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Abstract

Background

Cardiovascular disease (CVD) risk prediction models are often used to identify individuals at

high risk of CVD events. Providing preventive treatment to these individuals may then

reduce the CVD burden at population level. However, different prediction models may pre-

dict different (sets of) CVD outcomes which may lead to variation in selection of high risk

individuals. Here, it is investigated if the use of different prediction models may actually lead

to different treatment recommendations in clinical practice.

Method

The exact definition of and the event types included in the predicted outcomes of four widely

used CVD risk prediction models (ATP-III, Framingham (FRS), Pooled Cohort Equations

(PCE) and SCORE) was determined according to ICD-10 codes. The models were applied

to a Dutch population cohort (n = 18,137) to predict the 10-year CVD risks. Finally, treatment

recommendations, based on predicted risks and the treatment threshold associated with

each model, were investigated and compared across models.

Results

Due to the different definitions of predicted outcomes, the predicted risks varied widely, with

an average 10-year CVD risk of 1.2% (ATP), 5.2% (FRS), 1.9% (PCE), and 0.7% (SCORE).

Given the variation in predicted risks and recommended treatment thresholds, preventive

drugs would be prescribed for 0.2%, 14.9%, 4.4%, and 2.0% of all individuals when using

ATP, FRS, PCE and SCORE, respectively.

Conclusion

Widely used CVD prediction models vary substantially regarding their outcomes and associ-

ated absolute risk estimates. Consequently, absolute predicted 10-year risks from different

prediction models cannot be compared directly. Furthermore, treatment decisions often
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depend on which prediction model is applied and its recommended risk threshold, introduc-

ing unwanted practice variation into risk-based preventive strategies for CVD.

Introduction

Reduction of cardiovascular disease (CVD) burden, i.e. at population level, is commonly

accomplished using preventive strategies (like lifestyle and dietary advice or preemptive drug

treatment) in individuals with marked elevations in risk factors, e.g. low-density lipoprotein

(LDL), or a high predicted CVD risk based on a combination of risk factors [1]. Identification

of high risk individuals is often achieved using CVD risk prediction models of which over 360

different variants have been published as of 2016 [2]. However, different models may predict

multiple and often different CVD outcomes or sets of outcomes (as is the case in model with

composite endpoints) [2–4]. These differences in predicted outcomes may result in large varia-

tion in CVD risk estimates. Consequently, it is unclear to what extent the predicted CVD risks

obtained from different prediction models are comparable and can be interpreted similarly in

clinical practice [4–7].

The large variation in CVD risk estimates combined with different recommended risk

thresholds for each prediction model, may lead to different definitions of high-risk individuals.

For example, the Pooled Cohort Equation stratifies individuals with a> 7.5% 10-year CVD

risk as high-risk whereas the recommended threshold for the Framingham risk equation is

10% [8, 9]. Different definitions of high-risk individuals may, in turn, lead to different treat-

ment recommendations. Furthermore, the expected health benefits of treatment may also be

different since the impact on quality of life differs per CVD event type and severity. For exam-

ple, the expected health loss due to a stroke is expected to be higher than the health loss due to

a myocardial infarction [10].

Since the implication of different treatment recommendations could be large, the aim of

this paper is to assess if the use of different prediction models leads to different treatment rec-

ommendations in clinical practice. Therefore, four widely used CVD risk prediction models

were investigated regarding their comparability and interpretation, after applying them to a

large population cohort. Additionally, we discuss the usefulness of such models based on the

comprehensiveness of their composite endpoint and provide a recommendation for the devel-

opment of new prediction models in order to enhance their usefulness in clinical practice.

This paper does not focus specifically on Dutch clinical practice and does not provide guidance

on preferred prediction models for the Dutch context.

