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Abstract

Scorpions are predator arachnids of ancient origin and worldwide distribution. Two scorpion

species, Vaejovis smithi and Centruroides limpidus, were found to harbor two different Molli-

cutes phylotypes: a Scorpion Mycoplasma Clade (SMC) and Scorpion Group 1 (SG1). Here

we investigated, using a targeted gene sequencing strategy, whether these Mollicutes were

present in 23 scorpion morphospecies belonging to the Vaejovidae, Carboctonidae, Euscor-

piidae, Diplocentridae, and Buthidae families. Our results revealed that SMC is found in a

species-specific association with Vaejovidae and Buthidae, whereas SG1 is uniquely found

in Vaejovidae. SMC and SG1 co-occur only in Vaejovis smithi where 43% of the individuals

host both phylotypes. A phylogenetic analysis of Mollicutes 16S rRNA showed that SMC

and SG1 constitute well-delineated phylotypes. Additionally, we found that SMC and scor-

pion phylogenies are significantly congruent, supporting the observation that a cospeciation

process may have occurred. This study highlights the phylogenetic diversity of the scorpion

associated Mollicutes through different species revealing a possible cospeciation pattern.

Introduction

Many animals possess symbiotic bacteria of mutualistic nature [1]. They have different physio-

logical roles in their hosts, including nutrient uptake and synthesis [2,3] and participate in

digestion [4], reproduction [5,6], immune system maturation [7], toxin degradation [8,9],

toxin production for prey killing [10], and suppression of other symbionts [11]. In addition,

bacterial symbionts offer protection against natural enemies such as pathogenic fungi [12,13],

viruses [14], predators [15], parasitoids [16–18], and parasitic nematodes [19]. In some insects
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such as termites, bark beetles and in the carmine cochineals there are nitrogen-fixing bacteria

that compensate low nitrogen diets [20–22].

If mutualistic symbiosis is beneficial for both organisms, transmission of bacterial symbi-

onts to further generations emerges as a mechanism to preserve the advantages of the relation-

ship [23]. Vertical transmission in long evolutionary periods can lead to a cospeciation process

[24]. Cospeciation is commonly observed between insects and their bacterial endosymbionts,

especially for obligate primary endosymbionts harbored in specialized bacteriocyte cells

[25,26]. Cospeciation has been described in many insects of the Hemiptera order [27–36].

However, cospeciation in insects is not limited to bacteriocyte endosymbionts; some gut bacte-

ria can be vertically transmitted and cospeciate with their hosts through different post-hatch

mechanisms such as egg smearing, coprophagy, or symbiont capsules [37–39].

Scorpions (Arachnida) are ancient animals that have colonized almost all major landscapes

on Earth. They have conserved ancestral anatomical features since terrestrial colonization;

these are a clear differentiated metasoma (tail) and mesosoma (body), chelate pedipalps, che-

licerae, pectins, and a terminal telson [40]. To date, over 2300 scorpion species have been

described worldwide [41,42].

Although bacterial symbionts are recognized as major drivers of evolution in arthropods

[43], interactions between scorpions and bacteria have only rarely been studied. Presence of

Wolbachia has been reported in species from the genus Opistophthalmus (Scorpionidae, [44]),

Tityus (Buthidae, [45]), and Hemiscorpius (Hemiscorpiidae, [46]). Notably, prevalent arachnid

and insect symbionts such as Cardinium, Rickettsia, Spiroplasma, and Wolbachia were unde-

tected with canonical primers in a collection of 40 Vaejovidae scorpion species [47].

Gut bacterial phylotypes of the scorpion species Centruroides limpidus and Vaejovis smithi
represent novel lineages belonging to the Mollicutes. Among these novel lineages, Scorpion

Group 1 (SG1) is present with high frequency in V. smithi, but absent in C. limpidus speci-

mens. SG1 16S rRNA sequence had 79% identity to Spiroplasma lampyridicola. Furthermore,

two other closely related Mycoplasma-like lineages were found in high frequencies in each of

these scorpion species; with 16S rRNA gene sequences 89% and 88% identical to Mycoplasma
hyorhinis. These lineages form a well-delineated clade within the Mollicutes named Scorpion

Mycoplasma clade (SMC) [48]. The species-specificity, phylogenetic relationship of SMC line-

ages within their clade and the recent discovery of Mollicutes in the African scorpion Androc-
tonus australis [49], that according to our phylogenetic analysis would correspond to the SMC

clade, suggest that this clade might have undergone a cospeciation process with their hosts.

In this study, we expanded the scorpion-symbiont survey to 23 morphospecies belonging to

seven genera and five families collected in Central and Southern Mexico. DNA was extracted

from gut tissue and screened using Polymerase Chain Reaction (PCR) with specific primers

targeting the scorpion Mollicutes. Scorpion gene markers were amplified and sequenced to

confirm the taxonomic assignments. Additionally, scorpion and SMC phylogenetic recon-

structions were tested to determine whether the topologies reveal cospeciation associations.

