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Abstract

An extreme learning machine (ELM) is a novel training method for single-hidden layer feed-

forward neural networks (SLFNs) in which the hidden nodes are randomly assigned and

fixed without iterative tuning. ELMs have earned widespread global interest due to their fast

learning speed, satisfactory generalization ability and ease of implementation. In this paper,

we extend this theory to hypercomplex space and attempt to simultaneously consider multi-

source information using a hypercomplex representation. To illustrate the performance of

the proposed hypercomplex extreme learning machine (HELM), we have applied this

scheme to the task of multispectral palmprint recognition. Images from different spectral

bands are utilized to construct the hypercomplex space. Extensive experiments conducted

on the PolyU and CASIA multispectral databases demonstrate that the HELM scheme can

achieve competitive results. The source code together with datasets involved in this paper

can be available for free download at https://figshare.com/s/01aef7d48840afab9d6d.

1 Introduction

Nowadays, machine learning has been playing an increasingly significant role in our daily life

and a variety of machine learning areas have attracted great interests from researchers. The

neural network technology, as a kind of typical machine learning method, is proven to be a

successful tool for artificial intelligence (AI). With the rapid development of computer hard-

ware, deep neural network techniques also achieve a huge success in various kinds of recogni-

tion tasks [1, 2].

Recently, a novel machine learning theory called extreme learning machine (ELM) was pro-

posed by Huang et al. [3, 4] and has aroused growing worldwide concerns. It is a machine

learning method for single-hidden layer feedforward neural networks (SLFNs) that differs

from the traditional back-propagation (BP) algorithm and its variants [5–7]. Unlike the BP-

based learning approach, which employs an iterative process to tune the hidden nodes of an

SLFN, the ELM method completes a training task without any repeated optimizing steps. An

ELM randomly assigns the input weights and bias of an SLFN and analytically calculates the
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output weights by a simple Moore–Penrose generalized inverse. This algorithm can avoid

many difficulties of conventional learning methods, such as the settings of stopping criteria,

learning rates and learning epochs. ELM has been shown to be able to find a global optimal

solution with excellent universal approximation ability and a very fast learning speed. The

advantages of ELM—computation cost and generalization performance—render it one of the

most popular machine learning methods, with extensive and successful applications in classifi-

cation, regression, clustering, compression and feature learning problems [8–12].

In the past decade, a variety of ELM variants were proposed to address problems in the

original theory; they have significantly enhanced the contributions of ELM to theoretical stud-

ies and engineering applications. For example, a regularized extreme learning machine [13]

was investigated to solve the overfitting problem based on structural risk minimization princi-

ple and weighted least squares. In [14], a fast and accurate online sequential learning variant

was developed and applied to gesture recognition and object tracking; it has shown excellent

performance with regard to accuracy and computation time. In [15], the original ELM model

was extended to complete classification and regression tasks with noisy or missing data. From

the implementation aspect, a stacked ELM invariant [16] was designed to render it feasible for

large data sets and real-time reasoning. In recent years, the ELM concept has been introduced

in multilayer perception [17, 18]. As demonstrated in [17], compared with the greedy layer-

wise training of deep learning, the ELM-based framework has a substantially better learning

efficiency.

Although ELM has been successfully applied in an extensive range of domains, it is primar-

ily utilized for single-source information classification. In the case of multisource features, a

fusion operation must be performed either at the feature level or the matching score level [19–

21] to achieve a final result. For feature-level fusion, multisource features are simply jointed.

The input hidden nodes of ELM are adjusted to the dimension of the joint features, which gen-

erates a very large computational cost. Regarding matching score level fusion, features from

each channel are calculated to separately obtain a matching score by ELM; these scores are

fused for the final decision. This strategy merely considers the matching score information

that has lost some discriminative features. Therefore, the high accuracy of the fusion at the fea-

ture level cannot be achieved. In this paper, we propose a hypercomplex extreme learning

machine (HELM) from a different perspective for the classification of multisource informa-

tion. A hypercomplex representation [22, 23] is introduced in the ELM theory. Multisource

features are employed to construct the hypercomplex space, and hypercomplex operation

rules are applied to determine the output weights of SLFNs. In addition, a fusion strategy is

performed on the hypercomplex output nodes to obtain a decision.

As a typical kind of multisource information processing problem, multispectral palmprint

recognition has gained widespread attentions in recent years. Some previous works tried to

process the multisource information using a fusion operation. For example, Lu et al. [24] com-

pleted an illumination-invariant palmprint recognition system by fusing the multispectral

images at image level, in which a FABEMD+WFC fusion framework was developed. Similarly,

Xu et al. [25] fused the multispectral images using a digital shearlet transform based method

and then classified the fused images with the extreme learning machine. Gumaei et al. [26]

proposed a kind of Gabor-based feature extraction method and employed the optimal spectral

band to determine the identities. The same authors [27] further utilized a hybrid feature

extraction method named HOG-SGF instead of Gabor-based one to represent the multispec-

tral palmprint images. Recently, Gumaei et al. [28] developed a new anti-spoof multispectral

biometric cloud-based identification approach for privacy and security of cloud computing, in

which a tree-complex wavelet transform was applied to complete the multispectral fusion task

and Gabor features were used to represent the fusion images. Different from a fusion view, in
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this paper we try to address the multispectral palmprint recognition problem by the proposed

HELM framework, in which the fusion stage could be circumvented. To evaluate the perfor-

mance of the proposed method, we conduct some experiments using the PolyU and CASIA

multispectral palmprint databases [29–33]. Palmprint images from multispectral bands are

employed to construct the hypercomplex representation.