Methods

Adult Treatment Panel III (ATP), Framingham Global Risk Score (FRS), Pooled Cohort Equa-

tions (PCE), and SCORE-low (SCORE) are four widely used CVD risk prediction models for

primary prevention [11–14]. All are derived from general population cohort data. Hence, they

include (often similar) predictors that are easy to measure in everyday clinical practice, such as

gender, age and systolic blood pressure. The exact definition of the included risk factors in the

risk equation can be found in the original publication [11–14]. Furthermore, the probability

estimate of each model reflects the absolute risk of the composite endpoint occurring within

10 years. In order to compare these four models, we first identified the exact definition of each

composite endpoint from the original publication describing the development of the model

[11–14]. We then, standardized the composite endpoints using ICD-10 codes. This was
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necessary since the published articles often only described the outcomes in words, e.g. “coro-

nary heart disease” or “ischemic heart disease”.

To compare the composite endpoints, we used the MORGEN cohort. The MORGEN

cohort is a large Dutch general population cohort which includes men and women aged 20 to

74 years at baseline, recruited from the general population between 1993 and 1997 [15]. Partic-

ipant information on vital status, cause of death and comorbidity was obtained from Statistics

Netherlands and the National Medical Registry (NMR). The follow-up period of the MOR-

GEN cohort was 10 to 15 years with a mean follow-up time of 12 years. To apply the prediction

models, information both from baseline and from follow-up was required, leaving 19,484

(72%) individuals with adequate data for the analysis from the original cohort [16, 17]. To fur-

ther investigate the constitution of the composite endpoint, we determined the observed rates

and distributions of the individual components, i.e. included CVD event type according to the

associated ICD-10 code(s), for each model separately.

As the indication for statin therapy is also LDL-dependent and we aim to illustrate the com-

plexity of CVD risk predictions by comparing results of different prediction models, individu-

als with an elevated level of LDL and/or diabetes were excluded for further analysis. We

focused on individuals in whom preventive intervention was indicated based on predicted

CVD risk rather than on elevated LDL levels and/or diabetes. After excluding 231 individuals

with diabetes, 1,141 individuals with elevated LDL levels and 25 individuals with both risk fac-

tors at baseline, this resulted in a cohort size of 18,137 individuals (mean age = 42.4 years,

range 20.1–73.7 years, and 45% men).The MORGEN cohort was also used to compare the pre-

dicted CVD risks by estimating every individual’s 10-year CVD risk with each of the four pre-

diction models. Implementation of a prediction model typically follows updating or

recalibration of the model in the target setting, as the target cohort may differ from the original

development cohort [18]. Therefore, we first recalibrated the four prediction models using the

MORGEN cohort to ensure that the models provide accurate risk estimates in this cohort. For

the survival data (time-to-event data) considered in this study, recalibrating a prediction

model typically involves updating the baseline hazard and centering each predictor around the

mean value of all patient characteristics in our empirical cohort, correcting for men and

women separately [19, 20]. Furthermore, we incorporated an additional correction factor to

ensure that the updated baseline hazards actually reflect the observed probability of survival

after 10 years.

Many clinical guidelines advocate the use of prediction models to select individuals with a

predicted risk above a certain threshold for preemptive lipid or blood pressure lowering drug

treatment. Different recommendations for absolute 10-year risk thresholds were identified for

each model: 10% (ATP), 10% (FRS), 7.5% (PCE), and 5% (SCORE) [9, 12, 21]. By doing this,

we were able to further explore and compare the varying treatment decisions according to the

four models. Finally, we first assigned individuals to treatment based on their FRS risk and the

FRS risk threshold and then reassigned individuals according to their ATP, PCE, and SCORE

risks, and the corresponding thresholds.

The aim of this paper was to illustrate the complexity of comparing predicted risks. This

paper does not focus specifically on Dutch clinical practice and does not provide guidance on

preferred prediction models for the Dutch context.

