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Abstract

Genetic factors are an important cause of idiopathic sensorineural hearing impairment

(SNHI). From the epidemiological perspective, mutations of three deafness genes: GJB2,

SLC26A4, and MT-RNR1, are much more prevalent than those of other genes worldwide.

However, mutation spectra of common deafness genes differ remarkably across different

populations. Here, we performed comprehensive genetic examination and haplotype analy-

ses in 188 unrelated Mongolian families with idiopathic SNHI, and compared their mutation

spectra and haplotypes to those of other European and Asian cohorts. We confirmed

genetic diagnoses in 18 (9.6%) of the 188 families, including 13 with bi-allelic GJB2 muta-

tions, three with bi-allelic SLC26A4 mutations, and two with homoplasmic MT-RNR1

m.1555A>G mutation. Moreover, mono-allelic mutations were identified in 17 families

(9.0%), including 14 with mono-allelic GJB2 mutations and three with mono-allelic SLC26A4

mutations. Interestingly, three GJB2 mutations prevalent in other populations, including

c.35delG in Caucasians, c.235delC in East Asians, and c.-23+1G>A in Southwest and

South Asians, were simultaneously detected in Mongolian patients. Haplotype analyses fur-

ther confirmed founder effects for each of the three mutations, indicating that each mutation

derived from its ancestral origin independently. By demonstrating the unique spectra of

deafness-associated mutations, our findings may have important clinical and scientific impli-

cations for refining the molecular diagnostics of SNHI in Mongolian patients, and for eluci-

dating the genetic relationships among Eurasian populations.
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Introduction

Hearing impairment is the most common inherited sensory defect. It is estimated that perma-

nent sensorineural hearing impairment (SNHI) occurs in approximately 1.9 per 1000 live

births [1], and with late-onset SNHI included, the disorder may affect 2% of school-age chil-

dren [2, 3]. More than 50% of SNHI cases in children are attributed to genetic causes, and are

therefore classified as hereditary hearing impairment (HHI) [4]. To date, more than 100 genes

have been identified as causally related to HHI (http://hereditaryhearingloss.org).

Among the plethora of HHI genes, mutations in three: GJB2 (MIM �121011), SLC26A4
(MIM �605646), and the mitochondrial 12S rRNA gene (MT-RNR1; MIM �561000), are partic-

ularly prevalent in deaf patients across different populations [4]. Predominant mutations in

these genes differ significantly across populations. For instance, c.35delG, c.167delT, and

c.235delC are the most common GJB2 mutations in Caucasians [5–8], Ashkenazi Jews [9], and

East Asians [10–12], respectively; whereas the GJB2 c.-23+1G>A mutation was identified

uniquely in Southwest [13, 14] and South Asians [15, 16]. Similarly, predominant SLC26A4
mutations differ among populations, including p.T416P and c.1001G>A in Caucasians [17,

18], p.H723R in Japanese [19] and Koreans [20], and c.919-2A>G in Han Taiwanese [21] and

Han Chinese [22]. These findings underscore the indispensability of collecting regional data

when genetic examination for SNHI is performed in a specific population.

The genetics of SNHI in the Mongolian population have been documented in several previ-

ous studies [23–26]. However, most of these studies were conducted in cohorts recruited from

the Inner Mongolia region of China; only limited numbers of Mongolian patients were

included in these studies, and the admixture of other ethnic populations could not be excluded

because of inter-population marriage [23–25]. Hearing-impaired patients from Mongolia

have been the subject of only one previous study [26]. However, this study focused on GJB2
mutations, and the contribution of other deafness genes to SNHI in these patients was not

addressed [26].

The scientific value of investigating genetic diseases in Mongolian patients also lies in the

geographic location of Mongolia. As an intersection between the European, Middle Eastern,

and East Asian civilizations, dissecting the genetic underpinnings of Mongolians may offer

insights into the genetic diversity and genetic relationships among the Eurasian populations

[27–30]. In this study, we performed comprehensive mutation screening of three common

HHI genes in a large cohort of Mongolian patients, and then conducted haplotype analyses to

decipher the origins of SNHI-related mutations with reference to other European and Asian

populations.

