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Abstract

There is a growing literature that suggests environmental exposure during key developmen-

tal periods could have harmful impacts on growth and development of humans. Understand-

ing and estimating the relationship between early-life exposure and human growth is vital to

studying the adverse health impacts of environmental exposure. We compare two statistical

tools, mixed-effects models with interaction terms and growth mixture models, used to mea-

sure the association between exposure and change over time within the context of non-lin-

ear growth and non-monotonic relationships between exposure and growth. We illustrate

their strengths and weaknesses through a real data example and simulation study. The data

example, which focuses on the relationship between phthalates and the body mass index

growth of children, indicates that the conclusions from the two models can differ. The simu-

lation study provides a broader understanding of the robustness of these models in detect-

ing the relationships between any exposure and growth that could be observed. Data-driven

growth mixture models are more robust to non-monotonic growth and stochastic relation-

ships but at the expense of interpretability. We offer concrete modeling strategies to esti-

mate complex relationships with growth patterns.

Introduction

There is a growing literature that suggests environmental exposure during key developmental

periods in-utero could have long-term impacts on children. Early-life exposure to chemicals,

such as phthalates and bisphenol A, found in household products may increase the risk of obe-

sity development by disrupting hormonal processes that mediate childhood growth [1–3]. Esti-

mating how and which factors modify adiposity growth is essential for possible public health

interventions. Two commonly used methods for modeling longitudinal growth are linear

mixed effects models and growth mixture models [4, 5]. Both models account for dependen-

cies in repeated measures and are general enough to allow for non-linear growth, and baseline

exposures are incorporated to explain growth with either a deterministic or stochastic mecha-

nism. While motivated by childhood growth data from the Center for the Health Assessment
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of Mothers and Children of Salinas (CHAMACOS) study, we focus on the performance of

these statistical tools and compare the performance of these two class of models to characterize

the variability in BMI childhood growth patterns, their ability to estimate potential non-mono-

tonic environmental exposure associations with non-linear growth, and their robustness to the

nature of the exposure relationship mechanism [6].

Normal childhood body mass index (BMI) trajectories are J-shaped starting at age two, fall-

ing until the adiposity rebound which occurs around age 5 or 6 and then rising until age 18

[7]. Deviations from this healthy pattern have been observed for the children in the motivating

data set based on the CHAMACOS birth cohort. One of the goals of the study is to determine

whether in-utero chemical exposure is associated with the variability in growth patterns [8]. A

variety of longitudinal methods have been used with this data set to address this goal, but they

are often presented in isolation with no direct comparison of results obtained with different

types of models [9–12]. We use this data set to highlight the potential differences in conclu-

sions from mixed-effects and growth mixture models when trying to estimate the relationship

between growth and any exposure.

One basic statistical method for measuring associations with growth is to estimate the rela-

tionship between exposure and the outcome at cross-sectional snapshots in time. However,

this approach does not directly study the association with the change over time. Some of the

earliest statistical methods to study change and development were developed by R. A. Fisher

[13]. His ideas about random effects laid the foundation for the linear mixed effects model, a

standard longitudinal model that accounts for longitudinal dependencies by incorporating

subject-specific random effects in addition to assuming the covariance structure of the errors

[4]. In this model, the relationship between the mean outcome over time and continuous base-

line exposures are often encoded in practice with interaction terms between time variables and

exposures. This results in the assumption of a linear relationship between exposure and the

growth parameter and is used extensively in the literature on exposure and development [10,

11, 14, 15]. While the model can accommodate non-linear effects by adding interaction terms

with squared exposure levels, it is not commonly used in practice. An alternative is to catego-

rize a continuous exposure based on quantiles but modeling the full functional relationship is

encouraged [16, 17]. This approach to modeling the effect modification on growth assumes a

deterministic mechanism, in that a one-unit change in exposure has a fixed effect on the aver-

age growth rate.

The growth mixture model, which is less widely used, takes a fundamentally different

approach to model the relationship between baseline covariates and growth [5, 18, 19]. We

assume that the variability in the growth pattern can be modeled with a finite set of sub-

groups, each with a unique mean growth pattern. The probability an individual follows a sub-

group growth pattern is modeled based on the exposure level, so the effect modification is

assumed stochastic in nature. While the linear mixed effects model is a special case of the

growth mixture model when the number of groups is one, the two models encode the relation-

ship between the shape of the growth curve and baseline exposures in two drastically different

ways.

