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Abstract

The effects of the macrostructure of long chain fatty acids on the lipid metabolism and bio-

synthesis of lipid droplets (LD) was studied in mammary epithelial cells (MEC). MEC were

exposed to similar compositions and concentrations of fatty acids in the form of either triglyc-

erides (Tg), as part of the very-low-density lipids (VLDL) isolated from lactating cow plasma,

or as non-esterified- free fatty acids (FFA). Exposing MEC to FFA resulted in two distinct

processes; each independently could increase LD size: an elevation in Tg production and

alterations in phospholipid (PL) composition. In particular, the lower PC/PE ratio in the FFA

treatment indicated membrane destabilization, which was concomitant with the biosynthesis

of larger LD. In addition, 6 fold increase in the cellular concentration of the exogenously

added linoleic acid (C18:2) was found in MEC treated with FFA, implying that long chain

fatty acids administrated as FFA have higher availability to MEC, enabling greater PL syn-

thesis, more material for the LD envelope, thereby enhancing LD formation. Availability of

long chain fatty acids administrated as VLDL-Tg, is dependent on LPL which its activity can

be inhibited by the hydrolysis products. Therefore, we used increasing concentrations of

albumin, to reduce the allosteric inhibition on LPL by the hydrolysis products. Indeed, a com-

bined treatment of VLDL and albumin, increased LD size and number, similar to the pheno-

type found in the FFA treatment. These results reveal the role played by the macrostructure

of long chain fatty acids in the regulation of LD size in MEC which determine the size of the

secreted MFG.

Introduction

Milk fat is secreted in a structure termed milk fat globules (MFG) which consists of a triglycer-

ide (Tg) core covered with three layers of polar lipids (PL) and proteins derived from the mam-

mary gland epithelial cellular membranes [1]. MFG are secreted in a wide range of sizes, from

less than 200 nm to over 15 μm [1] and their size is closely associated with their fatty acids
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(FA), PL and protein composition [2] [3] with higher PL content in smaller MFG. Thus, MFG

size plays an important role in regulating milk composition. MFG size regulation is still elu-

sive, although understanding the underlying mechanisms could provide a tool to control milk

composition, which has nutritional value as well as industrial implications: smaller MFG have

higher content of PL, a desirable bioactive component which was demonstrated to improve

cognitive and physiological development in infants and health attributes in adults [4–10]. The

importance of understanding MFG size regulation is also relevant for the dairy industry as

MFG size affects organoleptic properties of dairy products; it can modulate cheese ripening,

structure, as well as shelf life of dairy products [11–13]. Previously it was demonstrated that

MFG size can be modulated through diet and the size differences affect dairy products proper-

ties. For example, reduction in size and increased specific surface area of the MFG yielded

softer and more crumbly cheeses [14–15]. In addition, improved spread ability of cream and

butter was received when processing milk with smaller MFG produced by dairy cows fed diet

supplemented with fish meal [16].

Despite its direct effect on milk organoleptic properties and human health, MFG size regu-

lation has scarcely been studied and therefore, the mechanisms regulating this unique feature

of milk are still elusive. MFG size is determined by the size of its precursors, the intracellular

lipid droplets (LD) synthesized in the mammary epithelial cells (MEC; [17–19]). The initial

steps of intracellular LD synthesis and its structure are common to various cell types, includ-

ing, but not limited to muscle cells, adipocytes and hepatocytes [20]. The common synthesis

process involves initial formation of Tg droplet between the endoplasmic reticulum (ER)

membranes which is release into the cytoplasm covered with one layer of PL and specific sur-

face-associated proteins originating from the ER [17–18, 21–23].

From their site of synthesis, the cytoplasmic LD migrates toward the apical pole of the cell,

where they are apocrine-secreted into the alveolar lumen, enveloped by the apical cell mem-

brane bilayer. Eventually, the secreted MFG consists of a Tg core covered with three layers of

PL and proteins, derived from the cellular membranes, termed milk fat globule membrane

(MFGM) [19].

PL plays a central role in regulating LD size, by either controlling membrane stability and

hence the susceptibility of LD to fusion, or by providing the coating material for the Tg core

[24–25]. Membrane stability is regulated mainly by phosphatidylcholine (PC) and phosphati-

dyethanolamine (PE), and the ratio between them [24]. PC, a cylinder like PL, have been sug-

gested to stabilize the LD surface and inhibit fusion, while PE, a negatively curved cone-like

PL, destabilizes the LD surface which enhance fusion events and therefore induce the forma-

tion of larger LD [24]. In a wider cellular context, PC and PE are connected in an enzymatic

chain reaction which can convert PC to phosphatidylserine (PS) via the phosphatidylserine

synthase 1 (PSS1) pathway in the endoplasmic reticulum and its mitochondrion-associated

membrane. Then PS can be converted to PE by the action of phosphatidylserine decarboxylase

(PSD) in the mitochondria, and back to PC through the phosphatidylethanolamine N-methyl-

transferase (PEMT) pathway [26]. These reactions can modulate the balance between PE and

PC content in cellular membranes and change membrane stability. Interestingly, PE synthesis

by PSD occurs in the mitochondria [26]. Therefore, the mechanism controlling membrane sta-

bility and hence fusion between LD may be subjected to metabolic pathways and signals that

regulate mitochondrial activity or number in the cell [27–28].

