

of the coastline (i.e., where housing communities, recreational infrastructure, or other human structures directly abut the shoreline; light

portions of bars) and habitat found along undeveloped portions of the coastline (dark portions of bars). We also show piping plover (b)

population size and (c) average productivity at each study site to illustrate how population dynamics changed with habitat amount after the

storm. Population data were collected by outside partners as part of unrelated research and monitoring efforts [67–69].

https://doi.org/10.1371/journal.pone.0209986.g003
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the 2013 breeding season, and habitat amounts may have declined by the 2014/2015 breeding

seasons, as observed for Rockaway and Fire Island. However, a lack of imagery depicting con-

ditions between November 2012 and 2014 makes it difficult to fully understand observed pat-

terns on Pullen and Long Beach islands other than the fact that habitat increased above pre-

Sandy levels between 2012 and 2014.

Cedar Island was the only location that did not gain habitat after the storm. The island as a

whole decreased in size between the pre-Sandy and ca. 2 years post-Sandy periods [47], and

the amount of habitat similarly declined from 2.2 km2 (pre-Sandy) to 1.6 km2 (post-Sandy) to

1.4 km2 (ca. 2 years post-Sandy; Tables 2 and 3; Figs 3a and 8). However, where habitat was

lost and gained could be of particular significance for this study area. Cedar Island lost 0.7 km2

of habitat in the beach/backshore while it gained 0.4 km2 of new habitat as overwash between

Fig 4. Examples of habitat change before Hurricane Sandy, immediately following Sandy, and ca. 2 years post-Sandy on the Fire Island,

New York, study area1. Maps (a)-(c) show habitat in the year corresponding with the aerial imagery used for analysis, with piping plover nest

points corresponding to the breeding season for which habitat was available2. Map (d) shows changes in habitat that ostensibly resulted from

Hurricane Sandy, while map (e) shows changes in habitat since the hurricane occurred3. 1In these maps, the habitat designation was predicted

according to the Plover Habitat Bayesian network. Landcover that was very likely habitat had a� 0.90 probability of being habitat, landcover

likely habitat had a probability of 0.66–0.90, landcover as likely as not habitat had a probability of 0.3–0.66, and landcover unlikely habitat had a

probability� 0.33. We further differentiated the ‘as likely as not habitat’ category to show (1) areas of true model uncertainty (p = 0.5), where

the combination of habitat variables in a given landscape pixel was either not present in the supplemented iPlover dataset or where there was

missing information in the ‘case’ presented to the BN for analysis in that pixel and (2) areas where landcover may be of marginal suitability

(0.50< p< 0.66; 0.33< p< 0.50). 2Nest locations contributed by [68]. 3In these maps, habitat change was predicted by the Plover Habitat

Bayesian network, where (d) considers change from the pre- to the post-Sandy study periods and (e) considers change from the post- to the 2

years post-Sandy study periods. Landcover that ‘became habitat’ transformed from as likely as not habitat or non-habitat to habitat; landcover

that ‘became uncertain’ transformed from habitat to as likely as not habitat; and landcover that ‘became non-habitat’ transformed from habitat

to non-habitat. Landcover that ‘did not change in suitability’ was either habitat, as likely as not habitat, or non-habitat in both study periods

considered OR transformed from as likely as not habitat to non-habitat (or vice versa) between study periods.

https://doi.org/10.1371/journal.pone.0209986.g004
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Fig 5. Examples of habitat change before Hurricane Sandy, immediately following Sandy, and ca. 2 years post-Sandy within

the Rockaway Peninsula, New York, study area. Maps (a)-(c) show habitat in the year corresponding with the aerial imagery

used for analysis, with piping plover nest points corresponding to the breeding season for which habitat was available1. Map (d)

shows changes in habitat that ostensibly resulted from Hurricane Sandy, while map (e) shows changes in habitat since the

hurricane occurred2. 1Nest points contributed by [68] 2See footnotes accompanying Fig 4.