There is extensive literature about the statistical properties of both of these models, but

there is not much discussion directly comparing the utility of the two methods when the

nature of the mechanism and form of the effect modification is unknown. In this manuscript,

we aim to fill this gap in the literature by providing a side-by-side comparison of linear mixed

effects models with growth mixture models in order to provide statistical guidance to research-

ers studying the impact of baseline exposures on longitudinal outcomes such as childhood

growth. We contrast the performance of these models in their ability to accurately estimate the

relationship between growth curves and baseline covariates, understanding that both the
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growth and exposure relationship may be non-linear. In Section 2, we review the two models

and present typical model specifications used in software. Then in Section 3, we analyze our

motivating data set of in-utero phthalate exposure and subsequent childhood BMI to illustrate

differences in inference and scientific conclusions on real environmental epidemiological data.

In Section 4, we present a simulation study to compare the models in terms of capturing the

relationship between baseline covariates and growth pattern. We end in Section 5 with conclu-

sions about the methods and practical guidelines for the epidemiology researcher.

1 Statistical models

1.1 Linear mixed effects model

Let yi ¼ ðyi1; :::; yiniÞ be a vector of repeated outcome measures on the ith individual observed

at times ti ¼ ðti1; :::; tiniÞ. In a linear mixed effect model, the expected outcome value can be

written as E(yi|ui) = Xiβ + Zi ui, where Zi is a subset of the ni × p design matrix Xi for the ith
individual, ui is a vector of random effects, and β is a vector of fixed, unknown parameters. We

assume Normality for the random effects, ui * N(0, G), as well as the outcomes such that

yi|Xi, Zi, ui * N(Xiβ + Zi ui, Si).

In order to explicitly define the relationship between baseline factors and the growth curve,

we can parameterize the model using a two-level framework. For the first level, we let the

outcome for the ith individual at their jth observation time equal yij ¼ xTijbi þ � where

�i ¼ ð�i1; :::; �iniÞ � Nð0;SiÞ and xTij includes time varying covariates including the basis for

time. Then for the second level, the individual parameter vector can be expressed as a linear

model of subject-specific baseline covariates, βi = γwi + ui, where wi is a design matrix with

baseline covariates that modify the effect of xij and ui * N(0, G). We combine the two levels

to get an aggregate model, where Xi includes main effects and interaction terms between base-

line factors wi and time variables in xij and Zi is a design matrix that includes the variables that

have random effects. We assume that a change in the value of a baseline factor in wi produces a

change in the growth curve through the parameter vector βi. For this paper, estimation of this

model through restricted or standard maximum likelihood was implemented with the lme4
package in R [20].

1.2 Growth mixture model

In a finite mixture model, we assume there exists a finite number of sub-groups, each

weighted by a group probability [5, 21, 22]. Assuming each group has a probability density

function, the mixture density is defined as a weighted sum of K sub-group densities,

f ðyijXi;Zi;wiÞ ¼
PK

k¼1
pkðwiÞfkðyijXi;ZiÞ where Zi is a subset of the ni × p design matrix Xi for

the ith individual that have random effects, and the weights, pkðwiÞ ¼ ewT
i γk=ð

PK
l¼1

ewT
i γlÞ are

the probabilities of being a member of the kth group based on a vector of baseline covariates

wi where γK = 0 [23]. With a continuous longitudinal outcome, the subgroup densities are

often assumed multivariate Gaussian or a distribution that is robust to outliers such as a t-dis-

tribution [24]. For a growth mixture model, the group mean is based on a linear mixed effects

model with conditional mean, μk = Xiβk + Ziui where ui * N(0, G) [5]. Thus, the linear

mixed effects model is a special case of the growth mixture model when K = 1.

Growth mixture models are often estimated with a maximum likelihood method via an iter-

ative algorithm. The expectation-maximization (EM) algorithm treats the group membership

as missing data and iteratively estimates group membership and group parameters. The EM

algorithm is guaranteed to find a local solution under mild continuity conditions, but a global

maximum may be attained through the use of a variety of initializations [25]. In this paper,
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estimation of the growth mixture model was completed with the lcmm package in R [26]. To

choose the number of groups appropriate to explain the heterogeneity in the data, we fit the

model with K = 2, ‥, 5 and select the model with the lowest Bayesian Information Criterion

(BIC) as it has been shown to work well for mixture models in practice [27, 28].