Here we show that the novel Mollicutes lineages are found as symbionts of a broad group of

scorpion species from different locations and habitats. Furthermore, SMC and scorpion phy-

logenies are significantly congruent, suggesting these organisms have probably undergone a

cospeciation process.

Materials and methods

Sample collection and DNA extraction

Thirty-nine scorpions were collected from different locations in Mexico (Fig 1 and Table 1)

during August and September 2015. Sampling conducted in Cuernavaca locality was done in
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private land under owner’s permission. The rest of the collection was donated from several

parties (see Acknowledgments), specifically from other ongoing scorpion projects conducted

in Mexico. These specimens have been collected under permits issued by SEMARNAT

(SGPA/DGVS/02483 of March 18, 2005) and Scientific Permit FAUT-0175 to Oscar Francke

(extended to Carlos Santibáñez from 2014 to 2016). None of the scorpion species analysed in

this study are listed as endangered or protected in the Convention on Trade in Endangered

Species of Wild Fauna and Flora (CITES). Ethics approval is not required for arachnid-related

experimentation. Rock and log rolling was the method to spot the scorpions, thereafter were

captured using tweezers and placed in closed containers. The specimens belonged to 23 mor-

phospecies from seven genera and five families. Species identification was based on key mor-

phological characters reported in several scorpion taxonomy studies, using a light stereo

microscope; higher genus classification followed Sharma et al. [50]. When not clearly assigned

to a species, scorpions were identified as “similar to” (affinis or aff.) the closest morphologically

similar species. The mitochondrial 16S rRNA and cytochrome c oxidase subunit 1 (CO1) and

the nuclear 28S rRNA scorpion gene sequence analysis confirmed most of the assignments.

Due to the diversity and lack of information regarding the starvation stress tolerance for each

species, scorpions were processed directly from the field.

Scorpions were anesthetized by placing them in sealed containers with chloroform and

their sex was determined. The exoskeleton surface was disinfected with three rinse cycles of

70% ethanol. Midgut and hindgut (including Malpighian tubules) dissections were performed

using a stereoscope, sterile tweezers and scalpel. Occasionally, when pregnant females were

dissected, embryos were collected and washed five times with sterile water. DNA was extracted

from a pool of embryos from each female. One leg and hemolymph from each specimen were

also used for DNA extraction. One leg and the gut of a vinegaroon Mastigoproctus sp. were dis-

sected as well.

Fig 1. Sampling sites of scorpions in Mexico. Map of Mexico showing the sampling locations, number of individuals and

percentage of the different genera collected. Pie chart centres are positioned over the sampling locations. The size of the pie charts

corresponds to the number of total individuals collected and colors represent the proportions of the different genera sampled.

https://doi.org/10.1371/journal.pone.0209588.g001
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Table 1. GenBank accession numbers of the DNA sequences obtained by PCR with specific primers for SMC and SG1 (16S rRNA), scorpion mitochondrial gene

markers (16S rRNA and CO1) and scorpion nuclear gene marker 28S rRNA.

ID Species Sex Collection site SMC

16S rRNA

SG1

16S rRNA

Scorpion

16S rRNA

Scorpion

CO1

Scorpion

28S rRNA

A9 Vaejovis smithi M Cuernavaca, Morelos X MF134724 MF134669 MF134771 MF134737

A11 Vaejovis smithi ND Cuernavaca, Morelos X MF134725 MF134673 MF134772 MF134738

A3 Vaejovis smithi F Cuernavaca, Morelos X MF134726 MF134670 MF134773 MF134734

A5 Vaejovis smithi F Cuernavaca, Morelos X MF134727 – – –

A6 Vaejovis smithi F Cuernavaca, Morelos MF134708 MF134728 MF134674 MF134774 MF134735

A7 Vaejovis smithi F Cuernavaca, Morelos MF134709 MF134729 MF134671 MF134775 MF134736

A19 Vaejovis smithi ND Cuernavaca, Morelos MF134710 MF134730 MF134672 MF134776 X

A32 Vaejovis granulatus M Cuernavaca, Morelos X MF134731 MF134675 MF134777 MF134739

A4 Mesomexovis aff. punctatus F Tepeyehualco, Puebla MF134712 X MF134678 MF134782 MF134740

A23 Mesomexovis aff. punctatus M Tepeyehualco, Puebla MF134711 X MF134676 MF134784 MF134743

A20 Mesomexovis aff. punctatus F León, Guanajuato X MF134722� MF134681 MF134786 MF134744

A34 Mesomexovis aff. punctatus F Cuernavaca, Morelos X MF134723 MF134682 MF134785 MF134745

A17 Mesomexovis aff. subcristatus F Zapotitlán, Puebla X X MF134679 MF134779 MF134746

A26 Mesomexovis aff. subcristatus ND Zapotitlán, Puebla X X MF134677 MF134780 MF134747

A36 Mesomexovis aff. subcristatus ND Zapotitlán, Puebla X – MF134680 MF134781 MF134748

A38 Mesomexovis aff. oaxaca F Huajuapam, Oaxaca X MF134732 MF134683 MF134783 MF134741