https://doi.org/10.1371/journal.pone.0209986.g005
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the pre- and post-Sandy periods (Fig 9). An example of this can be seen in Fig 8, particularly in

the interior strips of blue in panel (d) where new habitat was created in overwash pushing into

what was marsh before the storm. Arguably lower quality habitat closer to the ocean was lost

as higher quality overwash habitat [28] was gained, and overall habitat quality on Cedar Island

may have stayed the same or improved even as the net amount of habitat declined. In addition,

this study area was second only to Fire Island in the amount of habitat it supported despite

being the smallest of the five study areas (Fig 3a).

It is unclear why the hurricane did not have a positive impact on the net amount of piping

plover habitat on Cedar Island. This site was the farthest of the five sites from the epicenter of

the storm, and the island may have been too far from the disturbance to create new early suc-

cessional habitat. Alternatively, it is possible that annual, lower intensity disturbances are able

to maintain large quantities of piping plover habitat on this undeveloped barrier island, and a

single storm would not have had significant effects on already high habitat availability. Cedar

Island is representative of low elevation islands that often occur in the absence of development

and artificial stabilization, where a lack of a stable dune system allows for the prevalence of

Fig 6. Examples of habitat change before Hurricane Sandy, immediately following Sandy, and ca. 2 years post-Sandy in a portion of the

Little Beach Unit of the Edwin B. Forsythe National Wildlife Refuge on Pullen Island, New Jersey. Maps (a)-(c) show habitat in the year

corresponding with the aerial imagery used for analysis, with piping plover nest points corresponding to the breeding season for which habitat

was available1. Map (d) shows changes in habitat that ostensibly resulted from Hurricane Sandy, while map (e) shows changes in habitat since

the hurricane occurred2. 1Nest points contributed by [67]. 2See footnotes accompanying Fig 4.

https://doi.org/10.1371/journal.pone.0209986.g006
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low-elevation overwash [75, 76] and maintenance of piping plover habitat. A storm like

Hurricane Sandy may have more substantial impacts on early successional piping plover habi-

tat on undeveloped, higher elevation islands with more stable dune structures [75, 76], as we

observed with Pullen Island. Our results demonstrate that habitat response to storms involves

complex interactions between prior geomorphology, habitat, and local storm conditions.

Influence of human development on habitat creation

Although this storm increased habitat at the majority of our study sites, the location, amount,

and longevity of that new early successional habitat appeared to be influenced by the level of

human development or modification at the site. The percentage increase in the amount of hab-

itat gained between the pre- and post-Sandy periods was inversely proportional to the amount

of development in the study area for Rockaway, Fire Island, and Pullen Island. The densely

developed Rockaway Peninsula saw the smallest increases in habitat (+9%), while moderately

developed Fire Island (+116%) and undeveloped Pullen Island (+300%) saw much larger

increases in habitat immediately following the storm (Table 3; Fig 3a).

Fig 7. Examples of habitat change before Hurricane Sandy, immediately following Sandy, and ca. 2 years post-Sandy in the Holgate Unit of

the Edwin B. Forsythe National Wildlife Refuge on Long Beach Island, New Jersey. Maps (a)-(c) show habitat in the year corresponding with

the aerial imagery used for analysis, with piping plover nest points corresponding to the breeding season for which habitat was available1. Map

(d) shows changes in habitat that ostensibly resulted from Hurricane Sandy, while map (e) shows changes in habitat since the hurricane

occurred2. 1Nest points contributed by [67]. 2See footnotes accompanying Fig 4.

https://doi.org/10.1371/journal.pone.0209986.g007

Habitat availability following Hurricane Sandy

PLOS ONE | https://doi.org/10.1371/journal.pone.0209986 July 25, 2019 18 / 30

https://doi.org/10.1371/journal.pone.0209986.g007
https://doi.org/10.1371/journal.pone.0209986