Results

Although the predictors of the four prediction models are similar, the composite endpoints

vary widely and include different CVD event types (Table 1, column 1–6). Myocardial infarc-

tion (MI) is included in all four composite endpoints, either alone or in combination with
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other CVD event types. The endpoint defined for FRS includes the largest range of fatal and

non-fatal CVD event types, whereas the endpoint defined for SCORE only includes fatal event

types.

Table 1 (column 4, 6, 8, and 10) shows the incidence of each CVD event type as observed in

the MORGEN cohort for the four different prediction models. Due to different composite

endpoints, individuals with an earlier CVD event which was not included in the considered

endpoint were not censored. Therefore, the observed event rates for a specific CVD event vary

per prediction model. Definition of a first and secondary event within individuals thus

depends on whether the observed CVD events for individuals are included in the composite

endpoint of each prediction model. Due to the different definitions of the composite endpoint

of the four prediction models, the total number of observed events for SCORE (n = 105) is

almost nine times smaller than for FRS (n = 928). These differences in composite endpoints

also affect the absolute number of observed events per prediction model, due to different cen-

soring mechanisms. For example, the absolute number of fatal MIs varies per prediction

model because secondary fatal MIs may be censored due to occurrence of another primary

event present in the composite endpoint. To illustrate: a fatal MI following a non-fatal stroke

Table 1. Constitution of the composite endpoints according to ATP, FRS, PCE, and SCORE and incidence of CVD events in MORGEN cohort.

ATP FRS PCE SCORE

Individual components ICD-10 code # # # #

Morbidity

Myocardial infarction (MI)�[27] I21,I22 X 183 X 164 X 176

Other Coronary heart disease (OCHD) I20,I23,I24,I25 X 348

Cardiac arrest, sudden death I46,R96 X 3

Hemorrhagic stroke (CVAH) I60,I61,I62 X 39 X 39

Ischemic stroke (CVAI) I63,I65 X 56 X 58

Other stroke (OCVA) I64,I66 X 29 X 29

Other Cardiovascular diseases (OCVD) G45,I67,I69,I70-I74,I50 X 222

Total observed events 183 861 302 0
Mortality

Myocardial infarction (MI) I21,I22 X 38 X 33 X 38 X 48

Other Coronary heart disease (OCHD) I20,I23,I24 X 3 X 12

Cardiac arrest, sudden death I46,R96 X 7 X 8

Hemorrhagic stroke (CVAH) I60,I61,I62 X 5 X 5 X 12

Ischemic stroke (CVAI) I63,I65 X 2 X 2 X 4

Other stroke (OCVA) I64,I66 X 1 X 3 X 2

Other Cardiovascular diseases (OCVD) G45,I67,I69,I70-I74,I50 X 16 X 19

Total observed events 38 67 48 105
Composite endpoints

(morbidity + mortality)
Ischemic Heart disease (IHD) I20-I25

Coronary heart disease (CHD) I20-I25,I46,R96

Cerebrovascular accident (CVA) I60-I66 X
Cardiovascular disease (CVD) I20-I26,I46,R96,G45,

I60-I67,I69,I70-I74,I50

X X (only fatal events)

Overall observed events 221 928 350 105

� The primary endpoint for ATP III is ‘hard CHD’, however model ATP III was based on the previously developed Framingham risk score with total CHD as primary

endpoint. For this study, the endpoint defined in the original ATP III paper is followed, i.e. endpoint ‘hard CHD’ is used.

https://doi.org/10.1371/journal.pone.0209314.t001
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event would be accounted for (not censored) in the SCORE and ATP model and not accounted

for (censored) in the FRS and PCE model. The relative incidence of CVD event types within

composite endpoints also varies substantially. For example, of the 105 events observed accord-

ing to SCORE, 48 (46%) were fatal MIs, whereas the relative incidence of fatal MIs is 17%, 4%,

and 11%, for ATP, FRS, and PCE, respectively. This means that the burden, or health loss,

associated with the incidence of each composite endpoint varies with a) the included event

types, and b) the relative incidence of these event types.