Methods

Subjects

From November 2016 to January 2018, a total of 188 unrelated Mongolian families with idio-

pathic bilateral SNHI were recruited from the EMJJ Otolaryngology Hospital and the Depart-

ment of Otolaryngology, National Center for Maternal and Child Health, Ulaanbaatar,

Mongolia. Patients were excluded if they (1) were aged more than 40 years, (2) had conductive

or mixed-type hearing impairment, (3) had previous noise or ototoxic medical exposure, (4)

had a history of perinatal insults, such as prematurity or kernicterus, or (5) had no complete

records of their medical history available.

For the proband of each family, comprehensive family history, personal medical history,

physical examination, audiological results, and imaging results were ascertained. The audio-

logical results were evaluated with pure tone audiograms or auditory brainstem response,
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depending on age or neurological status [31]. For imaging studies, non-contrast temporal

bone high-resolution computed tomography, with contiguous axial and coronal sections of

1-mm thickness, was obtained to investigate the structure of the inner ear [32–34].

Genetic examination

Dried blood spot specimens were collected from the patients and their family members, and

genomic DNA was extracted using a MagCore HF16 Automatic DNA/RNA Purification sys-

tem (RBC Bioscience Corp., Taiwan) with a MagCore Genomic DNA Tissue Kit (RBC Biosci-

ence Corp., Taiwan) according to the manufacturer’s instructions [35, 36]. We standardized a

genetic examination protocol for mutation screening of three common deafness genes: GJB2,

SLC26A4, and MT-RNR1 [37, 38] in all patients. Sanger sequencing was performed on both

exons of GJB2. Real-time PCR was performed on two mutation hotspots of SLC26A4 (c.919-

2A>G and p.H723R), and on the m.1555A>G mutation of MT-RNR1. Patients with enlarged

vestibular aqueduct (EVA), a common inner ear malformation caused by recessive SLC26A4
mutations [39, 40], were further subjected to a next-generation sequencing (NGS)-based diag-

nostic panel targeting all the exons of SLC26A4. The NGS data were filtered and analyzed as

previously described [41]. The Deafness Variation Database (http://deafnessvariationdatabase.

org/) and ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) were used to identify known caus-

ative variants. All subjects and/or their parents provided informed consent before genetic test-

ing, and all procedures were approved by the Research Ethics Committees of National Taiwan

University Hospital, National Center for Maternal and Child Health of Mongolia, and the

EMJJ Otolaryngology Hospital of Mongolia.

Haplotype analyses

Five single-nucleotide polymorphisms (SNPs) within or in the vicinity of GJB2, namely

rs747931, rs3751385, rs11147592, rs9509086, and rs9552102, were selected and genotyped by

Sanger sequencing (Fig 1). Haplotypes were constructed with these five SNP markers in the

mutant alleles from patients with GJB2: c.-23+1G>A, c.35delG, or c.235delC mutations, and

compared to those in the wild-type alleles from 47 Mongolian controls with normal hearing.

To investigate genetic relationships with other populations, we further selected 14 c.235delC

homozygotes, comprising 11 Han Taiwanese and three Han Chinese from our cohort [36, 37],

and determined their haplotypes. Meanwhile, population-specific and mutation-specific hap-

lotype structures were also generated from the data of the 1000 Genomes Project using the

LDlink web-based tool [42].

Statistical analyses

Differences between groups were tested with Fisher’s exact test (SPSS 22.0 software, IBM SPSS,

Armonk, NY). Corresponding p values< 0.05 were interpreted as being statistically

significant.