The length of time habitat persisted after the storm also was inversely proportional to the

amount of development on Rockaway, Fire Island, and Pullen Island. Habitat continued to be

created through the ca. 2 years post-Sandy period on undeveloped Pullen Island, with a 50%

increase in habitat between the post- and ca. 2 years post-Sandy periods. On moderately

Fig 8. Examples of habitat change before Hurricane Sandy, immediately following Sandy, and ca. 2 years post-Sandy

on Cedar Island, Virginia. Maps (a)-(c) show habitat in the year corresponding with the aerial imagery used for analysis,

with piping plover nest points corresponding to the breeding season for which habitat was available1. Map (d) shows

changes in habitat that ostensibly resulted from Hurricane Sandy, while map (e) shows changes in habitat since the

hurricane occurred2. 1Nest points contributed by [69]. 2See footnotes accompanying Fig 4.

https://doi.org/10.1371/journal.pone.0209986.g008
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developed Fire Island, the amount of habitat declined by 17% between the post- and ca. 2 years

post-Sandy periods; however, habitat area remained above pre-Sandy levels as of 2015. On the

densely developed Rockaway Peninsula, habitat gained immediately after the storm did not

persist through 2014, and habitat was below pre-Sandy levels by the ca. 2 years post-Sandy

period (Table 3; Fig 3a).

The most developed site, Long Beach Island, and one of the undeveloped sites, Cedar

Island, offered exceptions to these patterns. Hypotheses regarding why there was not a net

increase in habitat on undeveloped Cedar Island are given in the previous section. Because

Long Beach Island is highly developed and stabilized, we expected to see little change in habitat

as a result of Hurricane Sandy. However, habitat increased at this location by 250% between

the pre- and post-Sandy periods and continued to increase through the ca. 2 years post-Sandy

period. Processes occurring in the low-elevation, undeveloped portion of the island, which is

federally protected as the Holgate Unit of the Edwin B. Forsythe National Wildlife Refuge,

drove these patterns. On Long Beach Island, 50% and 40% of all new habitat gained in the

post-Sandy and ca. 2 years post-Sandy periods, respectively, occurred in this undeveloped

area, which covers just 13% of the total study area (Fig 3a).

In addition to the amount and longevity of habitat created, development may have influ-

enced the location of newly formed habitat. For all sites with some development, a

Fig 9. (a) Area of piping plover nesting habitat, according to predictions by the Plover Habitat Bayesian network, that was created immediately

after Hurricane Sandy (i.e., newly created habitat between the pre- and post-Sandy periods). Bars showing habitat area are divided based on the

geomorphic settings (defined in [34]) that were present after Hurricane Sandy according to October/November 2012 aerial photography and

lidar. Because habitat continued to increase on Long Beach Island (LBI) and Pullen Island between the post- and ca. 2 years post-Sandy periods,

we also include the amount and proportions of habitat created during that second time period for those sites (labeled with ‘12–14’ to denote the

second period of habitat gain). Geomorphic settings for ‘12–14’ bars reflect settings available in the ca. post-Sandy period (June 2014). We

combined the ‘beach’ and ‘backshore’ settings here for display purposes. Colors comprising bars in (a) are defined by colors of setting names in

(b), and sites are listed from most to least developed.

https://doi.org/10.1371/journal.pone.0209986.g009
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disproportionately large amount of habitat, including newly created habitat following Hurri-

cane Sandy, occurred in the undeveloped portions of the study areas. Although only 13% of

Long Beach Island was considered undeveloped, 43% and 60% of all habitat was located in the

undeveloped portion of the island that forms the Holgate Unit of the Edwin B. Forsythe

National Wildlife Refuge during the post- and ca. 2 years post-Sandy periods, respectively (Fig

3a). Of all new habitat created immediately after the storm, 50% of that habitat formed in this

undeveloped region between the pre- and post-Sandy periods, and another 40% of all new hab-

itat that formed between the post- and ca. 2 years post-Sandy periods occurred in this region.