A39 Mesomexovis aff. oaxaca F Huajuapam, Oaxaca X – MF134684 X MF134742

A18 Thorellius intrepidus F Tecomán, Colima X X MF134685 MF134778 MF134756

A43 Hoffmannihadrurus aztecus F Zapotitlán, Puebla X X MF134686 MF134787 MF134749

A42 Megacormus gertschi F Zacualtipan, Hidalgo X X MF134687 MF134805 MF134750

A46 Megacormus gertschi M Zacualtipan, Hidalgo X X MF134688 MF134806 MF134751

A44 Diplocentrus duende F Zapotitlán, Puebla X MF134733 �� MF134706 X MF134755

A40 Diplocentrus tehuano F Santo Domingo Tehuantepec, Oaxaca X X MF134705 MF134788 MF134752

A13 Diplocentrus mexicanus M San Juan Atepec, Oaxaca X X MF134704 MF134789 MF134753

A22 Diplocentrus melici ND Idolos, Veracruz X X MF134703 MF134790 MF134754

A16 Centruroides baergi F Zapotitlán, Puebla MF134713 X MF134701 MF134793 MF134764

A47 Centruroides baergi F Zapotitlán, Puebla X – MF134702 MF134794 X

A2 Centruroides limpidus M Cuernavaca, Morelos KM978315 X MF134690 MF134791 MF134760

A12 Centruroides elegans M Emiliano Zapata, Jalisco MF134714 X MF134691 MF134792 MF134762

A14 Centruroides hoffmanni F Tehuantepec, Oaxaca X X MF134692 MF134795 MF134761

A24 Centruroides noxius M Pantanal, Nayarit MF134715 X MF134698 MF134796 MF134767

A28 Centruroides noxius F Pantanal, Nayarit MF134716� – MF134699 MF134797 MF134768

A15 Centruroides infamatus F Guanajuato, Guanajuato X X MF134694 MF134798 MF134763

A29 Centruroides tecomanus M Comalá, Colima MF134717 – MF134696 MF134800 MF134758

A25 Centruroides tecomanus M Comalá, Colima MF134718 X MF134695 MF134799 MF134757

A30 Centruroides flavopictus F Xalapa, Veracruz MF134719 X MF134700 MF134804 MF134769

A37 Centruroides fulvipes M Puerto Escondido, Oaxaca X X MF134693 MF134803 MF134765

A10 Centruroides gracilis M Tuxtepec, Oaxaca MF134720 X MF134689 MF134801 MF134759

A41 Centruroides nigrimanus M Oaxaca, Oaxaca MF134721 X MF134697 MF134802 MF134766

Avi Mastigoproctus sp. ND Cuernavaca, Morelos X MF774367 �� MF134707 MF134807 MF134770

M, male; F, female; ND, not determined; X, unamplified sequence; – PCR was not performed

� identical sequences obtained from scorpion gut and embryos

�� these sequences do not correspond to SG1, but to other spiroplasmas (S1 Fig).

https://doi.org/10.1371/journal.pone.0209588.t001
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Dissected tissues were placed in 180 μl of buffer ATL (Qiagen, Valencia, CA). The tissue

was macerated with a sterile polypropylene micro pestle to achieve a homogenous solution.

DNA extractions were performed using the DNeasy Blood & Tissue kit (Qiagen, Valencia,

CA) according to the manufacturer’s recommendations. DNA quality check was performed

on 1% agarose gels (90 V, 35 min) and measured with a Nanodrop spectrophotometer

(Thermo-Fischer Scientific, Wilmington, DE).

SMC and SG1 primer design

Primers were designed using OLIGO 7 primer analysis software [51], based on the alignment

of SMC and SG1 with Mycoplasma and Spiroplasma 16S rRNA sequences. The alignment

included: 47 representative mycoplasmas and spiroplasmas, 13 sequences obtained from two

clone libraries representing SMC from V. smithi and C. limpidus (GenBank accession numbers

MG813912-MG813923), and the 31 representative SMC and SG1 sequences reported in

Bolaños et al. [48]. The alignment corresponds to positions ~37 through 1450 in the E. coli 16S

rRNA sequence. Three primer pairs were chosen: one pair for SMC and two for SG1. The

Myco65F and Myco1429R primers have two degenerated positions each, representing variable

positions in SMC and mycoplasma sequences; this allowed a certain level of flexibility between

different scorpion species. Given that SG1 had only one representative species, we designed

two primer pairs to increase the probability of detecting it.

Two sets of primers targeting the rpoB gene of SMC and SG1 (S1 Table) were designed with

OLIGO 7 based on annotated sequences from V. smithi and C. limpidus metagenomes [48]

and Mollicutes sequences retrieved from NCBI GenBank

Polymerase Chain Reaction (PCR) amplifications

DNA extracted from guts, embryos, and hemolymph was used as template for PCR amplifica-

tion of bacterial 16S rRNA genes. Symbiont targeted PCR amplifications were done with the

set of custom primers (Table 2). Mitochondrial (16S rRNA and CO1) and nuclear (28S rRNA)

Table 2. Primers used for PCR amplification.