1.3 Mean model

With any growth model, the model for the mean needs to be flexible enough to capture the

average trajectory over time. The most popular functional form assumes linear growth, which

may be adequate for data collected over a short period. A low-order polynomial such as a qua-

dratic or cubic function allows some curvature. To accommodate more local deviations, a

spline, which is a piece-wise polynomial function, provides more flexibility in capturing non-

linear growth. In the context of a linear model, a spline can be represented as a linear combina-

tion of basis splines or B-splines [29, 30]. The flexibility of the mean is constrained by the

degree of the polynomial and the number and location of the knots, or change-points. Knots

can be chosen based on percentiles of observation time or using expert knowledge of the

underlying process, but the complexity of the model comes at a cost of degrees of freedom

[31]. The spline basis functions for a given set of knots and degree were calculated using the

splines package in R [32].

2 Childhood growth data

2.1 Data

To illustrate differences between the two modeling approaches, we first analyzed the relation-

ship between the phthalate concentrations in a mother’s urine during pregnancy and the sub-

sequent body mass index development of the child from age 2 to 13 years old. The data come

from a longitudinal birth cohort study, the Center for the Health Assessment of Mothers and

Children of Salinas (CHAMACOS) study, which enrolled pregnant women from prenatal clin-

ics serving the farmworker population in the Salinas Valley, California in 1999-2000. Of 601

women enrolled in the study, a total of 527 were followed through the birth of a singleton, live-

born infant. In-utero exposures from urine and blood samples were measured as the mean lev-

els measured at the end of the 1st and the 2nd trimester of pregnancy and anthropometric

measurements were measured on the children about every 1-2 years. BMI was calculated as

weight (kg)/height2(m2). The Institutional Review Board (IRB) of the University of California,

Berkeley, approved all study activities. Informed consent was obtained from all mothers; oral

assent was obtained from children beginning at age 7 and written assent at age 12. Further

details of the study have been previously described [33].

For illustrative purposes, the exposure we focus on is monoethyl phthalate (MEP) bio-

marker, a metabolite of diethyl phthalate used in fragrances and personal care products.

Phthalate measurements in urine collected during pregnancy were available for 436 mothers,

and of those mothers, 333 children had at least three measures of BMI between 2 and 13 years

of age. There have been previous reports of associations of prenatal MEP concentrations with

increased BMI in childhood [12].

2.2 Methods

Prior to modeling, we estimated a quadratic BMI growth curve by age for each individual.

Then, we used the derived parameter estimates to explore possible relationships between expo-

sure and the level and growth of BMI over time. Fig 1 includes scatterplots of the maternal

MEP exposure and the estimated coefficients from a quadratic function. The plots indicate

Exposure and growth
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Fig 1. MEP exposure and growth parameters. MEP exposure during pregnancy (x-axis) and estimated growth parameters from individual quadratic model fits (y-

axes) for the CHAMACOS data. Dashed line is a least squares line and the thick line is a smooth loess curve.

https://doi.org/10.1371/journal.pone.0209321.g001
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there may be a non-monotonic relationship between maternal in-utero exposure and growth

parameters, but the relationship is not clear.

Since BMI z-scores were not developed for repeated measures analysis, we analyzed BMI

and stratified based on sex to allow sex-specific growth as well as exposure associations [34].

For the mean model, we chose a quadratic B-spline basis with one knot at age 9.5 years so as to

minimize the sum of squared error modeling individual trajectories. The internal knot allows

the BMI to have a slanted J-shape with an adiposity rebound and then linear growth in later

childhood. In a linear mixed effects model, we allowed the MEP exposure to impact level and

growth by including all pair-wise interactions with the spline basis variables. To account for

dependence in repeated measures, we included a random intercept and random spline coeffi-

cients. In a growth mixture model, we included the MEP exposure in the group probability

model to predict group membership probabilities and included a random intercept within the

sub-groups. We used the BIC to choose the number of groups within the growth mixture

model. To focus on the strength and weaknesses of the model, we only present unadjusted

analysis without accounting for confounding variables, which would be necessarily if we were

aiming to estimate a causal relationship. All analyses were completed using the splines, lcmm,

and lme4 packages in R.