In lipogenic tissues, long chain fatty acids have a role in activating PPARs family of tran-

scription factors and their co-activators PGC-1 α and β which together regulate the expression

of mitochondrial enzymes and transport proteins, thus regulating mitochondrial activity [29].

In MEC, long-chain fatty acids are absorbed as preformed fatty acids from the capillary bed

surrounding the mammary gland alveolar lumen [30–34]. The preformed fatty acids can

Morphometric features of lipid droplets in response to VLDL or free fatty acids
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originate from the diet, circulating as very-low-density lipoproteins (VLDL) [35–36]. Alterna-

tively, preformed long chain fatty acids may originate from adipose lipolysis, circulating as

non-esterified, free fatty acids (FFA). The dominant macro-structure of long-chain FA circu-

lating in blood (i.e. FFA or VLDL) which are available for utilization by peripheral tissues

including MEC, depends on the animal’s metabolic status [37–41].

Long chain fatty acids from VLDL are available to peripheral tissues, including the mam-

mary gland, through either VLDL receptor endocytosis [34] or the lipoprotein lipase (LPL)

pathway [42]. On the other hand, FFA can enter the cell by fatty acid-binding protein (FABP)

mediation [43]. FABP forms complex with CD36 and facilitate the transport of fatty acids

through the membrane, directing them to the cellular location where Tg or PL synthesis takes

place [44].

This implies that fatty acids macro-structure (i.e. FFA or VLDL), is relevant in terms of bio-

availability of preformed fatty acids to the cells and to PL synthesis, and thus may affect MFG

size. Moreover, the source of the FFA either from VLDL hydrolysis or from non-esterified

FFA induced different metabolic response in the cell as was shown by Ruby et al. [45] who

demonstrated activation of peroxisome proliferator-activated receptor (PPAR) α upon expo-

sure to VLDL-hydrolysis products and not by FFA [44]. Therefore, the structure of long chain

fatty acid available to cells may influence metabolic and molecular pathways which may be

involved in mitochondria biogenesis and activity, factors which are much relevant to MEC

productivity and to the regulation of MFG size.

The hypothesis that the macrostructure of long chain fatty acids may affect LD size is sup-

ported by findings in hepatocytes, demonstrating that elevated levels of FFA are associated

with large cytoplasmic LD and greater cellular content of Tg [29]. More specifically, in the

mammary gland stage of lactation is negatively correlated with non-esterified FFA content in

blood and MFG size, [46–47].

Taken together, these results imply that FFA has a role in the mechanisms underlying the

regulation of MFG size; however the mechanism is still unknown. In vivo, this association is

difficult to study because milk yield and total milk fat concentration, as well as homeorasis sig-

nals are all strong confounders of the relationship between MFG size and FFA in plasma.

Accordingly, the aim of the present study was to isolate the effects of the biochemical mac-

rostructure of preformed, long chain fatty acids (in the form of FFA vs. VLDL) on the morpho-

metric features of MFG precursors, the MEC intracellular LD.

Materials and methods

Materials

DMEM/F12, penicillin, streptomycin, amphotericin B, L-glutamine solution, trypsin–EDTA

solution C and fetal bovine serum (FBS) were all obtained from Biological Industries (Beit

Haemek, Israel). Bovine insulin, hydrocortisone, ovine prolactin, bovine serum albumin

(BSA) solution, hyaluronidase and DNase I were purchased from Sigma Aldrich Israel Ltd.

(Rehovot, Israel). Collagenase type II was purchased from Worthington Biochemical Corpora-

tion (Lakewood, NJ, USA).

VLDL isolation

Blood samples were collected from the coccygeal vein of Israeli Holstein lactating cow, using

vacuum tubes containing lithium heparin (BD, Plymouth, UK. The procedures used in this

study were approved by the Volcani Center Animal Care Committee (Ethical clearance num-

ber- IL 610/15). The experiment was conducted at the Volcani Center experimental farm in

Bet Dagan, Israel. The tubes were immediately placed on ice and centrifuged at 3,000g for 15
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min at room temperature. Plasma was collected and ultracentrifuged in a salt solution (11.42 g

NaCl/liter) in a density of 1.006 g/ml [48]. Briefly, 16 ml of plasma was overlaid on 8 ml salt

solution and centrifuged at 45,000 rpm for 20 h at 17˚C in a Sorvall t-865 rotor. Supernatant

was collected as VLDL (1 ml) and its lipid and fatty acids composition was determined by

high-performance liquid chromatography (HPLC) and GC, respectively. The fatty acids com-

position and concentration was used to reconstruct a mix of free acyl chains (FFA) that mim-

icked the composition and concentration of the VLDL fatty acids.