Primer name (alias) Sequence (5’ – 3’) Gene PCR size

(pb)

Annealing temperature

(˚C)

Extension

time

Reference

16Sar (LR-N-13398) CGCCTGTTTATCAAAAACAT Invertebrate 16S rRNA 490 47 1:00 Simon et al., 1994

[52]

16Sbr (LR-J-12887) CTCCGGTTTGAACTCAGATCA Invertebrate 16S rRNA 490 47 1:00 Simon et al., 1994

[52]

HCO (HCO2198-N-

2175)

TAAACTTCAGGGTGACCAAAAAATCA Invertebrate cytochrome

oxidase I

700 43 1:00 Folmer et al., 1994

[53]

LCO (LCO-1490-J-

1514)

GGTCAACAAATCATAAAGATATTGG Invertebrate cytochrome

oxidase I

700 43 1:00 Folmer et al., 1994

[53]

28Sa (D3A) GACCCGTCTTGAAACACGGA Invertebrate 28S rRNA 330 50 1:00 Nunn et al., 1996

[54]

28Sb (D3B) TCGGAAGGAACCAGCTACTA Invertebrate 28S rRNA 330 50 1:00 Nunn et al., 1996

[54]

Myco65F CRAAYGGGTGAGTAACACGTA SMC 16S rRNA 1397 54 1:45 This study

Myco1429R ASGGYTACCTTGTTACGACTT SMC 16S rRNA 1397 54 1:45 This study

SG1-46F ACATGCAAGTTGAACGGGAAG SG1 16S rRNA 1305 54 1:45 This study

SG1-1406R ATTCACCGCAACGTGGCTGAT SG1 16S rRNA 1305 54 1:45 This study

SG1F ACCTAACCTGCCTATATATC SG1 16S rRNA 1069 54 1:45 This study

SG1R TTTGTCATCATCCTTTCCTC SG1 16S rRNA 1069 54 1:45 This study

https://doi.org/10.1371/journal.pone.0209588.t002
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scorpion gene markers were amplified using DNA extracted from one leg as template

(Table 2).

Final concentrations for 20 μl PCR reactions were as follows: 1 μl DNA (25 ng μl−1), 0.2 nM

of each primer, 0.2 mM dNTPs, 0.5 U of Taq DNA Polymerase (Invitrogen, Carlsbad, CA,

USA), 1X Taq polymerase buffer and 1.5 mM MgCl. The reaction conditions were 94˚C for 5

minutes, 30 cycles at 94˚C for 1 minute, annealing for 1 minute (see Table 2 for temperatures

specific to each primer set), and a final extension at 72˚C for 10 minutes. PCR products were

observed on 1% agarose gels (90 V, 40 min). Sanger sequencing of correct size amplicons was

performed by Macrogen Inc. (Seoul, South Korea). The nucleotide sequences determined in

this study have been deposited in GenBank database with accession numbers shown in

Table 1, except for rpoB sequences which are found in supplementary material (S1 Fasta file).

Mollicutes phylogenetic analyses

We created a Mollicutes phylogenetic tree with the novel scorpion gut bacteria sequences gener-

ated from this study aligned with a set of 16S rRNA gene sequences retrieved from the Ribo-

somal Database Project (RDP) release 11 [55] and the Silva Database release 128 [56]. The

retrieved RDP sequences were type strains, environmental sequences and new sequenced Molli-

cutes that do not cluster with any of the defined groups, each longer than 1200 bp. Additionally,

we used the sequences with GenBank accession numbers KT923413 and KT923388 from the

NCBI database. These two sequences represented a Spiroplasma-related bacteria and a Myco-
plasma from Androctonus australis, respectively [49]. Sequences were aligned using Mafft 7.397

[57] considering secondary structure. JModelTest 2.1.10 [58] was used to determine the best

model to fit the data set. The final alignment consisted of 237 sequences. The Mollicutes phylo-

genetic tree was constructed on RAXML 8.2.4 [59] using maximum likelihood and the GTR

+ G model of evolution with 1000 bootstrap replicates; 1069 bases were used for the analysis.

The Mollicutes phylogenetic tree was visualized and edited with MEGA7 [60].

A Mollicutes phylogenetic tree based on rpoB sequences was constructed with a dataset of

161 sequences retrieved from GenBank. Translation from nucleotide to amino acid sequences

was done using the genetic code 4 for Mycoplasmataceae. The phylogenetic tree was con-

structed in PhyML using LG + G + I as model of evolution with 1000 bootstrap replicates; 282

amino acids were used for the analysis. The tree was visualized and edited with MEGA7.

Scorpion phylogenetic analysis

A scorpion phylogenetic tree was constructed with the three concatenated sequences (16S rRNA,

CO1 and 28S rRNA). A. australis sequences retrieved from GenBank were also included.