Results

In the 188 unrelated Mongolian families with SNHI, nine different mutant GJB2 alleles and

three mutant SLC26A4 alleles were identified (Table 1). The allele frequency of GJB2 mutations

(10.6%; 40/376) was higher than that of SLC26A4 mutations (2.4%; 9/376) and that of the mito-

chondrial m.1555A>G mutation (1.1%; 2/188). More prevalent GJB2 mutations included c.-

23+1G>A (allele frequency = 3.2%; 12/376), c.235delC (2.1%; 8/376), and c.35delG (1.6%; 6/

376); whereas the most prevalent SLC26A4 mutation was c.919-2A>G (2.1%). The SLC26A4
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c.2168A>G mutation, common in the East Asian populations [19–21], was not detected in

Mongolian patients in this study. Except for GJB2 c.235delC, none of these variants was identi-

fied in the 47 normal-hearing controls. Because of the limited number of the normal-hearing

controls, there was no difference in the allele frequencies of these variants between the patient

and control groups (Fisher’s exact test, all p> 0.05). However, as all these variants have been

previously shown to be disease-causing in other populations, they were interpreted as causative

pathogenic mutations in this study.

Definite genetic diagnosis was achieved in 18 of the 188 families (9.6%), including 13 with

bi-allelic GJB2 mutations, three with bi-allelic SLC26A4 mutations, and two with homoplasmic

m.1555A>G mutations (Table 2 & Fig 2). In addition, mono-allelic GJB2 and SLC26A4 muta-

tions were detected in the probands of 14 and three families, respectively. All the probands in

the three families with mono-allelic SLC26A4 mutations showed EVA on imaging studies.

According to previous reports [43–46], a second occult mutant SLC26A4 allele, which could

not be detected using current sequencing techniques, might exist in these three families, and

presumably SNHI in the affected members could be attributed to SLC26A4 mutations.

To investigate whether prevalent mutations in the Mongolian patients derived from com-

mon origins, we performed haplotype analyses by genotyping five SNPs, in the patients and in

47 normal-hearing Mongolian controls (Table 3). Our results revealed that all six chromo-

somes with the GJB2 c.35delG mutation segregated exclusively with the A-A-C-G-T haplotype

(Fisher’s exact test, p = 0.002; compared to the 94 control chromosomes), and all eight chro-

mosomes with the GJB2 c.235delC mutation segregated exclusively with the A-G-T-T-A hap-

lotype (Fisher’s exact test, p< 0.001; compared to the 94 control chromosomes). On the other

hand, the GJB2 c.-23+1G>A mutation was associated with a major haplotype G-G-C-T-A

(9/12 chromosomes) and a minor haplotype A-G-C-T-A (3/12 chromosomes), which also

Fig 1. Positions of the single-nucleotide polymorphisms (SNPs) we genotyped, relative to the GJB2 gene. The GJB2 gene consists of two exons (coding exon, thick

black box; untranslated regions, thin black boxes; intron, thin line). The relative positions of the five SNPs (rs747931, rs3751385, rs11147592, rs9509086, and rs9552102)

and the three GJB2 mutations (c.235delC, c.35delG, and c.-23+1G>A) are shown by arrows.

https://doi.org/10.1371/journal.pone.0209797.g001
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differed in haplotype distribution as compared to the control chromosomes (Fisher’s exact

test, p< 0.001). These results indicated founder effects for all the three prevalent GJB2 muta-

tions in the Mongolian patients.

Population-specific haplotype structures, generated from the data of the 1000 Genomes

Project, revealed that the Mongolian population shares a closer genetic background with East

Asians than with the Europeans and South Asians (S1 Table). The three predominant GJB2
haplotypes, namely A-A-C-G-T, A-G-C-T-A, and A-G-T-T-A, were the same in the Mongo-

lian and East Asian populations; whereas a common GJB2 haplotype in the European and

South Asian populations, G-G-C-T-A, was relatively rare in the Mongolians and East Asians.