Primary culture preparation

MEC for primary culture were isolated from cow mammary gland according to a protocol

established in our laboratory [28]. Study protocols were in compliance with the regulations of

the Israeli Ministry of Health, under the supervision of the Department for control of Animal

products, State of Israel Ministry of Agriculture rural development veterinary services and ani-

mal health. Certificate Nu: # 80. Briefly, udder tissue was collected from three lactating cows at

Haifa commercial slaughterhouse (32694 IL). Tissue were collected after cows were commer-

cially sacrificed by certified worker of the slaughterhouse and transferred to the laboratory.

Tissues were immediately submerged in DMEM/F12 medium supplemented with 10% (w/v)

FBS, 100 U/ml penicillin, 100 μg/ml streptomycin, 0.25 μg/ml amphotericin B, 1 μg/ml insulin

and 0.5 μg/ml hydrocortisone (growth medium). Tissue (10 g) was digested by shaking in 100

ml of growth medium supplemented with collagenase (1mg/ml), hyaluronidase (1mg/ml) and

heparin (0.02 mg/ml) at 100 rpm for 3 h at 37 ˚C. After incubation, the suspension was filtered

through a metal mesh (250 μm) and the filtrate was centrifuged at 350 g for 5 min. The sedi-

ment was treated with trypsin–EDTA and 0.04% (w/v) DNase. The cells were then washed

with growth medium supplemented with heparin and treated with DNase alone, filtered

through a 100-μm cell strainer (BD Falcon, Bedford, MA) and washed with the growth

medium.

Primary MEC Cells were plated at 150,000 cells per 60-mm plastic dish for cellular lipid

extraction and RNA extraction, or at 50,000 cells per well in 6-well plates on glass coverslips

for Nile red or Mitotracker staining. After overnight incubation, the medium was replaced

with DMEM/F12 without serum, containing 0.15% (w/v) FFA-free BSA and insulin (1 μg/ml),

hydrocortisone (0.5 μg/ml) and prolactin (1 μg/ml) for 48 h to induce milk lipid and protein

synthesis. Then cells were treated with FFA or VLDL for 24 h in the presence of insulin (1 μg/

ml), hydrocortisone (0.5 μg/ml) and prolactin (1 μg/ml).

Treatments

Four fatty acids were used for the FFA treatment, based on the VLDL composition: palmitic

(19% w/v), stearic (23%, w/v), oleic (8%, w/v) and linoleic (50%, w/v), diluted with DMEM/

F12 medium supplemented with 0.5% FFA-free BSA to a final concentration of 100 μM, which

based on our established protocol induced changes in metabolic status of the cells and was not

toxic [27–28]. For the VLDL treatment, we used at the same concentration of BSA. When

applicable, albumin was added to the VLDL-treated cells at increasing concentrations (0.5 mg/

ml (as in the ctrl), 15 mg/ml and 31.86 mg/ml).

LD staining

Cells grown on glass coverslips were rinsed with PBS, fixed with 4% paraformaldehyde in PBS

and stained with Nile red (200 nM, Sigma, St. Louis, MO, USA). Coverslips were then rinsed 3

times with PBS and stained with DAPI (Sigma) for 5 min. The coverslips were rinsed again
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with PBS and mounted with fluorescent mounting medium (Dako, North America Inc., Car-

pinteria, CA, USA).

Determination of mitochondrion quantity

Cells were incubated in DMEM/F12 medium with 250 nM Mitotracker deep red FM stain

(Cell Signaling Technology) for 30 min at 37˚C. The cells were then fixed in ice cold 100%

methanol for 15 min at -20˚C and rinsed three times with PBS. Cells were mounted with fluo-

rescent mounting medium (Dako) and slides were visualized with an Olympus DP73 digital

camera using CellSens Entry software version 1.7 (Olympus). Mitochondrial fluorescence in

each cell was quantified by ImageJ software version 1.48 (Bethesda, MD, USA) using the fol-

lowing formula: corrected total cell fluorescence = integrated density of selected cell—(area of

selected cell x mean fluorescence of background readings).

Fluorescence microscopy and LD Size measurements

Slides were visualized with an Olympus BX40 fluorescence microscope equipped with an

Olympus DP73 digital camera using CellSens Entry software(version 1.7, Olympus), and with

an Olympus IX81 confocal microscope using Fluoview 500 software. LD diameter was mea-

sured using ImageJ software version 1.48. LD were divided into two or three (for the albumin

supplementation experiment) size groups: <1 μm, between 1 and 2 μm, and>2 μm. LD larger

than 1 μm were designated “large” and those smaller than 1 μm were designated “small”.