Sequences were aligned with Clustal W [61]. Only one representative sequence from each scorpion

species was included. The tree was constructed and edited with MEGA7 [60], using maximum

likelihood and the GTR + G + I model of evolution with 1000 bootstrap replicates; 1209 bases were

used for the analysis. Phylogenetic trees with ML were also constructed with each individual gene,

using the models suggested by JModelTest 2.1.10. These were T92 + G, GTR + G + I, and HKY for

16S rRNA, CO1 and 28S rRNA, respectively. The tree constructed with the three concatenated

genes was selected, given that the phylogeny had a similar topology to both 16S rRNA and CO1.

The similarity to the 28S rRNA phylogeny was not considered because this gene by itself does not

reflect the phylogenetic relationships of the species, given its high evolutionary conservation.

The Bayesian Inference analyses of the three matrices were performed using MrBayes 3.2.2

[62] and the GTR + G + I model for each partition (16S rRNA, 28S rRNA, and CO1). Four

runs each with four Markov chains were implemented for 1 X 107 generations (10 million),

using default priors and discarding 2.5 x 106 generations (25%) as burn-in.

Mollicutes symbionts in different scorpion species
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Cophylogenetic analyses

To study the evolutionary associations between SMC and scorpions, we used the maximum

likelihood tree topologies obtained from Mollicutes 16S rRNA gene and the three scorpion

genes. We used the reconciliation tool Jane 4 [63], which requires costs for five events that can

describe host-parasite (or host-symbiont) cophylogenies: cospeciation (joint speciation with

the host lineage); duplication (both symbionts are kept in the same host); duplication and host

switch (symbionts are duplicated and transferred from one host species to another); losses

(loss of symbiont); and failure to diverge. We used the following cost ranges: cospeciation, 0-1;

duplication, 1-2; duplication and host switch, 1-2; losses, 1-2; and failure to diverge, 1-2. We

used different host ranges in order that Jane computed solutions for every combination of

costs. Given that Jane 4 does not consider bootstrap values, nodes lacking substantial support

were collapsed, with a cut-off bootstrap value of 50%, so that only nodes with bootstraps

greater than 50% were considered for the analysis. Collapsed phylogenies that had been

obtained with the different models recreated the same topology. To estimate whether the

reconstruction results are different from those expected by chance a thousand random cycles

were performed. It must be noted that in the case of C. limpidus, the scorpion sequences and

the SMC sequence were obtained from different specimens, although both were collected at

the same location (Cuernavaca, Morelos).

Genetic and geographic distances similarity analysis

The relationship between geographical localization and positive SMC amplicon was tested

using two distance matrices. The first distance matrix was created with the linear distances in

kilometers between the different sampling locations. The second was a presence/absence

matrix, in which we assigned a value of 0.01 when two samples amplified SMC and 0.99 when

just one or none of them were positive for SMC, reflecting the shortest and longest possible

distances.

The relationship between geographical localization and genetic distance of scorpions or

SMC was tested using the subset of geographical distances in kilometers for SMC positive scor-

pions. The Kimura 2-parameter genetic distance matrix for scorpions was done with the dna-

dist program of Phylip package version 3.695 [64]. Distances were calculated using the

concatenated alignment of CO1 and 16S rRNA genes. 28S rRNA was excluded from the con-

catenation due to the absence in one sample. The SMC genetic distance matrix was obtained

using the aligned 16S rRNA sequences following the same strategy described for the scorpion

genes.

Euclidean distance matrices were calculated with the dist function in R for every matrix.

Mantel tests were performed with the mantel command of Vegan package version 2.4-5 [65]

for the following pairwise comparisons: geographical distances - SMC presence/absence; geo-

graphical distances - scorpion genetic distances; geographical distances - SMC genetic dis-

tances; and scorpion - SMC genetic distances.

Results

Scorpion Mycoplasma clade (SMC) bacteria frequently present in

Vaejovidae and Buthidae species, SG1 constrained to Vaejovidae

Thirty-nine scorpions belonging to five families, seven genera and 23 morphospecies were

sampled and evaluated by PCR for the presence of the recently discovered Mollicutes SMC

and SG1 (Table 1), using specific primers. Mollicutes were found in the guts of eight Centrur-
oides, four Mesomexovis, two Vaejovis, and one Diplocentrus species. SMC amplicons were
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obtained from Vaejovis smithi and Centruroides limpidus as previously reported [48]. More-

over, SG1 was also found in Mesomexovis aff. punctatus and eight Centruroides species. SG1

was found in V. smithi as previously reported [48], and in the species M. aff. punctatus and

Vaejovis granulatus. SG1 could not be detected in any Centruroides spp.

In 43% of V. smithi scorpions, both SMC and SG1 were found in the same specimen. These

frequencies are similar to those previously reported with universal 16S rRNA primers [48].

This was not observed in the Mesomexovis species sampled, as they had either SMC or SG1.

SMC was detected in two specimens of M. aff. punctatus (A4 and A23), and SG1 in other two

(A20 and A34). SMC and SG1 were not detected in M. aff. subcristatus, and SG1 was detected

in M. aff. oaxaca.