However, when focused on mutation-specific haplotype structures, the GJB2 c.235delC

mutation in Mongolians originated from a common ancestor with other East Asians, whereas

the GJB2 c.35delG originated from a common ancestor with the Europeans (Table 4). Of the

14 c.235delC homozygotes selected from our cohort, 21 of the 22 Taiwanese chromosomes

and five of the six Chinese chromosomes with GJB2 c.235delC shared the same A-G-T-T-A

haplotype with the 8 Mongolian chromosomes with c.235delC. An additional eight chromo-

somes with the c.235delC mutation were identified from East Asians in the 1000 Genomes

Project database, and all were determined by LDlink to segregate the A-G-T-T-A haplotype as

well. Both lines of evidence indicated a common founder for GJB2 c.235delC in Mongolians

and that in East Asians. Similarly, in the 1000 Genomes Project database, nine and two chro-

mosomes with the c.35delG mutation were identified from the Europeans and Admixed

Americans, respectively; and 10 of the 11 chromosomes shared the same A-A-C-G-T haplo-

type with the 6 Mongolian chromosomes with c.35delG, indicating a common founder for

GJB2 c.35delG in the Mongolians and Europeans. Unfortunately, the haplotype structures

Table 1. Mutant alleles detected in the 188 deaf families and 47 normal-hearing controls.

Nucleotide change Amino acid change Allele no. in patients (%)# Allele no. in controls (%)†

GJB2
c.-23+1G>A NA 12 (3.2) 0 (0)

c.235delC p.Leu79Cysfs�3 8 (2.1) 1 (1.1)

c.35delG p.Gly12Valfs�2 6 (1.6) 0 (0)

c.109G>A p.Val37Ile 4 (1.0) 0 (0)

c.299_300delAT p.His100Argfs�14 4 (1.0) 0 (0)

c.35dupG p.Val13Cysfs�35 2 (0.5) 0 (0)

c.560_605dup p.Cys202� 2 (0.5) 0 (0)

c.269T>C p.Leu90Pro 1 (0.3) 0 (0)

c.508_511dupAACG p.Ala171Glufs�40 1 (0.3) 0 (0)

Total 40 (10.6)K 1 (1.1)K

SLC26A4
c.919-2A>G NA 7 (2.1) 0 (0)

c.281C>T p.Thr94Ile 1 (0.3) 0 (0)

c.2027T>A p.Leu676Gln 1 (0.3) 0 (0)

Total 9 (2.4) 0 (0)

MT-RNR1
m.1555A>G NA 2 (1.1) 0 (0)

# 376 GJB2, 376 SLC26A4, and 188 MT-RNR1 alleles.
† 94 GJB2, 94 SLC26A4, and 47 MT-RNR1 alleles.
K p< 0.01 by Fisher’s exact test.

NA, Not available.

https://doi.org/10.1371/journal.pone.0209797.t001
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with the GJB2 c.-23+1G>A mutation could not be determined from the 1000 Genomes Proj-

ect database to investigate the common ancestry of this mutation in Mongolians and South

Asians.

Discussion

Our results unraveled a unique genetic profile in Mongolian patients with SNHI as compared

to other European and Asian populations. Notably, three GJB2 mutations that are prevalent in

other populations, including c.35delG in Caucasians [5–7], c.235delC in East Asians [10–12],

and c.-23+1G>A in Southwest and South Asians [13–16], were simultaneously detected in

Mongolian patients. To our knowledge, this is the first study in the literature to identify these

three common GJB2 mutations with significant allele frequencies in a single ethnic group.

Haplotype analyses further confirmed founder effects for each of the three mutations, indi-

cating that each mutation derived from its individual ancestral origin independently. It was

reported that the c.35delG mutation stemmed from the Volgo-Ural region of Central Asia

approximately 11,800 years ago [47] and then spread throughout Europe along the two Neo-

lithic population transportation routes [48]. The c.235delC mutation arose near the Baikal

Lake or the Altai-Sayan region approximately 11,500 years ago, and then spread into East Asia

[49–51]. The c.-23+1G>A mutation was estimated to occur approximately 800 years ago, and

Table 2. Genetic results of the 188 Mongolian families.

