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Abstract

Introduction

Epoxyeicosatrienoic acids (EETs) are able to enhance angiogenesis and regulate inflamma-

tion that is especially important in wound healing under ischemic conditions. Thus, we evalu-

ated the effect of local EET application on ischemic wounds in mice.

Methods

Ischemia was induced by cautherization of two of the three supplying vessels to the mouse

ear. Wounding was performed on the ear three days later. Wounds were treated either with

11,12 or 14,15 EET and compared to untreated control and normal wounds. Epithelialization

was measured every second day. VEGF, TNF-α, TGF-β, matrix metalloproteinases (MMP),

tissue inhibitors of metalloproteinases (TIMP), Ki67, and SDF-1α were evaluated immuno-

histochemically in wounds on day 3, 6, and 9.

Results

Ischemia delayed wound closure (12.8 days ± 1.9 standard deviation (SD) for ischemia

and 8.0 days ± 0.94 SD for control). 11,12 and14,15 EET application ameliorated deterio-

rated wound healing on ischemic ears (7.6 ± 1.3 SD for 11,12 EET and 9.2 ± 1.4 SD for

14,15 EET). Ischemia did not change VEGF, TNF-α, TGF-β, SDF-1α, TIMP, MMP7 or

MMP9 level significantly compared to control. Local application of 11,12 as well as 14,15

EET induced a significant elevation of VEGF, TGF-β, and SDF-1α expression as well as

proliferation during the whole phase of wound healing compared to control and ischemia

alone.

Conclusion

In summary, EET improve impaired wound healing caused by ischemia as they enhance

neovascularization and alter inflammatory response in wounds. Thus elevating lipid
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mediator level as 11,12 and 14,15 EET in wounds might be a successful strategy for amelio-

ration of deranged wound healing under ischemia.

Introduction

Wound healing is a highly regulated process that restores integrity of the skin. Failure of the

orderly sequence of steps for wound closure leads to chronic wounds. Especially resolution of

inflammation and angiogenesis are highly important in this process. Several systemic diseases

as diabetes mellitus and arteriosclerosis promote the development of chronic wounds as they

diminish blood supply that leads to a decreased oxygen pressure on the wound side. Thus, it has

already been proposed, that enhancing neovascularisation as means to improve blood supply

seems to be the key step to rescue deteriorated wound healing in chronic wounds [1]. Secondly,

chronic wounds fail to resolve inflammation that is important to switch to proliferation and tis-

sue formation stage. For this reason, regulation of inflammation in the wound side also seems

to be a promising approach to enhance deteriorated wound healing in chronic wounds [2].

Epoxyeicosatrienoic acids (EETs) are lipid mediators derived of arachidonic acid by cyto-

chrome P450 epoxygenases. They are known to regulate inflammation, angiogenesis, and vas-

cular tone [3]. In our previous work we could already show that local application of 11,12 EET

and 14,15 EET can accelerate wound healing by enhancing local neovascularisation under nor-

mal conditions in mice [4]. These effects are at least partially mediated by enhanced VEGF

expression in regenerating tissues [4,3]. VEGF is known to be a key factor for mediating angio-

genesis during the proliferative phase of wound healing [5]. Besides its potent pro-angiogenic

properties VEGF also promotes endothelial cell activation and migration [6]. It has already

been shown, that under ischemic conditions wounds display a higher expression of VEGF

than normal [7]. Furthermore, exogenous administration of VEGF under hypoxic conditions

additionally enhances angiogenesis and improves the survival of ischemic skin flaps [7].

Besides these facts, EETs also stimulate formation of collateral blood supply in ischemic tissues

[8]

Furthermore, EETs have anti-inflammatory properties and enhance vasodilatation, cellular

proliferation and migration. Panigrahy et al. could also demonstrate that EETs accelerate tissue

growth and regeneration in different organs [3]. In an animal model of lung injury EETs

diminish organ damage by protecting against the pro-apoptotic effects of TNF-α [9]. TNF-α
exerts a double sided role during wound healing [14]. High concentration of this cytokine

inhibit granulation tissue formation and suppresses the function of TGF-β that is highly

important for proliferation. TGF-β also stimulated collagen production thus enhancing forma-

tion of extracellular matrix [10]. This is partly mediated by up-regulation of tissue inhibitors of

metalloproteinases (TIMPs) that negatively regulate the function of matrix metalloproteinases

(MMPs). Thus low concentrations of TNF-α promote collagen deposition [11–14,10]

MMPs are important for wound closure and reepithelialisation as they facilitate keratino-

cyte migration [15]. They also take part in activation and degradation of cytokines and are

important for angiogenesis and scar formation [16]. During wound healing inhibition of solu-

ble epoxide hydrolase that degrades EETs alters expression of matrix metalloproteinases and

their inhibitor TIMP1 [17]. This could also be shown in in vitro experiments as EET treatment

of cancer cells resulted in an up-regulation of MMP9 expression [18]. Treatment with 11,12

EET also enhances MMP activity in endothelial cells [19].