2.3 Results

For the mixture model, four groups were chosen to minimize the BIC. Fig 2 shows the four

group means for boys and girls estimated from the growth mixture model. We note the

Fig 2. Group-based mean growth trajectories. Estimated group means for boys and girls from four-group growth mixture model

fit to the CHAMACOS data.

https://doi.org/10.1371/journal.pone.0209321.g002
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variation in growth patterns within this group of children, ranging from a shallow U shape to a

linear growth pattern between ages 2 and 13. Based on the estimated parameters of the group

probability model (Table 1), MEP exposure has a slightly stronger stochastic impact on the

growth pattern of boys than girls. We visualize the association between MEP exposure and the

group probabilities in Fig 3. For doubling in MEP exposure, the ratio of the probability of

being in class 1 and 2 vs. 4 increases by an estimated factor of 1.31 (90% confidence interval:

1.01, 1.70) and 1.28 (90% confidence interval: 1.01, 1.63), respectively, for boys. The point esti-

mates for girls indicate an estimated multiplicative increase of 1.30 (90% confidence interval,

1.04, 1.65) and 1.07 (90% confidence interval, 0.86, 1.34) for a doubling of MEP exposure.

Table 1. Estimated ratios comparing class probabilities to the probability of Class 4 for a doubling of MEP and

associated 90% confidence interval from estimated four-group growth mixture model fit to the CHAMACOS

data, boys and girls separately.

Subgroups Boy: Ratio (CI) Girl: Ratio (CI)

Class 1: Log2 MEP Exposure 1.31 (1.01, 1.70) 1.30 (1.04, 1.65)

Class 2: Log2 MEP Exposure 1.28 (1.01, 1.63) 1.07 (0.86, 1.34)

Class 3: Log2 MEP Exposure 1.15 (0.92, 1.46) 0.95 (0.78, 1.18)

Class 4: Log2 MEP Exposure 1 1

CI, Confidence Interval

https://doi.org/10.1371/journal.pone.0209321.t001

Fig 3. Group probabilities. Estimated group probabilities for maternal MEP exposure for boys and girls from a four-group

growth mixture model fit to the CHAMACOS data.

https://doi.org/10.1371/journal.pone.0209321.g003
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Additionally, we do not see any evidence of differences in MEP exposure between class 3 and 4

for both boys and girls.

The linear mixed effect model estimates suggests that doubling MEP exposure has a signifi-

cant linear impact on the growth parameters for boys and girls through the interaction terms

(Table 2). The effect modification is represented by the three interaction terms between the B-

spline basis variables (X1-X3) and Log2 MEP exposure. For boys, two of the three are signifi-

cantly different from zero and one of the three are significant for girls. Since the non-linear

growth is not encapsulated in one parameter, we visualize the interactions by calculating the

estimated mean BMI for a range of percentiles of MEP exposure for boys and girls for the lin-

ear mixed effects model (Fig 4). Similar to the growth mixture model, MEP exposure has a

larger estimated effect on the growth pattern for boys in comparison to girls.

The marginal means are similar between the two methods as evidenced by Fig 4, but the

models differ in interpretations and resulting conclusions. The growth mixture model suggests

the MEP has a significant association with the probability of growth pattern groups for boys

and less so for girls and the relationship may be non-monotonic. The standard linear mixed

effects model does not allow for stochastic or non-monotonic relationships and thus, we con-

clude there is some significant effect modification for both sexes and MEP exposure explains

some variation in BMI growth. Interestingly, the linear mixed effect model suggests a larger

effect of exposure on the mean when comparing the marginal expected values, but the growth

mixture model highlights that the mean is not the only aspect of interest, the variability in

growth is also important to note.

3 Simulation study

We designed a simulation study to compare the performance of the two models in estimating

stochastic and deterministic effect modification. We generated data to mimic observed child-

hood BMI growth patterns and paired them with a variety of hypothesized environmental

exposure associations. Then, we fit a series of linear mixed effect and growth mixture models

to each data set to study how robust the models were in capturing the relationship with

exposure if the model is misspecified based on mean model, exposure model, or exposure

mechanism.

Table 2. Estimated fixed effect coefficients comparing class probabilities to the probability of Class 4 for a dou-

bling of MEP and associated 95% confidence interval from the linear mixed effect model fit to the CHAMACOS

data, boys and girls separately.