Genes Variants Numbers Percentage (%)

GJB2 Bi-allelic

c.-23+1G>A/c.235delC 3 1.6

c.-23+1G>A/c.35delG 2 1.0

c.-23+1G>A/c.299_300delAT 2 1.0

c.35delG/c.35dupG 1 0.5

c.-23+1G>A/c.269T>C 1 0.5

c.-23+1G>A/c.559_604dup 1 0.5

c.235delC/c.235delC 1 0.5

c.235delC/c.299_300delAT 1 0.5

c.235delC/c.559_604dup 1 0.5

Mono-allelic

c.109G>A/WT 4 2.1

c.-23+1G>A/WT 3 1.6

c.35delG/WT 3 1.6

c.35dupG/WT 1 0.5

c.235delC/WT 1 1.0

c.299_300delAT/WT 1 0.5

c.508_511dupAACG/WT 1 0.5

SLC26A4 Bi-allelic

c.919-2A>G/c.919-2A>G 1 0.5

c.919-2A>G/c.281C>T 1 0.5

c.919-2A>G/c.2027T>A 1 0.5

Mono-allelic

c.919-2A>G/WT 3 1.6

MT-RNR1 m.1555A>G 2 1.1

WT, wild-type.

https://doi.org/10.1371/journal.pone.0209797.t002
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spread into Mongolia, Siberia, or South Asia with the Turkic migration in the 13th–14th cen-

turies [52]. The concurrence of the c.35delG, c.235delC, and c.-23+1G>A mutations in the

Mongolian patients might reflect the geographic location of Mongolia as a crossroads in this

migration. In addition, the territorial expansion of the Mongol Empire in the 13th century

might also have enhanced gene flow between Mongolians and other populations who lived in

Europe, Central Asia, East Asia, and the Indian subcontinent [30].

Prior to the current study, several studies have investigated the genetics of SNHI in Mongo-

lian patients (Table 5). Most of these studies were performed on patients recruited from the

Inner Mongolia region of China or northwest China, and included patients of non-Mongolian

Fig 2. Summary of genetic results in the 188 Mongolian families with sensorineural hearing impairment. Bi-allelic and mono-allelic GJB2 mutations were identified

in 13 and 14 families, respectively. Bi-allelic and mono-allelic SLC26A4 mutations were identified in three and three families, respectively. Homoplasmic m.1555A>G

mutation was detected in two families. EVA, enlarged vestibular aqueduct.

https://doi.org/10.1371/journal.pone.0209797.g002

Table 3. Haplotype analyses of GJB2 alleles in the Mongolian patients.

Haplotype c.-23+1G>A c.35delG c.235delC wild-type

A-A-C-G-T 0 6� 0 31

A-G-C-T-A 3 0 0 27

A-G-T-T-A 0 0 8� 19

G-A-C-G-T 0 0 0 7

G-G-C-T-A 9� 0 0 6

A-A-C-G-A 0 0 0 3

A-A-C-T-A 0 0 0 1

Total 12 6 8 94

Differences between mutant and wild-type alleles for each haplotype were tested with Fisher’s exact test.

�p< 0.05

https://doi.org/10.1371/journal.pone.0209797.t003
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ethnicity. Dai et al. sequenced coding exons of SLC26A4 in 135 patients from Inner Mongolia,

and found that 12.6% (17/135) patients carried bi-allelic SLC26A4 mutations. However, only

31 of the 135 patients were Mongolians, and the authors did not classify their genetic results by

ethnicity [23]. Yang et al. screened the coding regions of GJB2, SLC26A4, and MT-RNR1 in

189 deaf patients from northwest China, of whom only 19 were Mongolians. The authors did

not identify any GJB2 mutations, and reported the SLC26A4 c.919-2A>G mutation as the

most common deafness mutation in the Mongolian patients [24]. Liu et al. screened nine com-

mon mutations of GJB2, SLC26A4, MT-RNR1, and GJB3 in 738 deaf children recruited from

the Inner Mongolia region of China, including 216 Mongolians. The authors also reported a

higher prevalence of SLC26A4 mutations than that of GJB2 mutations [25]. In contrast to these

previous reports, our study showed that GJB2 mutations are more prevalent than SLC26A4
mutations in Mongolian patients with SNHI. This difference between our study and previous

reports might result from the more thorough sequencing strategy we adopted, since the GJB2
c.-23+1G>A mutation, which is prevalent in Mongolians but rare in other East Asian popula-

tions, was not targeted in previous reports. It is also notable that the genetic structure of the

Mongolian people who live in China could have been influenced by that of other races through

inter-population marriage.