Lipid extraction and analysis

Chemicals and reagents. For lipid extraction, methanol and chloroform (both analytical

reagent grade) were purchased from Bio-Lab Ltd. (Jerusalem, Israel). For HPLC analysis, chlo-

roform and ethanol (used at 97:3 v/v, both analytical reagent grade) and methanol (HPLC

grade) were purchased from Bio-Lab. The triglyceride triolein (>99% pure) was purchased

from Supelco (Bellefonte, PA). The PL standards were supplied by Sigma Aldrich Ltd. Israel

and consisted of: PE (1,2-dioleoyl-sn-glycero-3 phosphoethanolamine, 10 mg PL per mL

CHCl3, purity 99%), PI (L-α phosphatidylinositol ammonium salt, from bovine liver, purity

98%), PS (1,2-dioleoyl-sn-glycerol-3-phospho-L-serine sodium salt, purity 95%), PC (1,2-dio-

leoyl-sn-glycero-3-phosphocholine, purity�99%) and SM (sphingomyelin; from bovine

brain, purity 97%). Conjugated linoleic acid (cis-9 trans-11 linoleic acid, purity >95%) was

used as a standard for FFA. For the GC analysis, methanol (analytical reagent grade) was pur-

chased from Bio-Lab, petroleum ether (analytical reagent grade) was from Gadot Lab Supplies

(Netanya, Israel) and sulfuric acid was from Bet Dekel (Ra’anana, Israel). Retention times were

determined by injection of commercial standard mixes of PL and Tg.

Sample collection and lipid extraction

VLDL lipid extraction. Total lipids were extracted from VLDL using a protocol adapted

from the cold-extraction procedure developed by Folch et al. [49]. Total lipids were extracted

from 0.5 ml VLDL with methanol–chloroform–water (1:2:0.6, v/v). After overnight incubation

at 4˚C, the upper phase was removed and the lower phase was collected and filtered through a

0.45-μm Teflon syringe filter (Axiva Sachem Biotech, Ahmadabad, India) into a new vial. The

solvent was then evaporated under vacuum, and 100 μl chloroform–ethanol (3%, v/v) was

added. Total extracted lipids were stored at -20˚C until further analysis. For GC analysis, fatty

acids methyl esters (FAME) were generated by incubation of the lipid extract with 2.5 ml of

5% (v/v) H2SO4–methanol at 65˚C for 1 h in sealed vials. After incubation, the lipid phase was

Morphometric features of lipid droplets in response to VLDL or free fatty acids
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extracted with petroleum ether and the solvent was evaporated under vacuum. FAME were

dissolved in a final volume of 100 μl petroleum ether before injection for GC analysis.

Cell lipid extraction. At the end of the treatments, cells were harvested with trypsin,

washed with 0.9% NaCl and stored at -20˚C until lipid extraction. Total lipids were extracted

from the cells using a protocol adapted from the cold-extraction procedure developed by

Folch et al. [35]. Each sample was extracted twice, once for lipid analysis by normal-phase LC

and once for fatty acids analysis by GC. Total lipids were extracted from 0.5 ml VLDL or 0.25

ml cells in PBS with methanol–chloroform–water (1:2:0.6, v/v).

After overnight incubation at 4˚C, the upper phase was discarded and the lower phase was

filtered through a Pasteur pipette with glass wool. Samples were then evaporated under a nitro-

gen stream at 65˚C, diluted in 100 μl chloroform−methanol (3%, v/v) and stored at -20˚C for

HPLC analysis. For GC analysis, FAME were generated by methyl esterification and dissolved

in a final volume of 100 μl petroleum ether before injection for GC analysis.

GC analysis

To determine VLDL fatty acids composition and cell composition after the treatments, lipid

extraction and methylation were performed on VLDL isolated from cow blood and on the har-

vested cells. Chromatographic analysis was performed with a GC (Agilent Technologies, Santa

Clara, CA, USA) equipped with a fused-silica capillary column (60 m × 0.25 mm ID, DB-23,

Agilent Technologies) under the following conditions: the oven temperature was programmed

from 130˚C to 170˚C at a rate of 27˚C/min, from 170˚C to 215˚C at a rate of 2˚C/min, held at

215˚C for 8 min, from 215˚C to 250˚C at a rate of 40˚C/min, held at 250˚C for 5 min. Run

time was 37.9 min. Helium was used as the carrier gas at 2.21 ml/min. Flame ionization detec-

tor temperature was 270˚C, and injector temperature was 280˚C. Air and hydrogen flows were

adjusted to give maximal detector response. Peak identification was based on relative retention

times of two external standards. For polyunsaturated fatty acids (PUFA), PUFA-2 (Sigma

Aldrich Israel Ltd, Rehovot, Israel), and a FAME C8:0 to C24:0 mix (Supelco, Bellefonte, PA,

USA). The area of each fatty acid peak was recorded using ChemStation software (Agilent

Technologies). Fatty acids were recorded as percentage of total fatty acids within each sample

(mol%).