The performance of the recalibrated prediction models was good and quite similar; the c-

index was 0.81, 0.78, 0.78, and 0.81 for ATP, FRS, PCE, and SCORE respectively. S2—Table 1

shows an overview of the observed and predicted number of CVD events for each of the four

models. Following from this table, it is apparent that the events are well captured by the models

and that the number of predicted events closely matches the observed number of events.

Fig 1 shows that the dissimilarities in composite endpoints lead to substantial variation in

predicted 10-year CVD risks. Since predicted risks increase with the inclusion of more CVD

event types in the composite endpoint, to an extent that depends on their absolute incidence.

For example, in our cohort the broad composite endpoint used in the FRS model, covering a

large range of CVD event types, yields higher risk predictions than the ATP, PCE, and SCORE

models. Similarly, the narrow composite endpoint of SCORE (only fatal events), and its inher-

ent low incidence of included event types yields the lowest risk predictions of all models con-

sidered. The average predicted risks in the MORGEN cohort are 1.2% (ATP), 5.1% (FRS),

1.9% (PCE), and 0.6% (SCORE). Hence, the differences in composite endpoints between pre-

diction models, shown in Table 1, result in large variation in predicted CVD risks across pre-

diction models.

Considering that the largest set of CVD event types was included by the FRS composite

endpoint, we compared FRS risk estimates with risk estimates from the other three models

using more narrow composite endpoints. Fig 1 shows the comparison in CVD risks and

reveals an association between these risk estimates. This association indicates that, in this
cohort, individuals who have the highest risk according to FRS typically also have the highest

risk according to ATP, PCE, and SCORE. However, while the relative risks are similar the

absolute risks are clearly different. Furthermore, the vertical spread of points in Fig 1 shows

how individuals with a certain FRS risk estimate may have varying risk estimates according to

the other models, due to the effect of different risk factor combinations in each model. For

example, the group of individuals with an average predicted FRS risk of 10% had an average

PCE risk of 3.9%, with a 95% percentile range of 2.2%-5.1% (Fig 1, plot B).

Given the variation in composite endpoints and the subsequent variations in risk predic-

tions from the four models, selecting high risk individuals based on the corresponding recom-

mended risk thresholds results in highly different high risk groups, identified per model.

Unfortunately, the fact that each prediction model has its own associated risk threshold further

complicates the interpretation and comparison of absolute predicted risks between prediction

models. Consequently, treatment decisions may vary with the prediction model that is used.

For example, in the MORGEN cohort these thresholds would possibly lead to a seventy-fold

difference in prescription of preventive drug treatment in 0.2%, 14.4%, 4.3%, and 1.4% of all

individuals, when using ATP, FRS, PCE and SCORE, respectively. To illustrate the implica-

tions of these differences, we determined the CVD risks and the consequences on treatment

decisions according to the four prediction models for one individual in our cohort. Indeed,

using FRS for this individual implies both a greater necessity to consider preventive drug treat-

ment and a larger potential benefit of such treatment, compared to ATP, PCE, and SCORE

(see S1 Appendix—Clinical example).
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The treatment decisions based on the four risk thresholds are shown in Table 2. We found

that the treatment decisions based on the different models vary widely, which is undesirable

from a public health point of view. When using FRS, 2618 individuals have an estimated risk

Fig 1. Predicted (absolute) CVD risk according to FRS and A) ATP, B) PCE, and C) SCORE. The red marker is the

estimate of the mean predicted risk according to FRS and ATP, PCE, or SCORE. The grey lines (raster lines) represent

the different risk thresholds and reveal the fraction of individuals eligible for treatment.

https://doi.org/10.1371/journal.pone.0209314.g001

Interpretation of CVD risk predictions in clinical practice: Mission impossible?