We observed similar patterns for the two developed New York sites. On the Rockaway Pen-

insula, 58–64% of all habitat in 2010–2014 was located along the undeveloped portion of the

island in and adjacent to the Breezy Point Unit of the Gateway National Recreation Area,

which only covers 27% of the study area (Fig 3a). Sixty-six percent of all habitat created imme-

diately after the storm occurred in this undeveloped region. On Fire Island, where 69% of the

study area was considered undeveloped, we found that 79–88% of all predicted habitat in

2011–2015 occurred in undeveloped stretches of the island (Fig 3a), and 81% of all habitat cre-

ated immediately after the storm occurred in these undeveloped regions.

Development may have also influenced how habitat formed within discrete geomorphic

settings. At our most developed site on Long Beach Island—where hotels, houses, and other

infrastructure blocked overwash along much of the study area—all new habitat was gained

equally within the beach/backshore and in dune complexes between the pre- and post-Sandy

periods (Fig 9). Between the pre- and post-Sandy periods, habitat was also created in high pro-

portions in the beach/backshore and in dune complexes on Rockaway (66% of all new habitat),

Fire Island (57%), and Pullen Island (25%). However, new habitat was created in increasingly

higher proportions in washovers as sites became less developed from Rockaway (17% of all

new habitat in washover) and Fire Island (33%) to Pullen (44%) and Cedar islands (80%; Fig

9). Long Beach Island again offered an exception to this pattern, gaining 50% of new habitat in

washover between the post- and ca. 2 years post-Sandy periods (Fig 9). However, the low-ele-

vation, protected Holgate Unit was again responsible for these patterns; all new habitat gained

in overwash occurred in this undeveloped region.

Some researchers suggest that overwash habitats are of highest quality for piping plover

nesting due to their generally increased proximity to bayside foraging areas and greater dis-

tance from high energy shorelines [21, 28, 30]. The Plover Habitat BN and underlying supple-

mented iPlover dataset support this assertion; landcover combinations containing ‘Washover’

as the geomorphic setting have the highest probability of being habitat (0.77) over all other set-

tings (0.13–0.70). Therefore, if we assume that washover habitat is of higher quality for piping

plovers compared to habitat created in other geomorphic settings, this suggests that develop-

ment influences both the net amount of habitat created as well as the quality of that new

habitat.

Development and other human modifications are known to affect the geomorphic evolu-

tion of barrier islands. Sand fencing, hotels, homes and other human structures can alter aeo-

lian transport and act as obstacles for the deposition of dune sediments and overwash [63, 64].

Even seemingly ‘natural’ structures, like dunes and berms intentionally constructed to add ele-

vation along barrier islands, can restrict overwash processes and affect barrier island evolution

[65]. Such changes to the way sand is transported in these systems, which can occur even at

moderate levels of development [66], lead to higher rates of erosion and lower barrier islands

that have a reduced capacity for recovery following storms [19, 63, 64, 66]. In addition, sand

that overlays parking lots, roads, and other human structures as overwash is frequently

removed as part of post-hurricane clean-up efforts, and these areas represent lost opportunities

for new potential nesting habitat [20]. Therefore, it is not surprising that little habitat was
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created after Hurricane Sandy along the developed portions of our study sites. Piping plovers

predominantly nest in overwash fans, backshore areas, and the swales of low-elevation dune

complexes [31, 32, 34] on wide beaches [36, 77], and the creation of such areas would be mini-

mized in developed areas that impede overwash and encourage erosion. This illustrates one

mechanism by which human development and beach/dune stabilization are threats to coastal

species like piping plovers [72].