SMC and SG1 were not detected in Diplocentrus spp. We could only amplify a PCR product

from one species, Diplocentrus duende (A44) with the SG1 primers, but this sequence corre-

sponds to a canonical spiroplasma from the Citri-Chrysopicola-Mirum clade rather than to SG1

(Table 1 and S1 Fig). No PCR amplification products were obtained from Thorellius intrepidus,
Hoffmannihadrurus aztecus, and Megacormus gertschi using either the SMC or SG1 primers.

There is no clear pattern suggesting a sex-bias in the presence of these bacteria in scorpions

(Table 1). DNA extracted from scorpion’s hemolymph did not amplify any of the two Mollicutes

symbionts. Overall, 16S rRNA primers used in this study had low frequency of false positives.

Only five non–targeted sequences were obtained from the whole set of reactions (S2 Table).

SMC rpoB sequences were amplified from five samples from two species, in three V. smithi
specimens and two Mesomexovis aff. punctatus. Additionally, SG1 rpoB sequences were

obtained from three V. smithi specimens and two Mesomexovis aff. punctatus as well. Amplifi-

cations were positive in samples where previously 16S rRNA amplicons of the targeted bacteria

were obtained, confirming the presence of the symbionts.

16S rRNA phylogeny supported the designation of the novel Scorpion

Mycoplasma Clade (SMC) and SG1 clade

A 16S rRNA phylogenetic tree was constructed using 237 sequences from Mollicutes consist-

ing of the major taxonomic clades including novel SMC, SG1 and scorpion-spiroplasma

related sequences (Fig 2 and S1 Fig). SG1 and one of the symbionts from the freshwater snail

Biomphalaria glabrata seem to form a clade basal to the Entomoplasmatales group. Previously,

it was reported that C. limpidus also harbors a Spiroplasma related sequence named OTU4

(KM978318, [48]). This sequence was found in around 30% of C. limpidus individuals and is

88% similar to Spiroplasma platyhelix. It is positioned as a clade within the Entomoplasmatales

group, along with a sequence amplified from a vinegaroon (Mastigoproctus sp.). Some of the

nodes related to these sequences are not well supported (bootstrap values <40), reflecting the

divergence between them and the rest of the dataset. It has been challenging to determine the

position of SG1 lineage due to the lack of related sequences.

SMC is related to the Mycoplasma Hominis group and sequences within this clade form

two major sister subclades. The first one is composed of sequences amplified from scorpions

belonging to the Vaejovidae family (genera Mesomexovis and Vaejovis). The second clade is

composed of sequences obtained from scorpions belonging to the Buthidae family (genus Cen-
truroides and Androctonus). SMC sequences derived from the genus Centruroides form a com-

pact clade, and the sequence derived from A. australis is positioned as a basal group.

Unrelated to the SG1 lineage, the sequence obtained from Diplocentrus duende (A44) has a

99% identity with Spiroplasma leucomae. Also, A. australis has a sequence related to the genus

Spiroplasma (GenBank KT923385). Both sequences are grouped within the canonical Citri-

Chrysopicola-Mirum clade and are 99% identical to each other (S1 Fig).
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Fig 2. Mollicutes 16S rRNA phylogenetic tree. A phylogenetic tree was constructed with maximum likelihood and the GTR + G model using 237

sequences representing different species and the new lineages found in scorpions. Streptococcus pneumoniae, Bacillus subtilis and Bacillus cereus were

used as outgroups. Bootstrap values above 60 are shown. Representative Mollicutes clades were collapsed (See S1 Fig for the non-collapsed tree).

https://doi.org/10.1371/journal.pone.0209588.g002
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A rpoB phylogenetic tree constructed using sequences amplified from V. smithi and

Mesomexovis aff. punctatus showed SMC embedded within the Hominis group, not as a sister

clade of it. SG1 rpoB was placed as a sister lineage of the Pulmonis group (S2 Fig).

Congruence analysis of SMC 16S rRNA and scorpion phylogenies

The scorpion phylogenetic trees recovered from the analysis of 16S rRNA, CO1, and 28S

rRNA gene sequences based on Bayesian Inference and Maximum likelihood showed congru-

ence with previously published phylogenies (e.g. [49]; Fig 3A, S2 and S3 Figs). For instance,

the presence of both currently recognized parvorders (Iurida and Buthida) was recovered in

our phylogeny. Moreover, scorpions of the three families Vaejovidae, Carboctonidae and

Euscorpiidae form a clade and configure superfamily Chactoidea. Within Vaejovidae, the

specimens classified as Mesomexovis aff punctatus, branched independently in different posi-

tions suggesting being three species instead of a monophyletic group representing one species.

Diplocentridae is representative of the superfamily Scorpionoidea. These two superfamilies are

representatives of parvorder Iurida. Family Buthidae was monophyletic and is representative

of parvorder Buthida. Remarkably, the distinct species of genus Centruroides used in this

study, were recovered in two clades, in agreement with their morphological characterization

(“striped group” and “gracilis group” sensu [66]).