PLOS ONE | https://doi.org/10.1371/journal.pone.0209314 January 9, 2019 6 / 11

https://doi.org/10.1371/journal.pone.0209314.g001
https://doi.org/10.1371/journal.pone.0209314


exceeding the FRS threshold and would thus be eligible for medical treatment. Of these indi-

viduals, only 32 (1.2%), 725 (27.7%), and 56 (2.1%) individuals would be considered eligible

for medical treatment using the estimated risk and corresponding threshold when applying

ATP, PCE, and SCORE respectively.

These different decisions may be due to either the different estimated risks or due to the use

of different risk thresholds for classifying individuals as high risk and thus eligible for medical

treatment. In our cohort, we observed that mostly the same individuals were assigned a rela-
tively high risk according to each of the four prediction models (Fig 1). For example, of the

individuals with the highest 20% predicted risks according to FRS (n = 3621), 3106 (85.8%),

3131 (86.5%), and 861 (23.8%) of individuals were also classified as relatively high risk (top

20%) according to ATP, PCE, and SCORE, respectively. This relatively high risk group had an

average CVD risk of 14.2% according to FRS, and average risks of 3.9%, 5.6%, and 0.7%

according to ATP, PCE, and SCORE, respectively. None of the individuals within the top 20%

risk group according to FRS had a relatively low risk (bottom 20%) according to the other

models. Hence, the expected differences in treatment decisions across prediction models is

mainly due to the different corresponding treatment thresholds, and their relation to predicted

risks, and not due to the different classification of individuals.

Table 2. Reclassification table where all individuals are classified and considered for treatment, according to the FRS risk threshold (10%), and reassigned for treat-

ment according to the thresholds according to ATP (10%), PCE (7.5%), and SCORE (5%).

Framingham risk prediction (percentiles)

Below (risk < 10%)

N = 15,519

Above (risk� 10%)

N = 2618

Mean predicted risk 3.26% 16.15%

Observed events 489 439

Reclassification

ATP Mean predicted risk 0.68% 4.42%

Observed events 209 12

N (%) N (%)

Below (risk < 10%) 15,519 (100) 2586 (98.78)

Above (risk� 10%) 0 (0) 32 (1.22)

PCE Mean predicted risk 1.17% 6.44%

Observed events 172 178

N (%) N (%)

Below (risk < 7.5%) 15,469 (99.68) 1894 (72.35)

Above (risk�7.5%) 50 (0.32) 724 (27.65)

SCORE Mean predicted risk 0.55% 0.76%

Observed events 87 18

N (%) N (%)

Below (risk < 5%) 15,330 (98.78) 2562 (97.86)

Above (risk� 5%) 189 (1.22) 56 (2.14)

All individuals are separated into two subgroups “below” and “above” based on the FRS risk threshold, with the following definitions; below—individuals with a

predicted risk < 10% (no treatment), and above—individuals with a predicted risk� 10% (treatment). For each (FRS-)subgroup (column 3–4), the number of

individuals present (N) and their average predicted FRS risk (%) is shown. For each FRS-subgroup, individuals are reassigned into two (sub-)subgroups below or above

according to ATP (row 5–8), PCE (row 10–13), and SCORE (row 15–18).The green highlighted cells indicate concordance and blue highlighted cells indicate discordance
on the classification of individuals.

https://doi.org/10.1371/journal.pone.0209314.t002
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Discussion

CVD risk prediction is key in providing preventive medication to large groups of individuals

at intermediate or high risk of future CVD events, despite absence of specific elevated risk fac-

tors. Although PCE is often used, contemporary decision making and CVD management in

the US, FRS is also applied, for example to guide pharmacotherapy for LDL-C lowering in

women [9].