Table 4. Mutation-specific haplotype structures of GJB2 c.235delC and c. 35delG in different populations.

Haplotype Mongolians Taiwanese Chinese East Asians

c. 235delC

A-G-T-T-A 8 21 5 8�

G-G-T-T-A 0 1 1 0�

Haplotype Mongolians Europeans Admixed Americans

c. 35delG

A-A-C-G-T 6 8� 2�

G-A-C-G-T 0 1� 0�

� The haplotype structures were determined from the data of the 1000 Genomes Project using the LDlink tool.

https://doi.org/10.1371/journal.pone.0209797.t004

Table 5. Summary of previous studies and our study on the genetic results of Mongolian patients.

Reference Patients Target regions Main results

Dai et al.
[23]

135 patients from the Inner Mongolia region of

China, including 94 Han Chinese, 31 Mongolians,

7 Manchurians, and three Hui

The coding exons of SLC26A4 12.6% (17/135) patients carried bi-allelic SLC26A4
mutations. The most common mutation was c.919-2A>G.

Mutations in the Mongolian patients were not specified.

Tekin et al.
[26]

534 Mongolian patients from Mongolia The coding exon (exon 2) of GJB2
and the c.23+1G>A mutation in

intron 1

24 (4.5%) and 29 (5.4%) patients carried bi- and mono-

allelic GJB2 mutations, respectively. The most common

mutations were GJB2 c.23+1G>A (3.5%) and c.235delC

(1.5%).

Yang et al.
[24]

189 patients from the northwest of China,

including 121 Tibetans, 49 Tu, and 19 Mongolians

The coding regions of GJB2,

SLC26A4, and MT-RNR1
The most common mutation in the Mongolian patients was

SLC26A4 c.919-2A>G. No GJB2 mutations were detected in

the Mongolian patients, one of whom was found to carry the

MT-RNR1 m.1555A>G mutation.

Liu et al.
[25]

738 patients from the Inner Mongolia region of

China, including 486 Han Chinese, 216

Mongolians, 24 Manchurians, 6 Hui, and 6 Daur

Nine common mutations in four

deafness genes, including GJB2,

SLC26A4, GJB3, and MT-RNR1

Among the 216 Mongolian patients, 36 had GJB2 mutations

and 42 had SLC26A4 mutations.

This study 188 unrelated Mongolian patients from Mongolia All exons of GJB2 and SLC26A4, and

the coding region of MT-RNR1
Definite genetic diagnosis was achieved in 18 (9.6%) of the

188 patients, including 13 with bi-allelic GJB2 mutations, 3

with bi-allelic SLC26A4 mutations, and two with

homoplasmic MT-RNR1 m.1555A>G mutation.

https://doi.org/10.1371/journal.pone.0209797.t005
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In the present study, definite genetic diagnoses could be achieved in 18 (9.6%) of the 188

families, comprising 13 (6.9%) with bi-allelic GJB2 mutations, three (1.6%) with bi-allelic

SLC26A4 mutations, and two (1.1%) with homoplasmic m.1555A>G mutations, by screening

the three common deafness genes. We additionally identified mono-allelic GJB2 or SLC26A4
mutations in 17 families (9.0%); however, given the recessive inheritance pattern of mutations

in these two genes, the genetic results in these families were regarded as unconfirmed. Accord-

ingly, the rate of confirmed results in our study is lower than that documented in other studies

on European [53, 54] and Asian [37, 55–57] populations. This low rate is consistent with the

results of the study by Tekin et al., who reported a low rate of 4.5% with bi-allelic GJB2 muta-

tions in Mongolian patients from a deaf school in Ulaanbaatar [26]. Liu et al. detected GJB2
mutations in 36 (16.6%) of their 216 Mongolian patients from the Inner Mongolia region of

China [25]. However, these comprised patients with both bi-allelic and mono-allelic muta-

tions, and the actual percentage of patients with confirmed GJB2 mutations might be consider-

ably lower than 16.6% [25].