As our results demonstrate, development may affect the capacity of storms to create early

successional habitat. Although human development may not actually alter the intensity or fre-

quency of coastal storms, it can alter the expression of storms by preventing, erasing, or mini-

mizing storm impacts on barrier islands [78]. For example, high frequency, low intensity

storms may be able to maintain large areas of early successional habitats on undeveloped

islands like Cedar Island. However, more powerful storms that occur less frequently may be

needed to create habitats on developed islands, like the Rockaway Peninsula and Fire Island.

From the perspective of species like the piping plover, development may therefore appear to

‘lengthen’ the time between disturbances if only rarer, high intensity storms have the capacity

to create habitat. Because ecosystems can be negatively impacted by alterations to natural

disturbance regimes ([79], e.g., [80, 81]), particularly the lengthening of those regimes [82],

development may indirectly threaten piping plovers and other early successional species by

reducing storm-induced habitat creation and shortening habitat patch lifetimes. As observed

here, the presence of multiple undeveloped barrier islands or long stretches of undeveloped

shorelines on developed islands will be of critical importance for the persistence of early suc-

cessional species like piping plovers in dynamic coastal environments.

Therefore, we suggest the possibility of parabolic relationships between storm-induced

changes in habitat and the density of human development (Fig 10). In this relationship, no sin-

gle storm event will have a major impact on the amount of habitat available for nesting piping

plovers (or other early successional coastal species) on undeveloped, unstabilized, low eleva-

tion sites [76] as smaller intensity, higher frequency storms are able to maintain large amounts

of habitat through time. These islands essentially reach a saturation point in habitat that is

maintained through time. At the other end of the development spectrum, even very large

storms may again only have a minor impact on the amount of habitat created because develop-

ment directly and indirectly prevents overwash and encourages erosion [19, 63, 64, 66], thus

minimizing the ‘opportunity space’ for new habitats to be created. For high elevation, undevel-

oped islands as well as islands in the middle of the development spectrum—where swaths of

undeveloped shoreline are present in juxtaposition with areas of heavy human development—

larger, less frequent storms are needed to create overwash and new habitats. However, unde-

veloped stretches of shoreline provide opportunities for habitat to be created. As a result, a

large storm like Hurricane Sandy can have a major impact in the amount of habitat available at

high elevation, undeveloped or on moderately developed sites (Fig 10). In addition, storm

intensity will drive the absolute change in habitat on this spectrum of island types, with larger

storms able to create more overwash and piping plover habitat compared to less powerful

storms (Fig 10).

Population-level responses to changes in piping plover habitat

Based on data on nest locations, population size, and population productivity collected by col-

laborators in New York [68], New Jersey [67] and Virginia [69], piping plovers appear to have

responded to the increase in habitat following Hurricane Sandy at the population level. This

species exhibits strong site fidelity, often nesting within 200 m of the same location in succes-

sive years [83, 84]. However, a large portion of nesting pairs exploited new habitats in the
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breeding season immediately following Hurricane Sandy on Long Beach Island (57% of all

nests in new habitat), the Rockaway Peninsula (52%), Pullen Island (36%), and Cedar Island

(14%; no data for Fire Island; Table 3). On the New Jersey sites—where habitat continued to

increase through the ca. 2 years post-Sandy period—a high percentage of nests were also estab-

lished in new habitat in the 2014 breeding season, with 57% and 65% of all nests occurring in

Fig 10. Proposed relationship between the density of human development across a barrier island and the amount of early successional

habitat created by a single low intensity (blue line) or high intensity (red line) storm event. In this relationship, no single storm event will

have a major impact on the amount of early successional habitat on low elevation, undeveloped islands because smaller intensity storms

maintain maximum amounts of habitat through time. A single storm will also have a minor impact on habitat on islands with a high density of

human development because shoreline modifications prevent overwash and encourage erosion, minimizing the ‘opportunity space’ for new

habitats to be created. On high elevation, undeveloped islands (dashed lines) or on islands with moderate levels of development (middle of x-

axis), less frequent high-intensity storms are needed to create overwash and new habitats; however, undeveloped stretches of shoreline provide

opportunities for habitat to be created. As a result, a large storm like Hurricane Sandy can have a major impact in the amount of habitat

available.