Besides these effects EETs also enhance SDF-1α expression in wounds [4]. SDF-1α is an

important homing factor for stem and progenitor cells that take part in coordinating wound
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repair by cytokine production [20]. SDF-1α also promotes keratinocyte proliferation and

migration in vitro which could partly explain its positive effect on wound repair [21].

In the following study, we examined the effect of local EET application on wounds under

ischemic conditions and analyzed the effects on inflammation and neovascularization on the

wound side.

Material and methods

To analyze wound repair under ischemic conditions we used a model of ischemia on mouse

ears that we combined with a creation of a wound on the dorsal side of the ear. Epithelializa-

tion of the wounds was measured in vivo in animals. For analysis of neovascularization,

inflammation and proliferation expression of CD31, VEGF, TNF-α, TGF-β, MMP7, MMP9,

SDF-1α, and Ki67 were measured immunohistochemically after sacrifice of the animals on

day 3, 6, and 9 after wound creation.

Animals

All animal experiments were performed in accordance with ethic guidelines of German law

and approved by the Regierungspräsidium Darmstadt (Ethic Approval no. V54–19c20/15–F3/

17).

Male hairless SKH-1 mice (weight 25–35 g; age 8–10 weeks) were obtained from Charles

River Laboratories (Sulzfeld, Germany). Animals were housed in separate cages at 24 ˚C with

light intervals of 12 h/day in airflow regulated rooms, and fed a balanced rodent diet with

water ad libitum. For all surgical interventions the animals were anesthetized with intraperito-

neal (i.p.) injection of 100μl solution containing 2.215mg of ketamine and 0.175mg of xylazine

hydrochloride. For all wound measurements animals were anesthetized the same as for sur-

gery. At the end of the experiments animals were euthanized by cervical dislocation [22].

Induction of ischemia

Ischemia of the mouse ears was created by cauterization of all but one of the three to four neu-

rovascular bundles that supply the ear leaving only the most anterior bundle for blood circula-

tion as described previously [23]. This procedure was done three days prior to wound creation

on the ears.

Wound creation

Wounds were created on the dorsum of both ears three days after the induction of ischemia.

To attain a standard size of the wounds a circular punch (diameter 2.25 mm) was used to incise

a full thickness layer of ear skin down to the underlying cartilage, as described previously.

After the punch incision, the skin was carefully removed from the underlying cartilage. Subse-

quently, the wound was covered with a small methylcellulose pad according to the treatment

group with or without 11,12 EET or 14,15 EET (Cayman Chemical Company, Ann Arbor,

Michigan, USA). Pads were manufactured by taking 200μl of 2,5% carboxymethylcellulose in

PBS and adding either 200μl ethanol for control or 160μl ethanol and 40μl of 95% 11,12 EET

or 98% 14,15 EET to the mixture. To obtain a pad the mixture was dried for 20 minutes on a

hot plate at 37˚ Celsius on parafilm.

Finally, the entire ear was covered with a bioadhesive dressing (Opsite; Smith and Nephew

Medical Ltd., Tuttlingen, Germany) [24,22].

EET in wound healing under ischemic conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0209158 January 16, 2019 3 / 15

https://doi.org/10.1371/journal.pone.0209158


Wound epithelialization and wound closure measurements

The wound model on the mouse ear allows direct measurement of epithelialization of the

wound as wound contraction that normally occurs in mice is impeded as the skin of the ear is

directly attached to the underlying cartilage. Thus, epithelialization could directly be measured

in living animals.

On the day of wounding (day 0) and subsequently every second day thereafter, wound epi-

thelialization was measured by direct visualization and quantification using in vivo microscopy

and computerized planimetry. Measurements were performed by placing the outstretched ear

of the anesthetized animals on an acrylic glass platform on the stage of an intra-vital microscope

(Carl Zeiss, Oberkochen, Germany). The microscope image was captured with a low light cam-

era (DXC-390P, 3CCD color video camera; Sony, Tokyo, Japan) and transferred through a digi-

tal converter (ADVC-100; Canopus, Ruppach-Goldhausen, Germany). Digitalized images were

analyzed using the ImageJ software (http://rsb.info.nih.gov/ij/download.html) by tracing the

wound margin and calculating the area. The rate of wound-closure was expressed as the ratio of

the wounded area at each time point divided by the original wound area at time 0.