Analysis of polar and neutral lipids

Separation of polar and neutral lipids was performed by HPLC (HP 1200, Agilent Technolo-

gies) combined with an evaporative light-scattering detector (1200 series ELSD, Agilent

Technologies). The separation protocol was conducted with a gradient of dichloromethane,

99% methanol and 1% ammonium, and double-distilled water according to a previously

described protocol [2] using normal-phase chromatography on a silica column (Zorbax

RX-SIL, 4.6 × 250 mm, Agilent Technologies). Briefly, the column was heated to 40˚C, flow

was 1 ml/min, and injection volume was 20 μl. The ELSD was heated to 65˚C, nitrogen pres-

sure was 3.8 bars, filter was 5, gain (sensitivity) was set to 4 for the first 14 min, then changed

to 12 until 21 min, and then changed to 7 until the end of the run, to enable detection of differ-

ently abundant lipid components. The separation process was managed by Chem Station soft-

ware (Agilent Technologies), which permitted the acquisition of data from the ELSD detector.

Identification and quantification of the separated lipids were performed using external stan-

dards (Sigma Aldrich). Quantification was performed by external standard curves and

expressed as amount per 106 live cells. Live cell number was determined after Trypan blue

staining, using a hemocytometer. Membrane composition is presented as weight percentage of

each PL out of the summed quantity of recognized PL in each sample [2].
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Gene-expression analysis

RNA extraction and cDNA synthesis. Total RNA was isolated from primary culture

MEC by Gene Elute Mammalian Total RNA Miniprep Kit (Sigma Aldrich) according to the

manufacturer’s instructions. The concentration and 260/280 nm optical density ratio of the

RNA was determined by Nanodrop spectrophotometer (NanoDrop Technologies, Wilming-

ton, DE, USA). RNA samples were kept at -80˚C until further analysis. Total RNA (1 μg) was

reverse-transcribed to produce cDNA using the qScript cDNA Synthesis Kit (Quanta Biosci-

ences) according to the manufacturer’s instructions.

Real-time PCR analysis. Primers were designed by Primer-BLAST software (NCBI,

http://www.ncbi.nlm.nih.gov/tools/primer-blast/index) based on cDNA sequences published

in the National Center of Biotechnology Information database or taken from the literature, as

indicated (Table 1). Primers were synthesized by Sigma Aldrich Israel Ltd. (Rehovot, Israel).

cDNA was mixed with primers and platinum SYBR Green qPCR Supermix-UDG without

ROX (Invitrogen Corporation, Carlsbad, CA, USA). Mx3000P Real-Time PCR System (Strata-

gene, La Jolla, CA, USA) was used. Analysis was performed by MxPro software version 4.10

(Stratagene). Dissociation-curve analysis was performed after each real-time experiment to

confirm the presence of only one product. The efficiency of the reaction and the initial mRNA

quantity in the sample were determined using LightCycler 96 software version 1.1 (Roche,

Basel, Switzerland), and the ΔΔCt method was used to calculate the relative expression of each

gene. Data were normalized to the geometrical mean of two housekeeping genes: UXT and

β2-microglobulin.

Statistical analysis

All statistical procedures were performed using JMP software (version 12; SAS Institute, Cary,

NC, USA). All data are reported as means ± SEM. Treatment and experiment number were

defined as fixed effects in the model. All dependent variables were checked for homogenic

Table 1. Primer sequences used for Real-time PCR analysis.

Gene Accession number Sequence (5’!3’) Size (bp) Reference

DGAT-1 NM_174693.2 F: CGACTCCTGGAGATGCTGTT 116 Self-designed

R: ATGCGGGAGTAGTCCATGTC

α-Lactalbumin NM_174378.2 F: TGTCTCTCGCTCCTGGTAGG 106 Self-designed

R: ACCTCCGTAGCCCTTCAAGT

LPL NM_001075120.1 F: CCACATGCCCTACTGGTTTC 106 Self-designed

R:AGTCGCCTTTCTCCTGATGA

PPAR-γ NM_181024.2 F: CAGTGTCTGCAAGGACCTCA 110 Self-designed

R:GATGTCAAAGGCATGGGAGT

UXT BQ676558 F: TGTGGCCCTTGGATATGGTT 101 Bionaz & Loor, 2007

R: GGTTGTCGCTGAGCTCTGTG

2β
microglobulin

NM_173893 F:CATCCAGCGTCCTCCAAAGAT 131 Harvatine & Bauman, 2006

R: CCCCATTCTTCAGCAAATCG

PEMT NM_182989.3 F: TTCTGGAATGTGGTTGCGAGA 116 Cohen et al., 2015

R:AGGACGTTCAAGAGCAGGATG

Ndufaf3 NM_001046105.2 F: ACGAGCTGTATCAACGGACG 162 Cohen et al., 2015

R: AACCTACGTTCCACTGCACC

FABP NM_001078162.2 F: CCTTATCCGCCGCTTTATC 91 Self-designed

R: TCTCCGTCAGCTTCCAGGTA

https://doi.org/10.1371/journal.pone.0209565.t001
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variance by unequal variances in JMP software and where variance was not homogenic,