https://doi.org/10.1371/journal.pone.0209986.g010
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newly created habitat on Long Beach and Pullen islands, respectively (Table 3). In addition,

birds continued to colonize newly formed habitats in this period on the remaining 3 study

areas despite net habitat declines; 23%, 36%, and 25% of all nests occurred in newly created

habitats ca. 2 years post-Sandy on Rockaway, Fire Island, and Cedar Island, respectively

(Table 3).

The strength of site fidelity in this species became clearer where nests were established in

the ca. 2 years post-Sandy breeding season. The percentage of nests established on landcover

that did not change in suitability between the post- and ca. 2 years post-Sandy periods

increased from the previous period for all sites except for Pullen Island, where habitat contin-

ued to form through 2014 (Table 3). There was also an increasing number of nests in locations

where the model predicted a shift from habitat (post-Sandy) to non-habitat (ca. 2 years post-

Sandy) on the Rockaway Peninsula (12% of nests) and Fire Island (10.5%; Table 2). Site fidel-

ity, even as habitat quality declines, is expected for species in dynamic, unpredictable habitats

[85]. Our results suggest that site fidelity could cause piping plovers to nest in landcover that is

of poor quality in the absence of new disturbances—landcover that could promote a popula-

tion sink [86] with mortality exceeding reproduction. When development precludes the crea-

tion or accelerates the degradation of early successional habitats, birds may nest in non-habitat

in increasing numbers, which could lead to population declines for the species. A similar

dynamic was observed by Anteau et al. [87] for a subpopulation of piping plovers on Lake Sak-

akawea, North Dakota.

Population size and average productivity also increased following increases in post-Sandy

habitat. Average productivity increased at all sites from the pre-Sandy (spring 2012) breeding

season, where average productivity ranged from 0.3–0.9 chicks fledged per breeding pair, to

the ca. 2 years post-Sandy (spring 2014) breeding season, where productivity ranged from 1.0–

2.4 chicks fledged per breeding pair (Fig 3c). With average productivity rates ranging from

1.1–1.6 chicks fledged per pair, productivity has remained above pre-Sandy levels as of the

spring 2015 breeding season for all study areas except Fire Island (Fig 3c).

As also observed by Bourque et al. [88], we found that the relationship between the storm-

induced increase in habitat and piping plover population size was less clear. Population sizes,

measured as the number of breeding pairs, remained steady or declined from the pre-Sandy

(spring 2012) through the ca. 2 years post-Sandy (spring 2014) breeding seasons at all sites

except for Pullen Island (Fig 3b). However, populations—with the exception of that on Fire

Island—have increased between the 2014 and 2015 breeding seasons (Fig 3b). Although other

factors beyond habitat availability (e.g., predation rates, management activities, human distur-

bance, regional productivity) influence populations, the ultimate growth in population size

and productivity suggests that new habitat created by Hurricane Sandy had a positive impact

on this species at the population-level following a 2 to 3-year time lag.

Conclusions

In this study, we demonstrated an ability to quantify the integrated response of piping plover

habitat over a range of geographic locations through time. This capability is important to

understanding the net ecological response to storms and longer-term processes. Here, Hurri-

cane Sandy increased levels of nesting habitat, and piping plovers responded by exploiting

newly created habitats in the breeding season immediately following the storm—which was

ultimately associated with increased population productivity and abundance levels. However,

the amount, longevity, and location of newly created habitat appeared to be inversely related

to the amount of human development on study sites. Our results quantify the importance of

storms in creating and maintaining coastal habitats for beach-nesting species like piping
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plovers, and these results suggest a negative correlation between human development and ben-

eficial ecological impacts of these natural disturbances.
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