Wound closure was determined as the day of complete epithelialization of the wound.

Analysis was performed by an independent investigator [25].

Evaluation of angiogenesis, inflammatory reaction, and proliferation in

wounds

Wounded ears from killed animals were embedded in TissueTek (Sakura Finetek Europe, Zoe-

terwoude, The Netherlands) on day 2, 6, 10, and 16 after surgery and stored at –80˚C. For

immunohistochemical staining, wounds were cut to sections of 5μm thickness.

For analysis, the sections were submerged in acetone (–20˚C, 10min) followed by 10 min

0.1% hydrogen peroxidase treatment. Sections were stained with primary antibodies directed

against VEGF (Abcam, Cambridge, UK) for evaluation of angiogenesis, TNF-α, TGF-β, and

SDF-1α (Abcam, Cambridge, UK) and MMP7, MMP9 and TIMP1 (Abbiotec, San Diego,

USA) for wound cytokine expression, and Ki67 (Dako, Hamburg, Germany) for proliferation

for 1h at RT. Primary antibodies were detected by HRP-AEC (Abcam, Cambridge, UK) stain-

ing according to the guidelines of the manufacturer. Sections were counterstained with hema-

toxylin and viewed at 100x magnification (Axio Observer; Carl Zeiss, Oberkochen, Germany).

The microscope image was captured with a low light camera (AxioCam; Carl Zeiss, Oberko-

chen, Germany) and digitalized. Photographic images were analyzed using the ImageJ software

(https://imagej.nih.gov/ij/). The staining of each section was standardized to the area scanned.

The analysis was performed by an independent investigator [25].

Statistical analysis

Data are presented as the mean ± SD. Statistical evaluation was performed with non-paramet-

ric Kruskal-Wallis test followed by a Dunn post-hoc test using a Bonferroni-Holm adjustment

with Bias 10.0 (Epsilon-Verlag, Darmstadt, Germany) comparing the evaluated two groups at

the same point of time. Values of p<0.05 were considered statistically significant. The number

of samples examined is indicated by n.

Results

Wound closure and reepithelialisation process during wound healing

For evaluation of wound closure after induction of ischemia by ligation of 2 of the 3 supplying

vessels to the mouse ear and effect of local 11,12 EET and 14,15 EET on ischemic ears, we
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monitored day of wound closure and the process of reepithelialisation throughout the wound

healing process. For the later purpose, wound area was measured every second day after

wounding of the ear.

Full reepithelialisation of the wound occurred in ischemic ears on day 12.8 ± 1.9 standard

deviation (SD) whereas wounds of control mice closed on day 8.0 ± 0.94 SD. (Fig 1A).

Fig 1. A Day of wound closure. Depicted is day of wound closure of controlwounds, ischemic wounds and ischemic wounds after treatment with 11,12 and

14,15 EET. B Representative in vivo pictures of wound healing taken every second day (data is shown as mean ± SD; n = 10). �p<0.05, ��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0209158.g001
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Local application of EETs was able to rescue impaired wound healing after induction of

ischemia. Wounds on 11,12 EET treated ischemic ears closed on day 7.6 ± 1.3 SD and 14,15

EET treated mice on day 9.2 ± 1.4 SD (Fig 1A). Thus, 11,12 EET showed a better potential for

rescuing impaired wound healing after induction of ischemia than 14,15 EET though this find-

ing was not significant (Fig 1A). Comparing non ischemic control and ischemic ears after

11,12 as well as 14,15 EET application no significant difference was observed.

These results are well supported by measurement of closing wound area in vivo throughout

the wound healing process. Reepithelialisation was delayed after day 6 up to day 10 after

wounding in ischemic ears compared to control mice (Fig 2A). Application of 11,12 EET on

ischemic ears significantly enhanced delayed reepithelialisation from day 4 up to day 10 (Fig

2B) and application of and 14,15 EET ameliorated wound healing from day 8 to day 10 com-

pared to ischemic ears (Fig 2C). On day 6 and day 8 11,12 EET showed an even faster wound

closure than application of 14,15 EET in accordance to the fact that 11,12 ETT also enhanced

Fig 2. A Percentage of closed wound area from day 0–16 of ischemic and non-ischemic ears. B Percentage of closed wound area from day 0–16 of ischemic and 11,12

EET treated wounds. C Percentage of closed wound area from day 0–16 of ischemic and 14,15 EET treated wounds. (data is shown as mean ± SD; n = 10).�p<0.05,
��p<0.01, ���p<0.001.

https://doi.org/10.1371/journal.pone.0209158.g002
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wound closure compared to 14,15 EET thought this finding was not significant. Furthermore,

No significant difference in wound closure was seen when comparing control and 11,12 as

well as 14,15 EET.