Welch’s ANOVA test was performed. Comparisons were made by ANOVA followed by

Tukey–Kramer HSD test.

Results

Altered LD size phenotype upon exposure to FFA vs. VLDL

Treatment with FFA increased the total number of LD in the cells (Fig 1A and 1B) compared

to VLDL and controls. However, while the number of small LD increased 7-fold (P< 0.0001),

the number of large ones increased 12-fold (P = 0.0009).

FFA treatment increases Tg content and synthesis

The elevated number of LD in the FFA treatment was accompanied by a 3-fold increase in cel-

lular Tg content compared to the VLDL treatment and controls (P< 0.0001, Fig 1C). The final

step in Tg biosynthesis is catalyzed by acyl-CoA:diacylglycerol acyltransferase (DGAT) [50]

and therefore the expression level of DGAT was determined. In accordance with the elevated

Tg cellular content, DGAT mRNA expression was 2-fold higher in the FFA treatment

(P< 0.05, Fig 1D). Higher Tg synthesis implies more fat production, which is related to MFG

size. In addition, the α-lactalbumin mRNA expression was determined to assess whether the

changes in MFG diameter and composition are related to the general cell productivity poten-

tial. α-Lactalbumin mRNA expression did not differ between FFA and VLDL treatments

(Fig 2F).

FA biochemical structure affects their availability to the cells

The cellular content of the exogenously administrated fatty acids (i.e. C16:0, C18:0, C18:1,

C18:2) was determined. The results shows that the concentration of linoleic acid (C18:2) was 6

fold higher in cells treated with FFA compared to VLDL, however this difference was not sig-

nificant due to large variability between repetitions (P< 0.1, Fig 1E). Oleic acid concentrations

were higher in control vs. FFA and VLDL treatments (p = 0.0128). Palmitic acid in also tended

to be higher in Ctrl compare to FFA and VLDL (p = 0.06).

Membrane PL composition and LD size are modulated by exogenous long

chain fatty acids macrostructure

Membrane PL concentration and composition differed between treatments (Fig 1F and 1G,

respectively). The amount of PE, PS and PC were elevated by FFA treatment (P = 0.04, Fig 1F).

However, when membrane composition was determined, PS content was reduced (P = 0.03)

while that of PE tended to increase (P = 0.1, Fig 1G) in the FFA compared to controls and

VLDL treatment. The reciprocal changes in PE and PS might be attributed to the 2 fold

increase in the amount of mitochondria, in the FFA vs. VLDL treatment (P = 0.014, Fig 2A

and 2B). The change in membrane PL concentration resulted in a lower PC/PE ratio for the

FFA treatment (Fig 2C), suggesting a less stable membrane that is more prone to fusion.

Accordingly, LD size was larger under FFA treatment. The mRNA expression of two

enzymes in the PL-synthesis pathway was examined, PSD and PEMT. PEMT mRNA expres-

sion was lower in the FFA vs. VLDL treatment and controls (P< 0.0009, Fig 2D). This suggests

less PC synthesis and therefore a less stable membrane. In addition we determined the gene

expression level of PSD, which catalyzes the PS to PE conversion in the mitochondria [25].

PSD mRNA expression was higher in FFA treatment vs. controls, but did not differ from the

VLDL treatment (Fig 2E).
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Fig 1. Long chain fatty acid macro structure change LD size and membrane phospholipid composition in a different

manner. Mammary epithelial cells (MEC) were treated with 100 μM very-low-density lipoprotein (VLDL) or 100 μM free fatty

acids (FFA) for 24 h. (A) MEC nuclei was stained with DAPI (blue) and neutral lipids were stained with Nile red (red). LD were

more numerous and larger under the FFA treatment (i, top) compared to VLDL (ii, bottom). Scale bars, 20 μm. (B) Number of

LD by size category (>1 μm, between 1 and 2 μm) in control (black), FFA (light gray) and VLDL (dark gray) treatments, n = 4 for

each replicate in each treatment, total of 4 replicates (C) Intracellular triglyceride (Tg) amount determined by HPLC–ELSD

(P< 0.0001). (D) Diacylglycerol acyltransferase (DGAT) mRNA expression (AU). �P< 0.05. (E) Fatty acid (FA) amount in cells