Variable Boy: Coef (CI) Girl: Coef (CI)

Intercept 15.85 (14.1, 17.6) 16.75 (15.0, 18.5)

X1 (B-spline basis for age) -3.55 (-5.0, -2.0) -1.93 (-3.4, -0.5)

X2 (B-spline basis for age) 2.03 (-1.6, 5.7) 2.77 (-0.9, 6.5)

X3 (B-spline basis for age) 4.89 (0.9, 8.8) 4.98 (1.0, 8.9)

Log2 MEP Exposure 0.22 (-0.01, 0.4) 0.08 (-0.1, 0.3)

X1
�Log2 MEP Exposure 0.35 (0.2, 0.5) 0.19 (0.01, 0.4)

X2
�Log2 MEP Exposure 0.55 (0.1, 1.0) 0.42 (-0.04, 0.9)

X3
�Log2 MEP Exposure 0.31 (-0.2, 0.8) 0.40 (-0.1, 0.9)

Coef, Coefficient; CI, Confidence Interval

X1-X3 variables are the B-spline basis variables for age that flexibly model the mean BMI over ages 2–14. Interactions

with MEP exposure allow linear effect modification of the growth trajectory.

https://doi.org/10.1371/journal.pone.0209321.t002
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3.1 Data generation

We generated data based on both a linear BMI growth as well as a quadratic BMI growth curve

similar to those observed in real data. We then created four data generating conditions based

on hypothesized exposure relationships, differing in terms of functional form (monotonic or

non-monotonic) as well as mechanism (stochastic or deterministic) of the effect modification.

Fig 5 provides a graphical view of the conditional means for the eight data generating condi-

tions for the simulated body mass index trajectories. Under each data condition, we generated

1000 training data sets of size n = 250, around the typical size of an environmental epidemio-

logical study. We let ti = (1, 3.25, 5.5, 7.75, 10) for i = 1, . . ., n be the observation times and gen-

erated a binary variable, w1i = Bernoulli(0.5), to mimic a variable such as sex and a quantitative

exposure of interest, w2i = N(0, 1). For simplicity, this simulation does not model all potential

confounders. For model comparison, we generated 1000 validation sets of the same size to test

the out-of-sample predictive performance.

3.2 Model specifications

On each data set, we fit a series of linear mixed effects and growth mixture models under a

variety of assumptions about the form of the mean growth and the relationships with exposure.

We used two functional bases for the mean growth: linear and quadratic. We included only a

random intercept or let all growth coefficients vary according to a multivariate Normal distri-

bution with an unstructured covariance.

In the linear mixed effects models, we modeled the exposure association by allowing inter-

action terms between baseline exposure variables, w1 and w2, and the age variables. In the

Fig 4. Model comparison. Estimated mean BMI for the 10th, 25th, 50th, 75th, and 90th percentiles of MEP for boys (dark) and girls (light), separately,

based on a linear mixed effects model and a four-group growth mixture model fit to the CHAMACOS data.

https://doi.org/10.1371/journal.pone.0209321.g004
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mixture models, we included the baseline exposure variables in the multinomial logistic model

to model the group probabilities. This flexibly accommodates any non-monotonic dose-

response relationships since heterogeneity in growth patterns is summarized by a discrete

latent variable. For sake of comparison, we also fit models with a tertiary version of the expo-

sure, w2, based on quantiles.

In total, we fit 16 models, which included every combination of model type, form of the

mean, random effects, and form of exposure. The linear mixed effects models were fit using

the lme4 package in R and the growth mixture models were fit using the lcmm package in R,

using the defaults for any assumptions not specified here and utilizing BIC as the criterion for

choosing the number of groups, K [20, 26]. R code for the simulation study is publically avail-

able [35].

3.3 Model comparison

Selecting an appropriate model from a collection of candidate models is a key step of the scien-

tific process. There are a variety of statistical tools to help us compare and select models. Infor-

mation criterion such as BIC balance goodness of fit with model complexity [27]. Another tool

to compare is the out-of-sample predictive performance of a model based on a validation set

or cross-validation if data is limited [36]. Predictive performance is used here to check whether

we are accurately capturing the relationships in the training data. In this study, we calculated

the BIC from the trained models and the mean square predicted error on the validation data

and averaged both quantities over the 1000 simulated data sets within each condition and

model.

To compare the model’s ability to accurately estimate the relationship between the quantita-

tive exposure and growth from these two different models, we calculated the estimated mean

function and its first derivative on a uniform grid of values for time and the continuous

Fig 5. Conditional mean outcomes for simulation study data generation. For data types 1, 3, 5, and 7, the means are conditional on the quantitative exposure value of

w2 and for data types 2, 4, 6, and 8, the means are conditional on the subgroups and the group probabilities for given exposure values are on the right.

https://doi.org/10.1371/journal.pone.0209321.g005
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baseline exposure, w2, keeping the other baseline variable fixed. We compared the estimates

on the grid to the true expected value μ(t, w1, w2) = E(Y|t, w1, w2) and growth velocity

vðt;w1;w2Þ ¼
d
dt EðYjt;w1;w2Þ based on the data generating distribution.