Summing up 11,12 EET as well as 14,15 EET were able to ameliorate delayed wound healing

in ischemic wounds. Moreover 11,12 EET exhibited even a better potential for rescuing

impaired wound healing than 14,15 EET.

Evaluation of local neovascularisation in wounds

We evaluated neovascularisation in ischemic wounds and after treatment with EETs by mea-

suring VEGF expression immunohistochemically.

Wound on ischemic ears seemed to express more VEGF on throughout the whole wound

healing process compared to control though this finding was not significant (Fig 3A). Local

treatment with 11,12 EET elevated VEGF expression in wounds on day 3, 6, and 9 compared to

control and to non-treated ischemic wounds and 14,15 EET on day 3, 6, and 9 compared to

control as well as on day 6 and 9 compared to ischemia alone (Fig 3A). Furthermore, 11,12 EET

seemed to enhanced VEGF expression more than 14,15 EET treatment though this was not sig-

nificant (Fig 3A). Thus, local EET treatment enhances neovascularization in ischemic wounds.

Evaluation of local inflammation reaction in wounds

Local inflammatory reaction is a key step to wound healing. Thus local TNF-α and TGF-β
expression was measured in ischemic and non-ischemic wounds as well as after treatment

with 11,12 EET and 14,15 EET. Expression of MMP7 and MMP9 and their inhibitor TIMP1

were also evaluated immunohistochemically. Furthermore, SDF-1α was stained in wounds.

Expression of TNF-α seemed to be enhanced on day 6 and day 9 in ischemic wounds com-

pared to control though this finding was not significant (Fig 4A). This suggests a prolonged

inflammatory state in ischemic wounds.

After treatment with 11,12 EET expression of TNF-α appeared to be elevated on day 3 and

day 6 after wounding compared to control, ischemia and 14,15 EET treatment though this was

only significant on day 6 compared to 14,15 EET. TNF-α level normalized to control group on

day 9 and was significantly lower than in the ischemic group on this day (Fig 4A). So initial

raised inflammatory reaction by TNF-α receded to normal in later stages of wound healing.

TNF-α expression in wounds of 14,15 EET treated mice was comparable to control ears

throughout the whole period of wound healing and was significantly lower on day 6 compared

to ischemic wounds and 11,12 EET treatment (Fig 4A).

TGF-β expression in ischemic wounds equalled that of control group on day 3 and day 6

and appeared to be elevated on day 9 compared to control (Fig 4B). This supports the thesis of

a prolonged inflammatory reaction under ischemic conditions.

Treatment with both 11,12 EET and 14,15 EET raised TGF-β expression in wounds

throughout the whole period of wound healing significantly to control group and also to ische-

mic group (Fig 4B). Between 11,12 EET and 14,15 EET application no difference could be

observed (Fig 4B). Thus indicating that especially the strongly elevated expression of TGF-β
might be key to ameliorated wound healing after local application of EET.

Local level of MMP7 in ischemic wounds seemed to be higher throughout the whole

wound healing period compared to control, though this was no significant (Fig 5A). Compara-

bly MMP9 level appeared to be raised in ischemic wounds on day 3 and 6 compared to control

though also not significantly (Fig 5B). On day 9, MMP9 expression in ischemic wounds equal-

led the expression in control group (Fig 5B). In contrast to this, ischemia did not alter TIMP1

level during the whole period of wound repair compared to control (Fig 6A).

EET in wound healing under ischemic conditions
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Local application of 11,12 EET and 14,15 EET significantly raised the level of MMP7

throughout the whole period of wound healing in comparison to control and level of MMP9

on day 3 and day 6 for 11,12 EET as well as day 3, day 6 and day 9 for 14,15 EET (Fig 5A and

5B). Compared to ischemia 11,12 EET and 14,15 EET application significantly raised the

expression MMP9 on day 9 (Fig 5B).