The relatively low mutation rates of deafness genes in Mongolians have been ascribed to

lower assortative mating rate and decreased genetic fitness of the deaf in Mongolia as com-

pared to other populations [26]. It has been suggested that the introduction of sign language,

establishment of residential schools for the deaf, and appearance of intense assortative mating

among the deaf might have relaxed the genetic selection against deafness and contributed to

high frequency of GJB2 deafness in many western populations [58]. Indeed, low frequency

of< 10% of deafness-associated GJB2 mutations has been reported in several populations with

lower socioeconomic status, such as patients in Sudan [59], Kenya [59], Indonesia [60], and

Cameroon [61].

Notably, two hearing-impaired patients in this study were identified to have the mitochon-

drial m.1555A>G mutation. Their medical history revealed that both patients were exposed to

aminoglycosides. According to a recent report, the Asia-Pacific region is the largest market for

the aminoglycoside industry, probably owing to a high incidence rate of tuberculosis (http://

www.grandviewresearch.com/industry-analysis/aminoglycoside-market). To prevent amino-

glycoside-induced hearing loss, it might be reasonable to perform mutational screening of the

MT-RNR1 gene before the initiation of antibiotic therapy, especially in regions where amino-

glycosides are frequently used [62, 63].

By comprehensively sequencing both GJB2 exons, we identified bi-allelic and mono-allelic

recessive GJB2 mutations in 13 (6.9%) and 14 (7.4%) of the 188 Mongolian families, respec-

tively. This finding is also consistent with Tekin et al., who reported mono-allelic GJB2 muta-

tions in 5.4% of their Mongolian patients [26]. Patients with mono-allelic recessive GJB2
mutation might have occult mutations in the non-coding regions of GJB2, such as untranslated

exon 1, intron 1, promoter, enhancer, or other regulatory elements, leading to compound het-

erozygosity, which has been observed previously for GJB2 mutations [64, 65]. Alternatively,

mutations in other gap junction genes might modulate the pathogenicity of GJB2 mutations

and contribute to hearing impairment via digenic or polygenic inheritance [66–68]. The third

possibility is that, instead of GJB2 mutations, hearing impairment is in fact caused by muta-

tions in other deafness genes, and these “mono-allelic” patients are incidental carriers of cer-

tain GJB2 variants that are prevalent in the population [69].

The major strength of this study lies in the demonstration of the mutation spectra of all the

three common HHI genes in a single large cohort of pure Mongolian ethnicity. However,

some limitations of this study merit further discussion. Genetic mutations, with confirmed

and unconfirmed results counted together, were only identified in 35 (18.6%) of the 188 fami-

lies; for the other families, the etiology remained unclear. It is conceivable that in a certain por-

tion of these families SNHI may be caused by mutations in other deafness genes, especially in
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families with multiple affected members. In addition, SNHI of acquired causes, such as perina-

tal insults or congenital cytomegalovirus (cCMV) infection, may be more prevalent in devel-

oping countries like Mongolia than in industrialized countries [70]. Recently, NGS

technology, which enables the sequencing of a large number of genes simultaneously, has

proven to be a powerful tool for addressing the genetically heterogeneous disorder HHI [38,

71, 72]. We are currently using an NGS-based diagnostic panel to analyze the genetic etiology

in the undiagnosed families of our Mongolian cohort [38, 41], and have now identified causa-

tive MYO15A mutations in a multiplex family. The employment of NGS-based genetic exami-

nation and cCMV screening may help improve the evaluation, diagnosis, and management of

Mongolian patients with SNHI.

In conclusion, by performing comprehensive genetic examination and haplotype analyses

in a large Mongolian cohort with SNHI, this study throws light on the genetic epidemiology of

HHI in Mongolians. It also provides insights into the development of the unique mutation

spectra observed in Mongolians. These findings may have clinical implications for the refine-

ment of molecular diagnostics in Mongolian patients, as well as scientific implications for the

delineation of genetic relationships among the Eurasian populations.
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