We calculated the absolute error on the grid as dðt;w1;w2Þ ¼ jm̂ðt;w1;w2Þ � mðt;w1;w2Þj

and the absolute velocity error on the grid as d
0
ðt;w1;w2Þ ¼ jv̂ðt;w1;w2Þ � vðt;w1;w2Þj. To

summarize the discrepancies in estimated values and velocity across time and baseline values, we

estimated the mean absolute error (MAE) and mean absolute velocity error (MAVE) over the

uniform grid, MAE ¼ 1

C

R R
dðt;w1 ¼ 1;w2Þdtdw2 and MAVE ¼ 1

C

R R
d
0
ðt;w1 ¼ 1;w2Þdtdw2

where C is the area of the rectangular domain region. In contrast to the mean squared prediction

error, this measure does not account for the distribution of observation time and exposure, but

rather focuses on the performance across a given domain. We limit our grid to a subset of the

simulated domain, t 2 [1, 9], w2 2 [−2, 2], and w1 = 1. The MAE and MAVE are then averaged

over the 1000 simulated data sets within each condition and model.

3.4 Results

Derived variable analysis is useful for visually exploring the relationships in the data and to

inform the model choice. Fig 6 provides a graphical analysis for simulated datasets under the

last two data conditions labeled 7 and 8, which include non-linear growth and non-monotonic

effect modification for exposure and growth, under a deterministic and stochastic generation

process, respectively. For illustration, we derived estimated growth parameters for each indi-

vidual trajectories using a quadratic function. Notice the clear quadratic relationship between

w2 and the growth parameter under data condition 7. Under data condition 8 (stochastic

mechanism), the non-linear relationship is not as obvious. There is a slight “S” shape in the

scatterplot since the probability of growth parameters changes with exposure rather than the

parameters themselves.

We present the results from the best linear mixed effects and growth mixture models with

the continuous version of w2. We denote the mixed effects models with linear mean with ran-

dom intercept as ME1, quadratic mean with random intercept as ME2, linear mean with ran-

dom intercept and slope as ME3, and quadratic mean with random intercept and slope as

ME4. Mixture models with the same mean and random effect specifications are denoted as

M1-M4. Results from models with tertiary version of the exposure are available in supplemen-

tary information (Tables in S1, S2 and S3 Tables).

Table 3 provides the average BIC for each of the eight data conditions. The linear mixed

effects model provides the best fit when the relationship between exposure and growth is deter-

ministic and linear as the model matches the data generating distribution. However, if the

effect modification is stochastic and/or non-linear, the growth mixture model provides a better

fit evidenced by the lower BIC values.

Table 4 provides the mean squared error (MSE) based on out-of-sample prediction on a

validation set. A comparison of the average MSE between models for each type of data suggests

that a growth mixture model can predict as well as or better than a linear mixed effects model.

We see the greatest benefit when growth is non-linear and the exposure effect modification is

non-linear. If there is a non-linear effect modification, stochastic or deterministic in nature, a

growth mixture model can provide more accurate predictions over a linear mixed effects

model with pair-wise interaction terms between the exposure and age variables.

To supplement the information gained from BIC and MSE, Table 5 provides the mean

absolute velocity errors on a grid so as to measure the accuracy of the effect modification esti-

mation. Not surprisingly, the results continue to suggest the importance of accurately model-

ing the mean growth. Additionally, if the priority is estimating exposure’s association with
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growth rates, growth mixture models are more robust to misspecification in terms of nature

and form of the exposure relationship.

A categorical exposure variable can be useful in detecting non-linear effect modification,

but it may not provide an accurate estimate of the relationship. In fact, using the categorical

Fig 6. Simulated quantitative exposure, w2 (x-axis) and growth parameters from individual quadratic model fits (y-axes) for one data set under data condition 7

(quadratic growth with a deterministic, quadratic relationship between growth parameters and exposure) and data condition 8 (quadratic growth with a

stochastic, non-monotonic relationship between growth pattern probabilities and exposure). Dashed line is a least squares line and the thick line is a smooth loess

curve.

https://doi.org/10.1371/journal.pone.0209321.g006
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Table 3. The BIC averaged over 1000 simulated data sets for a set of eight models under 8 different data conditions specified by the nature of the relationship, form

of the growth patterns, and the form of the effect modification from the exposure. Smallest average BIC for each data condition is bold.