Though 14,15 EET application showed only a little influence on MMP expression compared

to ischemia, it significantly lowered TIMP1 expression on day 6 compared to ischemia and on

day 9 compared to 11,12 EET (Fig 6A). In contrast to this findings, 11,12 EET application

seemed to enhanced level of TIMP1 expression on day 3 and day 9 compared to control and

Fig 3. A Percentage of VEGF positive area on day 3, 6, and 9 after wounding ofcontrol, ischemic and 11,12 as well as 14,15 EET treated ischemic wounds. On the right

representative pictures of immunohistological staining. B Percentage of Ki67 positive cells on day 3, 6 and 9 after wounding ofcontrol, ischemic and 11,12 as well as

14,15 EET treated ischemic wounds. On the right representative pictures of immunohistological staining (data is shown as mean ± SD; n = 8). �p<0.05, ���p<0.001.

https://doi.org/10.1371/journal.pone.0209158.g003
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ischemia though this was not significant (Fig 6A). Thus 11,12 EET as well as 14,15 EET change

expression of MMP and their inhibitor TIMP in wound healing.

SDF-1α expression in ischemic wounds appeared to be increased only on day 9 after

wounding compared to control though this was not significant (Fig 6B). During earlier stages,

it almost equalled the expression in control wounds. In accordance to earlier findings, 11,12 as

well as 14,15 EET application enhanced SDF-1α expression throughout the whole wound heal-

ing process significantly compared to control and non-treated ischemic wounds (Fig 6B).

Evaluation of proliferation in wounds

As ischemic wounds after treatment with EETs exhibited a significantly faster closure, evalua-

tion of proliferation in wounds as a means for faster wound closure was evaluated by Ki67

expression in cells.

Fig 4. A Percentage of TNF-α positive area on day 3, 6, and 9 after wounding of control, ischemic and 11,12 as well as 14,15 EET treated ischemic wounds. On the right

representative pictures of immunohistological staining. B Percentage of TGF-β positive area on day 3, 6 and 9 after wounding of control, ischemic and 11,12 as well as

14,15 EET treated ischemic wounds. On the right representative pictures of immunohistological staining (data is shown as mean ± SD; n = 8). �p<0.05, ���p<0.001.

https://doi.org/10.1371/journal.pone.0209158.g004
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First of all, we found that in ischemic wounds proliferation was almost equal to that of non-

ischemic ears throughout the whole period of wound healing (Fig 3B). This indicates that pro-

liferation does not seem to be responsible for delayed wound healing under ischemic condi-

tions (Fig 3B).

In contrast to this finding proliferation after treatment with 11,12 EET and 14,15 EET in

ischemic wounds was significantly elevated on all days measured after wounding (Fig 3B).

This finding indicates that elevated proliferation rate after treatment of wound with EETs

might be one of the major reasons for enhanced wound closure and reepithelialisation.

Discussion

In this study, we evaluated the effect of 11,12 EET as well as 14,15 EET on deteriorated wound

healing under ischemic conditions. For this purpose, we used the model of the hairless mouse,

Fig 5. A: Percentage of MMP7 positive area on day 3, 6 and 9 after wounding of control, ischemic and 11,12 as well as 14,15 EET treated ischemic wounds. On the right

representative pictures of immunohistological staining. B: Percentage of MMP9 positive area on day 3, 6 and 9 after wounding of control, ischemic and 11,12 as well as

14,15 EET treated ischemic wounds. On the right representative pictures of immunohistological staining (data is shown as mean ± SD; n = 8). �p<0.05, ��p<0.01,
���p<0.001.

https://doi.org/10.1371/journal.pone.0209158.g005
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where ischemia was induced by cauterization of 2 of the 3 suppling vessels as described previ-

ously [23,24]. EETs are well known to regulate inflammation, vascular tone, and neogangio-

genesis [3]. Thus, we analyzed the effect of local EET application on wound closure,

neovascularization, inflammation, and proliferation in the wounds.

We could confirm that ligation diminished blood supply to the wound area impairs local

wound healing as it has already been described by Kamler et al. [23]. Local application of 11,12

EET and 14,15 EET could rescue deteriorated wound healing in our model of ischemic

wounds as time to wound closure was reduced to normal by 11,12 EET and was only slightly

longer after application of 14,15 EET compared to non-ischemic control.