The SMC 16S rRNA phylogeny from Vaejovidae and Buthidae mimics the scorpion phylog-

eny (Fig 3 and S2 Fig). The phylogenies of scorpion and SG1 showed a similar “mirror” pattern

Fig 3. Comparison of scorpion and symbiont phylogenies. Different colors were used for each genus or clade: dark blue, Vaejovis; light blue, Mesomexovis; dark green,

Thorellius; light green, Hoffmanihadrurus; purple, Megacormus; pink, Diplocentrus; red, Centruroides, “striped group”; yellow, Centruroides, “gracilis group”; brown,

Androctonus; black, outgroups (Mastigoproctus sp. or Mycoplasma hyorhinis). (A) Scorpion phylogeny with concatenated 16S rRNA, CO1 and 28S rRNA genes (GTR

+ G + I). (B) SMC 16S rRNA gene phylogeny (GTR + G). (C) SG1 16S rRNA gene phylogeny (GTR + G).

https://doi.org/10.1371/journal.pone.0209588.g003
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(Fig 3), but the low number of positive species limited a statistical cospeciation analysis, which

could be performed with the SMC phylogeny. Some nodes of the SMC 16S rRNA gene phylog-

eny had very low bootstrap values and very short branches (Fig 3). Therefore, we decided to

collapse nodes with 50% or lower bootstrap values, resulting in some polytomies that can be

analysed with Jane 4 (Fig 4). This analysis showed several possible cophylogenies, all of which

suggested cospeciation in all the nodes (Fig 5). No other evolutionary events such as host-

switches, losses, duplications or failure to diverge were revealed by Jane. We performed ran-

dom reconstructions and compared the total cost values. Of a total of 1000 randomizations,

99.5% had a total cost value higher than that of our predicted results, suggesting that the recon-

structions obtained may not be attributed to randomness.

To explore the alternative hypothesis that the pattern of SMC presence and distribution

might not be entirely explained by cospeciation, we tested whether the location and geographi-

cal distance between collection localities were biasing our results. Linear geographical dis-

tances between collection sites did not correlate with the positive SMC amplifications (Mantel

rho = 0.04999, p= 0.279). This means that there is no specific geographical region more prone

to be inhabited by scorpions with SMC. Linear distances did not show a significant correlation

with scorpion genetic distances (Mantel rho = 0.3873, p = 0.006), as we can find different

Fig 4. Tanglegrams of host species and SMC phylogenies used for cophylogenetic analyses. Scorpion phylogeny (left) constructed with concatenated 16S rRNA, CO1

and 28S rRNA genes, and SMC phylogeny (right) with 16S rRNA. Nodes with bootstrap values lower than 50% were collapsed. Colors are as in Fig 3.

https://doi.org/10.1371/journal.pone.0209588.g004
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species cohabiting single regions. Additionally, SMC genetic distances did not correlate with

linear distances either (Mantel rho = 0.3506, p = 0.021). However, genetic distances between

SMC and scorpions do have a significant correlation (Mantel statistic r: 0.9478 significance:

0.001). This evidence suggests that closely genetically related scorpions will host closely related

SMC and vice versa, as expected under the cospeciation hypothesis.

DNA from embryos of different scorpion species was also used as a template for PCR

amplifications. SG1 was amplified from gut and embryos in one female M. aff. punctatus

Fig 5. Cophylogenetic reconstruction of scorpion hosts and their SMC symbionts obtained with Jane 4. The individual phylogenies were constructed and inferred

as in Fig 3. Black branches delineate the scorpion phylogeny. Blue branches represent SMC phylogeny. The polytomies formed after collapsing nodes with bootstrap

values lower than 50% are shown in purple. Red circles outlined at the nodes indicate suggested cospeciation events.

https://doi.org/10.1371/journal.pone.0209588.g005
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(A20). Regarding SMC, we amplified it from gut and embryos in a female C. noxius (A28)

(Table 1). These results indicate a probable transmission of the symbionts to the embryos;

however, it remains unclear whether the bacteria are found inside the embryos or over them.

Discussion

Two scorpion species, C. limpidus and V. smithi, were previously found to harbor a Myco-
plasma novel clade (SMC) and a novel Mollicutes (SG1) restricted to V. smithi [48]. In this

study, a more extensive scorpion sampling approach was used to explore whether the Molli-

cutes bacteria extend to other scorpion species. A total of 23 scorpion morphospecies belong-

ing to five families were sampled.

SMC was present in some specimens from Vaejovidae and Buthidae families, and SG1 was

found only in Vaejovidae (all Vaejovis individuals and two out of three Mesomexovis species).

The Citri-Chrysopicola-Mirum Spiroplasma sequences that were found in scorpions (from

Diplocentrus duende A44 and Androctonus australis) were related to common insect symbionts

[67] and their high identities suggest recent horizontal acquisition.