Nature Growth Exposure ME1 ME2 ME3 ME4 M1 M2 M3 M4

D L L 6540 6540 6091 6111 6131 6150 6076 6086

S L L 7042 7041 6245 6264 5985 5997 6010 6009

D L NL 6725 6724 6152 6171 6192 6213 6100 6111

S L NL 7146 7145 6274 6294 5983 5999 5996 6007

D NL L 7772 7740 6674 6402 6872 6639 6672 6453

S NL L 7539 7286 7090 6455 6937 6239 6955 6244

D NL NL 7520 7491 6505 6352 6596 6492 6424 6282

S NL NL 7134 6894 6825 6346 6529 5995 6544 6016

ME, Mixed Effect Model; M, Growth Mixture Model; D, Deterministic; S, Stochastic; L, Linear; NL, Non-Linear

Models 1, 3 assume linear mean; Models 2, 4 assume quadratic mean.

Models 1, 2 use random intercept; Models 3, 4 use random slopes.

https://doi.org/10.1371/journal.pone.0209321.t003

Table 4. The MSE from a validation set averaged over 1000 simulated data sets for a set of eight models under 8 different data conditions specified by the nature of

the relationship, form of the growth patterns, and the form of the effect modification from the exposure. Smallest average MSE for each data condition is bold.

Nature Growth Exposure ME1 ME2 ME3 ME4 M1 M2 M3 M4

D L L 15.3 15.3 15.3 15.3 15.4 15.4 16 16

S L L 25.4 25.4 25.4 25.4 25.1 25.1 25.1 25.1

D L NL 18.6 18.6 18.6 18.6 17.6 17.7 17.5 17.7

S L NL 27.9 27.9 27.9 27.9 27.4 27.4 27.4 27.4

D NL L 35.5 35 35.5 35 35.7 35.3 37.9 35.8

S NL L 29.4 26.4 29.4 26.4 29.1 26.1 29.1 26.1

D NL NL 32 31.6 32 31.6 27.2 28 23.7 27.8

S NL NL 21.3 19.3 21.3 19.3 19.2 17 19.2 17.1

MSE, Mean Squared Error; ME, Mixed Effect Model; M, Growth Mixture Model; D, Deterministic; S, Stochastic; L, Linear; NL, Non-Linear

Models 1, 3 assume linear mean; Models 2, 4 assume quadratic mean.

Models 1, 2 use random intercept; Models 3, 4 use random slopes.

https://doi.org/10.1371/journal.pone.0209321.t004

Table 5. The mean absolute velocity error (MAVE) averaged over 1000 simulated data sets for a set of eight models under 8 different data conditions specified by

the nature of the relationship, form of the growth patterns, and the form of the effect modification from the exposure. Smallest average MAVE for each data condi-

tion is bold.

Nature Growth Exposure ME1 ME2 ME3 ME4 M1 M2 M3 M4

D L L 0.75 0.75 0.75 0.75 0.76 0.76 0.8 0.8

S L L 0.57 0.57 0.57 0.57 0.55 0.55 0.56 0.55

D L NL 1.64 1.64 1.64 1.64 1.61 1.62 1.62 1.63

S L NL 0.41 0.41 0.41 0.41 0.33 0.33 0.33 0.33

D NL L 1.09 0.73 1.09 0.73 1.1 0.73 1.16 0.78

S NL L 1 0.74 1 0.74 0.98 0.74 0.98 0.74

D NL NL 1.38 1.08 1.38 1.08 1.41 1.1 1.46 1.15

S NL NL 0.86 0.71 0.86 0.71 0.8 0.62 0.8 0.63

ME, Mixed Effect Model; M, Growth Mixture Model; D, Deterministic; S, Stochastic; L, Linear; NL, Non-Linear

Models 1, 3 assume linear mean; Models 2, 4 assume quadratic mean.

Models 1, 2 use random intercept; Models 3, 4 use random slopes.

https://doi.org/10.1371/journal.pone.0209321.t005
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exposure variable in a mixture model can hurt the performance measured by the four metrics

presented (Tables in S1, S2 and S3 Tables).

This simulation study provides evidence to suggest that growth mixture models can accu-

rately estimate the exposure relationship with growth even when the data were generated

based on a deterministic setting with random effects. Additionally, a growth mixture model

can more flexibly handle non-linear relationships between baseline exposures and growth. The

same cannot be said for linear mixed effects models.