Ischemia itself did not significantly increased the expression of VEGF in wounds compared

to control showing that the insufficient angiogenesis might be one of the reasons for impaired

Fig 6. A: Percentage of TIMP1 positive area on day 3, 6 and 9 after wounding of control, ischemic and 11,12 as well as 14,15 EET treated ischemic wounds. On the right

representative pictures of immunohistological staining. B: Percentage of SDF-1α positive area on day 3, 6 and 9 after wounding of control, ischemic and 11,12 as well as

14,15 EET treated ischemic wounds. On the right representative pictures of immunohistological staining (data is shown as mean ± SD; n = 8). �p<0.05, ��p<0.01,
���p<0.001.

https://doi.org/10.1371/journal.pone.0209158.g006
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wound healing in ischemia. Local application of 11,12 EET as well as 14,15 EET raised level of

VEGF significantly compared to non-ischemic control and to ischemic wounds. This aug-

mented expression alludes to the hypothesis that enhanced wound healing under ischemic

conditions with locally applied EETs might be primarily explained by an increased neovascu-

larisation supporting an sufficient blood supply to the wound.

In our hands, ischemia appeared to lead to a prolonged augmentation of TNF-α in wounds

on day 6 and day 9 after wounding though this was not significant. This suggests an extended

inflammatory state in ischemic wounds and supports earlier findings where the development

of chronic wounds is attributed to an unresolved inflammatory state [2]. After treatment with

11,12 EET TNF-α expression seemed to be elevated on day 3 and day 6 after wounding com-

pared to non-ischemic control but normalized during the later stages of wound healing. In

contrast to this, application of 14,15 EET did not change TNF-α level compared to non-ische-

mic control wound.

Thus, 11,12 EETs seem to enhance initial inflammatory reaction that resolves in later stages

to normal. This change in TNF-α expression might also be a key in amelioration of healing.

This early elevation of TNFα is not observed in 14,15 EET treated wounds that exhibit a poorer

wound healing than those after 11,12 EET treatment. Accordingly, we recently observed

reduced initial inflammatory reaction was associated with prolonged wound healing during

sepsis [25]. Furthermore, local 11,12 EET treatment reduced TNF-α expression in late stages

of wound healing compared to untreated ischemic wounds normalizing inflammatory reac-

tion to non-ischemic control. These finding support the notion that prolonged inflammation

in wounds promotes the formation of chronic wounds as suggested earlier [2].

No difference in TGF-β expression was observed between ischemic and non-ischemic

wound throughout the whole wound healing process. But local application of 11,12 EET and

14,15 EET raised the TGF-β level on all days measured. TGF-β is one of the most important

factors for successful wound healing as it is a powerful chemoattractant for monocytes and

macrophages as well as fibroblasts [26]. It also induces angiogenesis and positively regulates

ECM production by fibroblasts. Overexpression of TGF-β also induces a faster epithelializa-

tion of wounds though this role of the cytokine is yet to be discussed [27]. Nevertheless, ele-

vated TGF-β expression after EET application might be another key impact positively

influencing wound healing under ischemic conditions.

Function and release of cytokines as well as angiogenesis, epithelialization and scar forma-

tion are also regulated by MMPs and their inhibitors [16]. Ischemia did not significantly

change MMP7 or MMP9 expression in wounds though it seemed to be elevated during the

early period of wound healing compared to control. 11,12 and 14,15 EET application increased

level of MMP7 and of MMP9 during the all stages of healing. MMPs are able to inflict multiple

different functions in the wound. First, MMPs regulate inflammatory reaction. They can

enhance inflammation by cleaving pro-inflammatory cytokines from the cell surface [13].

They can also undermine inflammation by degrading the same cytokines. Furthermore,

MMPs can cleave different components of cell-cell junctions and in this way promote reepithe-

lialization. They also take part in creating a chemotactic gradient by degradation or activation

of different chemokines. For example, MMP7 is a key regulator for transepithelial neutrophil

migration after lung injury [28]. Thus, elevation of MMPs might be part of enhanced neovas-

cularization, epithelialization and change in inflammation leading to an ameliorated healing

by EETs.

Furthermore, we analyzed SDF-1α expression. SDF-1α is an important chemokine for

homing of stem and progenitor cells and in this way positively influences healing [20]. After

induction of ischemia, no significant elevation of SDF-1α was found though it appeared to be

augmented on day 9 when comparing control. This might indicate the prolonged healing
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process as there is a prolonged enhanced expression of SDF-1α. SDF-1α expression was highly

elevated in wounds after application of 11,12 and 14,15 EET, confirming the results that were

found earlier under non-ischemic conditions [4]. Thus, enhanced wound healing under ische-

mic conditions by EETs is at least partially mediated by increased SDF-1α. SDF-1α influences

also keratinocyte migration and proliferation positively which might lead to an ameliorated

epithelialization and in this way improves wound closure [20,21].