This paper illustrates the complexities of interpreting and comparing predicted 10-year

CVD risks from four widely used CVD risk prediction models. We showed that the models

vary substantially regarding their composite endpoints, and therefore also regarding their pre-

dicted absolute risks. As a result, absolute predicted 10-year risks from different prediction

models cannot be compared directly and treatment decisions depend on the applied predic-

tion model and its associated risk threshold. For example, of the high-risk individuals consid-

ered for preventive treatment according to FRS, only 1%, 28%, and 2% were eligible according

to ATP, PCE, and SCORE, respectively (Table 2). Hence, the choice for a specific prediction

model is very likely to impact treatment decisions in a large group of assessed individuals. For-

tunately, the variation in relative predicted CVD risks is limited, implying that these prediction

models rank individuals similarly regarding their CVD risk.

Consequences of difference in composite endpoints on clinical utility

Previous research has indicated that the use of composite endpoints instead of single endpoints

in clinical trials may have benefits, e.g. improved power or wider coverage of the disease [22].

However, the overall usefulness of composite endpoints in clinical trials is still debated due to

the difficulty of interpreting differences in ‘set of outcomes’ [22, 23]. The interpretation of the

associated consequences of predicted CVD risks is also directly affected by the different com-

posite endpoints. For example, communicating to a patient that he/she has a 10-year CVD risk

of 3% according to SCORE, compared to a 10-year CVD risk of 6% according to FRS, may

affect understanding and adherence of patients to any recommended preventive treatment. A

3% SCORE risk could indicate that the patient is part of the group with the 20% highest abso-

lute risk according to SCORE whereas the patient could be part of the group with the 20% low-

est predicted absolute risk with a 6% risk according to FRS (Fig 1).

In addition, the expected health loss due to events predicted by SCORE is expected to be

higher than the health burden or health loss due to events predicted by FRS due to how all

included events in SCORE are fatal, but can fatal or non-fatal in FRS. This issue also affects the

evaluation of benefits from preventive interventions. For example, when preventive statin

treatment is assumed to reduce the risk of a “composite” endpoint with a certain fraction (rela-

tive risk < 1), estimates of the corresponding health benefits will be highly dependent on the

(constitution of) the composite endpoint of the prediction model used [24].

Even for a single prediction model, the impact of experiencing a predicted composite event

is likely to depend on age, since a) the proportion of fatal events increases with age, and b) the

actual health loss due to CVD events decreases with age (i.e. with decreasing life expectancy).

Hence, even if the distribution of events included in a composite endpoint is known, the

expected health impact of a specific risk estimate, for example a 10-year FRS risk of 8%, and

therefore the potential benefits of preventive intervention, may differ between groups of indi-

viduals [25].

Given the adequate performance of the CVD prediction models considered, and roughly

similar relative risk classification, it is recommended that models are applied that have a broad

rather than narrow composite endpoint, i.e. models covering a large range of CVD event

types. For example, ATP and SCORE may be less useful in this context than FRS and PCE, as
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the latter cover more manifestations of the underlying cardiovascular disease process. This

results in higher predicted risks, which may then be communicated as the ‘total risk’ of any

(type of) CVD event to the patient, to facilitate understanding and improve adherence to pre-

ventive medication [26]. However, understanding the “total (high) risk” is only an aspect of

adherence and should not replace informed choice and shared decision making.

Implications for development of new prediction models

Regarding prediction model development and research, it is recommended that any newly

developed clinically relevant risk prediction model also use a broad composite endpoint, with

each included event type uniquely defined, e.g. using ICD-10 codes. A clear definition of a) the

composite endpoint and b) the observed incidence of each event type in the development

cohort is critical to enable correct interpretation of the predicted risks. This will allow for

more transparent and direct comparison of predicted risks and statistical performance of pre-

diction models as well as more standardized evaluations of the health impact of risk-based pre-

ventive interventions.

Conclusion

Current CVD risk prediction models vary widely in predicted outcomes, which directly impact

their usefulness in clinical practice. Furthermore, this renders estimates of the population bur-

den of CVD, and of the impact of risk-based CVD intervention strategies that highly depend

on the prediction model used. Physicians, patients and health policy makers may benefit from

a broader and more standardized method of defining outcomes and classification thresholds

in prediction model studies.
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