SMC lineages in the Mollicutes tree mirrored the scorpion phylogeny which indicated a

possible cospeciation processes. Although some external nodes of the Mollicutes tree had low

bootstrap support value when SMC sequences were included, scorpion Mycoplasma clustering

within the clade is stable and highly supported. The phylogenetic tree constructed with the

rpoB gene shifted the SMC position to the Hominis group. A recent phylogenomic Mollicutes

reconstruction using SMC genomic sequences recovered from Centruroides vitattus and Cen-
truroides sculpturatus placed SMC within the Hominis group [68]. A more accurate phyloge-

netic position of SMC will be achieved as more sequences become available.

Jane cophylogeny analyses supported the possibility of cospeciation between SMC and scor-

pions. The suggested cospeciation events indicate that SMC is an ancient symbiont within

scorpions. Additionally, Mantel tests showed that the presence of SMC did not correlate with

geographic region, but with host genetic distances as expected with cospeciation. The most

recent phylogenomic reconstruction of scorpions placed Buthidae in the parvorder Buthida

and Vaejovidae in the parvorder Iurida [50]. Based on the chelicerate hemocyanins phylogeny,

these parvorders seemingly separated ~120 million years ago [69–71]. If the first bacterial

infection of SMC took place in the common ancestor of the two parvorders, the lack of bacte-

rial gene amplifications in other scorpion families beyond Vaejovidae and Buthidae is intrigu-

ing and could be explained by primers biased to existing SMC 16S rRNA sequences, low

bacterial abundances, or PCR inhibitors. Shotgun metagenomic sequencing of multiple spe-

cies, including Vaejovidae and Buthidae, as well as an analysis of more specimens of each scor-

pion species will be needed to clearly determine the presence or absence of Mollicutes in other

scorpions. Dissecting scorpions without any starving laboratory treatment could have pre-

cluded enrichment of SMC [48,72]. The low number of collected specimens belonging to Car-

boctonidae and Euscorpiidae led to inconclusive negative results for these groups.

Embryos of two scorpion species, M. aff. punctatus (A20) and C. noxius (A28), were positive

for SG1 and SMC respectively, indicating that these symbionts are probably transmitted verti-

cally. Vertical transmission would support the cospeciation mechanism, as has been reported

for insects and their bacterial endosymbionts [24, 43].

Besides Arthropoda, vertical transmission of associated bacteria has also been observed in

other invertebrates as in Porifera, Bivalvia, Ascidiacea, Bryozoa, Oligochaeta, Cephalopoda

and Nematoda [1] and cospeciation has been suggested in some of them [73–76]. Some inver-

tebrates may also present a mixed-mode of transmission (from the environment and mater-

nally inherited) [1,77,78].
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Pentatomomorpha insects have evolved post-hatch mechanisms to transmit their gut sym-

bionts to the next generation [37]. It is known that mammals may pass their gut symbionts to

neonates through breast milk [79] among other strategies; animals may do so also by trophal-

laxis (direct transfer of food or fluids from one individual to another), or coprophagy [77–83].

We do not know how scorpions may transmit their symbionts to their offspring. A recent

study in Androctonus australis found that SMC was present in scorpion’s gonads adding evi-

dence of a probable vertical transmission [49]. To further study the transmission of these bac-

teria, fluorescent in situ hybridization should be done.

Mollicutes is a bacterial class widely associated with plants, animals, and fungi [84–86].

Among Mollicutes, mycoplasmas have been primarily recognized as vertebrate pathogens or

opportunistic organisms [87,88]. Spiroplasmas are commensals or pathogens in plants and

insects [89]. Over the last years, novel Mollicutes lineages related to the Mycoplasma and Spiro-
plasma genera have been discovered in different invertebrate animals such as jellyfishes [90],

and deep sea [91,92] and terrestrial isopods [93]. Many Mycoplasma and Spiroplasma species

are considered fastidious bacteria due to their complex nutrient requirements [94].

Here we suggest that the SMC and SG1 symbionts are not generalists, since they are specifi-

cally found in their host species; we consider that they may be beneficial to scorpions.

Although Mollicutes are not generally recognized as mutualist organisms, some examples have

been described recently, in which they can provide benefits to their hosts by conferring protec-

tion against viruses [92,95] and parasites [96]. Additionally, the proportion of SMC increases

in food-deprived scorpions compared to recently captured or laboratory-fed individuals [48],

suggesting that these bacteria are not transient food-derived microbiota, but have a stable rela-

tionship with scorpions. An evolutionary process of cospeciation is suggested by a host-symbi-

ont mirror phylogeny, as well as more in-depth cophylogenetic analyses. Importantly, these

bacterial symbionts were found among a heterogeneous group of scorpion species, differing in

geographical locations and ecomorphotypes (sensu [97]) along with intrinsic differences in

physiologic traits (e.g. metabolic rates) and behavioural characteristics (e,g, feeding or burrow-

ing) [97].

Bacterial symbionts have been recognized as important participants in the physiology, ecol-

ogy, and evolution of arthropods [43]. Here we showed a broader species distribution of novel

Mollicutes lineages in scorpions and a possible cospeciation process.
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