Finally, evaluation of keratinocyte proliferation showed only a small difference between

ischemic and non-ischemic wounds on day 6 that was not even significant, suggesting that

proliferation does not seem to be responsible for delayed wound healing under ischemic con-

ditions. On the other hand, treatment with 11,12 and 14,15 EET elevated amount of proliferat-

ing cells significantly throughout the whole period of wound healing. This effect can be

partially explained by elevated SDF-1α found in EET treated wounds and in this way confirm

the in vitro results found by Florin et al. [21]. In the wound model we used wound closure is

facilitated by reepithelialisation as wound contraction is inhibited by the adhesion of the epi-

thelium to the underlying cartilage of the mouse ear. Thus, enhanced proliferation might be

one of the key factors for faster wound closure after local EET application.

In summary, 11,12 and 14,15 EET improve delayed wound healing in ischemia. This effect

is mediated by enhanced proliferation and neovascularization as well as an alteration of

inflammation in wounds.

Supporting information

S1 Table. Raw data of wound area and day of wound closure of control, ischemic and 11,12

as well as 14,15 EET treated ischemic wounds.

(XLSX)

S2 Table. Raw data of percentage of VEGF positive area on day 3, 6 and 9 after wounding

of control, ischemic and 11,12 as well as 14,15 EET treated ischemic wounds.

(XLSX)

S3 Table. Raw data of percentage of Ki67 positive area on day 3, 6 and 9 after wounding of

control, ischemic and 11,12 as well as 14,15 EET treated ischemic wounds.

(XLSX)

S4 Table. Raw data of percentage of TNF-α positive area on day 3, 6 and 9 after wounding

of control, ischemic and 11,12 as well as 14,15 EET treated ischemic wounds.

(XLSX)

S5 Table. Raw data of percentage of TGF-β positive area on day 3, 6 and 9 after wounding

of control, ischemic and 11,12 as well as 14,15 EET treated ischemic wounds.

(XLSX)

S6 Table. Raw data of percentage of MMP7 positive area on day 3, 6 and 9 after wounding

of control, ischemic and 11,12 as well as 14,15 EET treated ischemic wounds.

(XLSX)

S7 Table. Raw data of percentage of MMP9 positive area on day 3, 6 and 9 after wounding

of control, ischemic and 11,12 as well as 14,15 EET treated ischemic wounds.

(XLSX)

S8 Table. Raw data of percentage of TIMP1 positive area on day 3, 6 and 9 after wounding

of control, ischemic and 11,12 as well as 14,15 EET treated ischemic wounds.

(XLSX)

EET in wound healing under ischemic conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0209158 January 16, 2019 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209158.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209158.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209158.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209158.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209158.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209158.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209158.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209158.s008
https://doi.org/10.1371/journal.pone.0209158


S9 Table. Raw data of percentage of SDF-1α positive area on day 3, 6 and 9 after wounding

of control, ischemic and 11,12 as well as 14,15 EET treated ischemic wounds.

(XLSX)

Acknowledgments

Presentation Data of the present study were presented in part at the annual meeting of the

European Tissue Repair Society at Athens 2012

Author Contributions

Conceptualization: Katharina Sommer, Johannes Frank.

Formal analysis: Anna Lena Sander.

Investigation: Heike Jakob, Farsin Badjlan.

Methodology: Dirk Henrich.

Project administration: Ingo Marzi.

Writing – original draft: Katharina Sommer.

References
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16. Toriseva M, Kähäri V-M (2009) Proteinases in cutaneous wound healing. Cellular and molecular life sci-

ences: CMLS 66 (2): 203–224. https://doi.org/10.1007/s00018-008-8388-4 PMID: 18810321

17. Sander AL, Sommer K, Neumayer T, Fleming I, Marzi I, Barker JH et al. (2013) Soluble epoxide hydro-

lase disruption as therapeutic target for wound healing. The Journal of surgical research 182 (2): 362–

367. https://doi.org/10.1016/j.jss.2012.10.034 PMID: 23122666

18. Jiang J-G, Ning Y-G, Chen C, Ma D, Liu Z-J, Yang S et al. (2007) Cytochrome p450 epoxygenase pro-

motes human cancer metastasis. Cancer research 67 (14): 6665–6674. https://doi.org/10.1158/0008-

5472.CAN-06-3643 PMID: 17638876

19. Michaelis UR, Fisslthaler B, Barbosa-Sicard E, Falck JR, Fleming I, Busse I (2005) Cytochrome P450

epoxygenases 2C8 and 2C9 are implicated in hypoxia-induced endothelial cell migration and angiogen-

esis. Journal of cell science 118 (Pt 23): 5489–5498. https://doi.org/10.1242/jcs.02674 PMID:

16291720

20. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME et al. (2004) Progenitor

cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature medicine 10

(8): 858–864. https://doi.org/10.1038/nm1075 PMID: 15235597

21. Florin L, Maas-Szabowski N, Werner S, Szabowski A, Angel P (2005) Increased keratinocyte prolifera-

tion by JUN-dependent expression of PTN and SDF-1 in fibroblasts. Journal of cell science 118 (Pt 9):

1981–1989. https://doi.org/10.1242/jcs.02303 PMID: 15840658

22. Sander AL, Jakob H, Henrich D, Powerski M, Witt H, Dimmeler S et al. (2011) Systemic transplantation

of progenitor cells accelerates wound epithelialization and neovascularization in the hairless mouse ear

wound model. The Journal of surgical research 165 (1): 165–170. https://doi.org/10.1016/j.jss.2009.07.

003 PMID: 20036386

23. Kamler M, Lehr HA, Barker JH, Saetzler RK, Galla TJ, Messmer K (1993) Impact of ischemia on tissue

oxygenation and wound healing. Intravital microscopic studies on the hairless mouse ear model. Euro-

pean surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes

25 (1): 30–37. https://doi.org/10.1159/000129254 PMID: 8482303

24. Barker JH, Kjolseth D, Kim M, Frank J, Bondar I, Uhl E et al. (1994) The hairless mouse ear. An in vivo

model for studying wound neovascularization. Wound repair and regeneration: official publication of the

Wound Healing Society [and] the European Tissue Repair Society 2 (2): 138–143.

25. Sommer K, Sander AL, Albig M, Weber R, Henrich D, Frank J et al. (2013) Delayed wound repair in sep-

sis is associated with reduced local pro-inflammatory cytokine expression. PLoS ONE 8 (9): e73992.

https://doi.org/10.1371/journal.pone.0073992 PMID: 24086305

26. Faler BJ, Macsata RA, Plummer D, Mishra L, Sidawy AN (2006) Transforming growth factor-beta and

wound healing. Perspectives in vascular surgery and endovascular therapy 18 (1): 55–62. PMID:

16628336

27. Tredget EB, Demare J, Chandran G, Tredget EE, Yang L, Ghahary A (2005) Transforming growth fac-

tor-beta and its effect on reepithelialization of partial-thickness ear wounds in transgenic mice. Wound

repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue

Repair Society 13 (1): 61–67.

28. Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine

mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111 (5): 635–646. PMID:

12464176

EET in wound healing under ischemic conditions

PLOS ONE | https://doi.org/10.1371/journal.pone.0209158 January 16, 2019 15 / 15

https://doi.org/10.1159/000129163
https://doi.org/10.1159/000129163
http://www.ncbi.nlm.nih.gov/pubmed/1802728
https://doi.org/10.1016/j.jaad.2009.08.004
http://www.ncbi.nlm.nih.gov/pubmed/20542177
https://doi.org/10.1007/s00018-008-8388-4
http://www.ncbi.nlm.nih.gov/pubmed/18810321
https://doi.org/10.1016/j.jss.2012.10.034
http://www.ncbi.nlm.nih.gov/pubmed/23122666
https://doi.org/10.1158/0008-5472.CAN-06-3643
https://doi.org/10.1158/0008-5472.CAN-06-3643
http://www.ncbi.nlm.nih.gov/pubmed/17638876
https://doi.org/10.1242/jcs.02674
http://www.ncbi.nlm.nih.gov/pubmed/16291720
https://doi.org/10.1038/nm1075
http://www.ncbi.nlm.nih.gov/pubmed/15235597
https://doi.org/10.1242/jcs.02303
http://www.ncbi.nlm.nih.gov/pubmed/15840658
https://doi.org/10.1016/j.jss.2009.07.003
https://doi.org/10.1016/j.jss.2009.07.003
http://www.ncbi.nlm.nih.gov/pubmed/20036386
https://doi.org/10.1159/000129254
http://www.ncbi.nlm.nih.gov/pubmed/8482303
https://doi.org/10.1371/journal.pone.0073992
http://www.ncbi.nlm.nih.gov/pubmed/24086305
http://www.ncbi.nlm.nih.gov/pubmed/16628336
http://www.ncbi.nlm.nih.gov/pubmed/12464176
https://doi.org/10.1371/journal.pone.0209158