(μg/106 cell) analyzed by GC. (F) Membrane phospholipid (PL) concentration (μg/106 cell) analyzed by HPLC-ELSD (G) PL

membrane composition (weight %) analyzed by HPLC-ELSD n = 4 for each replicate in each treatment, total of 3 replicates.

https://doi.org/10.1371/journal.pone.0209565.g001
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Fig 2. Long chain fatty acid macrostructure in culture medium alters mitochondrial quantity and gene expression of enzymes

involved in the PL synthesis pathways in MEC. (A) Mitochondria was quantified by monitoring the fluorescence intensity of

Mitotracker deep red staining and presented as fold change compared to the control. (B) Representative images of mitochondria

amount in MEC treated with (i)FFA and (ii) VLDL. Scale bars, 5 μm n = 4 for each replicate in each treatment, total of 2 replicates

(C) Ratio of phosphatidylcholine to phosphatidylethanolamine (PC/PE) determined by HPLC-ELSD (D) Phosphatidylethanolamine

N-methyltransferase (PEMT) mRNA expression (AU) (E) Phosphatidylserine decarboxylase (PSD) mRNA expression (AU). (F) α-

Lactalbumin mRNA expression (AU) n = 4 for each replicate in each treatment, total of 2 replicates.

https://doi.org/10.1371/journal.pone.0209565.g002
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Expression of genes related to fat and energy metabolism

LPL gene expression was lower in both FFA and VLDL treatments compared to controls

(P = 0.0003, S1A Fig). To estimate if the limiting factor on VLDL-Tg hydrolysis is an acceptor

of their product, albumin was added to the culture medium. A combined treatment with

VLDL and albumin increased the number of small and large LD, resulting in a LD size pheno-

type which is more similar to that of the FFA-treated cells, in a concentration-dependent man-

ner (Fig 3). Ndufaf3 transcription levels were determined to evaluate the treatments effects on

mitochondria content in the cell. In the mouse mammary gland, NDUFAF3 expression is

Fig 3. Albumin addition to MEC treated with VLDL result in similar response to that of FFA treated cells in terms of LD

morphometric features. Mammary epithelial cells (MEC) treated with 100 μM VLDL, similar concentration and composition of

fatty acids as FFA, or 100 μM VLDL with 15 mg/ml or 31.86 mg/ml albumin for 24 h. (A) Representative images of lipid droplets

(LD) (scale bar 20 μm) in the various treatments. LD were more numerous and larger with FFA (i) compared to VLDL (ii). Albumin

supplementation to VLDL treatment (iii) produced a LD phenotype similar to that with the FFA treatment. (B) Number of lipid

droplets (LD) according to their size (<1 μm, 1–2 μm,>2 μm) in mammary epithelial cells (MEC) treated with VLDL (dark gray),

FFA (light gray), 100 μM VLDL with 15 mg/ml albumin (wide upward diagonal), or 100 μM VLDL with 31.86 mg/ml albumin

(horizontal brick) for 24h. n = 4 for each replicate in each treatment, total of 2 replicates.

https://doi.org/10.1371/journal.pone.0209565.g003
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elevated postpartum, concomitantly with increased mitochondria activity [20]. Ndufaf3
mRNA expression did not differ between treatments (S1B Fig). Nevertheless, mRNA expres-

sion of PPAR-γ, which can promote mitochondria biogenesis, was 2 fold lower in the VLDL

treatment compared to the FFA treatment and controls (S1C Fig). FABP transcription levels

were numerically higher in FFA treated cells vs. VLDL (S2 Fig).

Discussion

In the present study we provide first evidence for the role played by macrostructure of pre-

formed long chain fatty acid (i.e. FFA vs. VLDL) in the regulation of LD morphometric fea-

tures in MEC. These findings imply that the form of presentation of long chain fatty acids to

MEC, is as an additional metabolic factor involved in the modulation of LD size, beyond the

established role played by fatty acid composition and concentration in LD biosynthesis and

MFG secretion.

Increased fatty acids availability results in increased fat synthesis

MEC treated with FFA had higher concentration of cellular linoleic acid compared with cells

treated with similar concentration and composition of fatty acids, in VLDL structure. Since

linoleic acid originate from external source and cannot be synthesized endogenously in the

cell, its higher cellular concentration indicates greater availability of exogenous, long chain

fatty acids in this treatment. In addition, cells treated with FFA had higher Tg content accom-

panied by higher DGAT gene expression. DGAT catalyzes the final step of the biosynthesis of

Tg [50]. Therefore its elevated expression may protect against lipotoxicity which may result

from the higher availability of long chain fatty acids once administrated as FFA. This assump-

tion is supported by the previously reported increase in cytosolic Tg accumulation in MEC

treated with exogenous long-chain fatty acids in a concentration-dependent manner [28, 51–

52]. The increased Tg content in cells treated with FFA was accompanied by a greater number

of LD (Fig 1C and 1B). This is in agreement with the demonstration of a similar association

between intracellular Tg content and LD number in cultured Drosophila s2 cells [53] and in

cultured human hepatocytes [54].