4 Discussion

Humans have informally studied change over time for generations, but useful methods for

analyzing longitudinal data are much younger [37]. Two of the standard methodological

approaches for longitudinal data, mixed effects models and marginal models estimated using

generalized estimating equations, were introduced in 1980’s [4, 38]. There have been much

discussion over the strengths and weakness of these two general types of models [39, 40]. On

the other hand, there have been many innovative ways to combine mixed effect models with

the more established class of models, mixture models [5, 41]. In particular, growth mixture

models, which are a mixture of mixed effects models, have become more estimable through

software and primarily used to find data-driven groups. The growth mixture model is a mixed

effect model with only one group, if you disregard group membership model. If a group mem-

bership model is not used, then the two models can be considered nested. However, as we

have shown, the group membership model is useful to approximate non-linear relationships

between growth and baseline variables such as environmental exposures. To the authors

knowledge, this is the first study comparing these two methods with a group membership

model focusing on the relationship between baseline exposure and growth over time.

There is growing evidence of non-monotonic dose-response relationships for environmen-

tal exposures like those of endocrine disrupting chemicals but there are no standard guidelines

for researchers to use when considering these complex relationships with growth. Our simula-

tion study suggests that a growth mixture model with a stochastic exposure relationship per-

forms as well or better than the deterministic mixed effects model with pair-wise interaction

terms in accurately estimating the relationship. However, the improved performance with a

growth mixture model comes at a cost of more complex interpretation as it models growth pat-

tern probabilities rather than growth parameters.

While a categorical version of the exposure can be useful in detecting non-monotonic rela-

tionships, there is little guidance for choosing the best break points to optimize estimation.

Based on our experience and the evidence provided, we suggest the following guidelines when

estimating the relationship between a baseline exposure and growth over time.

As a first step, we suggest exploring the functional shape of the individual trajectories over

time by graphing the trajectories of a subset of the individuals. Notice the variability in growth

patterns in addition to the starting levels. Use nonparametric smoothing to visually contrast

the estimated mean with a least squares line over time. This important step helps determine

the appropriate functional basis over time and the variability in growth.

The next step is to explore exposure relationships by coloring individual trajectories based

on percentiles of the exposure or using derived analysis. While not appropriate for making

inferences, analysis of derived variables such as coefficients of polynomial projections can be a

valuable tool to inform the selection of the class of models. Scatterplots for each coefficient

highlights the different relationships that exist with the level and growth parameters.

If the growth pattern is a lower-order polynomial and there is a clear polynomial relation-

ship between the exposure and parameters, then estimate a linear mixed effects model
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incorporating the observed relationships. If the time variable is centered at a meaningful time

point, estimated coefficients of interaction terms can provide clear interpretations with respect

to exposures impact on level, velocity, and acceleration at that time point.

If the growth pattern is not a lower-order polynomial or there is no clear polynomial rela-

tionship with the exposure, then we suggest utilizing a growth mixture model with an appro-

priate functional basis (e.g. polynomial or B-spline) and exposures in the multinomial logistic

model to predict group membership probabilities. The complex model allows a more flexible

relationship between exposures and growth. The possible association with exposure is summa-

rized in ratios comparing group membership probabilities with the reference group. Consider

the correlation between the level and growth within groups. If level and growth are not

strongly correlated, then the level can be removed by subtracting the mean to focus on the

exposure relationship with growth.

While the linear mixed effects model is a subclass of the more general growth mixture

model when K = 1, using modeling selection criterion to choose between K = 1 and K> 1 does

not adequately compare of these models as the incorporation of exposure data differs whether

we have 1 or more than 1 group. We suggest fitting both types of models and using model

selection criterion such as BIC and MSE to compare the goodness of fit and predictive power

of the two types of models.

Supporting information

S1 Table. The BIC averaged over 1000 simulated data sets for a set of eight models using

the tertiary version of w2 exposure variable under 8 different data conditions specified by

the nature of the relationship, form of the growth patterns, and the form of the effect mod-

ification from the exposure. Smallest average BIC for each data condition is bold.

(PDF)

S2 Table. The MSE from a validation set averaged over 1000 simulated data sets for a set of

eight models using the tertiary version of w2 exposure variable under 8 different data con-

ditions specified by the nature of the relationship, form of the growth patterns, and the

form of the effect modification from the exposure. Smallest average MSE for each data con-

dition is bold.

(PDF)

S3 Table. The mean absolute velocity error (MAVE) averaged over 1000 simulated data

sets for a set of eight models using the tertiary version of w2 exposure variable under 8 dif-

ferent data conditions specified by the nature of the relationship, form of the growth pat-

terns, and the form of the effect modification from the exposure. Smallest average MAVE

for each data condition is bold.

(PDF)
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