It should be noted that LD size is usually positively correlated with cellular Tg content and

lipogenesis capacity [55–57]. Similarly, a general positive association is often reported for

MFG size and total milk fat concentration. This increased total milk fat content is often caused

by reduced total milk yield. However, in the present study, no change was found in α-lactalbu-

min gene expression, a common proxy for milk synthesis capacity. Therefore, these results

suggest that the effect of the macro-structure of long chain FA was not general and was focused

on the lipid metabolic pathways which are involved in the modulation of LD size in MEC.

Membrane composition and stability

Membrane stability, as determined by its PL composition, can modulate LD size in various cell

types, including MEC [27–28]. In this study, higher PE and a tendency toward higher PC con-

tents were found in VLDL and FFA treatments compared to controls. Nevertheless, the PC/PE

ratio was lower in the FFA treatment, suggesting a less stable membrane [24] and more LD

fusion [27]. Therefore, the higher percentage of large LD in the FFA treatment as demon-

strated herein, is most probably attribute to the combination of higher Tg synthesis and greater

fusion between LD. This will collectively increase the volume of fat (i.e. Tg) in the LD core,

and will increase the LD size by promoting fusion between smaller LD. These results are in

accordance with Cohen et al [28], who demonstrated that exposing MEC to free oleic acid

induced the biosynthesis of larger LD attributed to greater fusion and elevated Tg content.
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Changes in PL composition could be attributed to mitochondria function or number

because of at least one of the conversion steps between PS to PE is executed by a mitochondria

enzyme, PSD [25]. Here, we demonstrate higher number of mitochondria in the FFA treated

cells (Fig 2A and 2B), which was associated with lower PS content in the membrane (Fig 1E).

The reduced PPAR-γ expression in the VLDL compared with the FFA treatment (S1C Fig)

support the hypothesis that mitochondria are involved in this process. The differences between

treatments are in agreement with previous studies demonstrating that FFA induce mitochon-

drial biogenesis, through the PPAR-γ coactivator pathway [27,58].

FFA acceptor reduces negative feedback on LPL activity and increase lipid

droplet size

In the present study, upon exposure to VLDL or FFA, a reduction in LPL expression was

recorded. This could be attributed to negative feedback of FFA, which were exogenously

added to the culture medium or formed during VLDL hydrolysis. This assumption is in accor-

dance with the findings of Kadegowda et al. [52] who found decreased LPL expression in MEC

treated with free palmitic acid, stearic acid and oleic acid.

The released products of VLDL hydrolysis can allosterically inhibit LPL activity [59]. LPL

activity requires a product acceptor, such as BSA or calcium ions, to catalyze the in-vitro

hydrolysis of VLDL- Tg [60]. As the fatty acids-binding sites on BSA become filled with prod-

uct, the rate of Tg hydrolysis slows down [60] and some of the enzymatic activity will be

sequestered. This might explain why, in this study, a higher concentration of albumin com-

bined with VLDL, resulted in a similar phenotype as that received in MEC treated with FFA

(Fig 3A). The absorption process of FFA requires fatty acid binding proteins (FABP) which

play an important role in the fatty acids transport between the different compartments of the

cell. The higher numerical difference found in FABP transcription levels in FFA treated cells

vs. VLDL (S2 Fig) is in accordance with previous studies in hepatocytes and adipocytes

exposed to elevated extracellular lipid levels [61].

This work shows for the first time that the macrostructure of long chain fatty acids avail-

able to MEC has a role in regulating LD phenotype in terms of number and diameter, as

well as the lipid composition of the cells and its membranes. In addition, the results suggest

that LD size is modulated by the availability of long chain FA from the extracellular fluid,

and not exclusively by total fat concentration and milk and fat synthesis capacity of the cells,

as often assumed in in vitro and in vivo models of mammary gland and other lipogenic

tissues.

Supporting information

S1 Fig. Mammary epithelial cells (MEC) treated with 100 μM VLDL or similar concentra-

tion and composition of for 24 h. (A) Lipoprotein lipase (LPL) mRNA expression (AU). (B)

NADH dehydrogenase (ubiquinone) 1α subcomplex assembly factor 3 (NDUFAF3) mRNA

expression (AU) (C) Peroxisome proliferator-activated receptor gamma (PPAR-γ) mRNA

expression (AU).

(TIF)

S2 Fig. Mammary epithelial cells (MEC) treated with 100 μM VLDL or similar concentra-

tion and composition of for 24 h. Fatty Acid Binding Protein (FABP) mRNA expression

(AU).

(TIF)
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