The remainder of this paper is organized as follows: Section 2 provides a brief review of the

ELM, describes the HELM theory and introduces the application of HELM in multispectral

palmprint recognition. Section 3 illustrates the experimental results of the proposed method,

which is tested using the PolyU and CASIA multispectral palmprint databases. Some conclud-

ing remarks are provided in the last section.

2 Related work

2.1 Extreme learning machine

The ELM is a novel learning method for SLFNs that randomly assigns the hidden layer and

analytically determines the output weights of SLFNs. For N distinct training data {xi,ti},

i = 1,2,� � �,N, xi is a 1×n input vector, and ti is a 1×m output vector with only one entry (corre-

spond to the class to which xi belongs) equal to one. n is the dimension of the input data, and

m is the number of classes. To train an SLFN with ~N hidden nodes, the appropriate input

weight vectors αj; j ¼ 1; 2; � � � ; ~N and output weight vectors βj; j ¼ 1; 2; � � � ; ~N are required,

such that

fN~ðxiÞ ¼
XN~

j¼1

gðxeiαjÞβj ¼ ti; i ¼ 1; 2; � � � ;N; ð1Þ

where αj is a (n+1)×1 vector that connects the input nodes to the jth hidden node, βj is a 1×m
vector that connects the jth hidden node to the output nodes, xei is the augmenting vector of xi

with the format of [xi,1]2Rn+1, and g(x) is the activation function.

This formula can be compactly written as

Hβ ¼ T; ð2Þ

where H ¼

gðxe
1
α1Þ � � � gðxe

1
α~NÞ
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.

tN

2

6
6
6
4

3

7
7
7
5

N�m

. The hidden

layer output matrix H is compactly described as

H ¼ gðxeαÞ; ð3Þ

where xe ¼

xe
1

..

.

xeN

2

6
6
4

3

7
7
5

N�ðnþ1Þ

and α ¼ ½α1 � � � α~N �ðnþ1Þ� ~N .

Generally, a typical ELM training process consists of two main steps. The first step is to cal-

culate the hidden layer output matrix with the random map α and a nonlinear piecewise con-

tinuous function, such as the following sigmoid function, sin function and atan function:
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1. Sigmoid function:

Hði; jÞ ¼
1

1þ expð� xeiαjÞ
ð4Þ

2. Sin function:

Hði; jÞ ¼ sinðxeiαjÞ ð5Þ

3. Atan function:

Hði; jÞ ¼ atanðxeiαjÞ ð6Þ

where H(i,j) is the value of H at the position (i, j).

A remarkable characteristic of ELM is that the input weight matrix α of the hidden nodes

can be randomly generated according to any continuous probability distribution, for example,

the uniform distribution on [–1,1]. ELM distinctly differs from conventional feedforward neu-

ral networks. As demonstrated by Eq (2), the only parameters that need to be optimized in the

training process are the output weights β ¼

β1

..

.

β~N

2

6
6
6
4

3

7
7
7
5

~N�m

between the hidden nodes and the out-

put nodes. Mathematically, training an SLFN by an ELM can be transformed into solving a

regularized least squares problem, as illustrated in Eq (2). Additional iterative steps are not

required to tune the parameters of SLFNs, which are significantly more efficient than BP-like

algorithms.

In the second step, ELM attempts to determine the output weights by minimizing the fol-

lowing loss function:

E ¼ min
β1 ;β2 ;���;β~N

X~N

j¼1

ðgðxeiαjÞβj � tiÞ
2

¼ min
β2R~N�m

kgðxeαÞβ � Tk

¼ min
β2R~N�m

kHβ � Tk

: ð7Þ

Huang et al. [4] proved that if the activation function g is infinitely differentiable, for N ¼ ~N
arbitrary distinct samples {xi,ti},i = 1,2,� � �,N, for any randomly assigned α according to any

continuous probability distribution, the hidden layer output matrix H is invertible and kHβ
−Tk = 0. Thus, the output weight matrix β can be calculated by

β ¼ H� 1T; ð8Þ

where H−1 denotes the inverse matrix of H.

In most cases, the number ~N of hidden nodes is significantly less than the number N of dis-

tinct training samples, H is a non-square matrix, and an inverse matrix for H does not exist.

Huang has provided another method for finding the smallest norm least squares solution of
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Eq (2), that is,

β ¼ ðHTHþ
1

C
IÞ� 1HTT; ð9Þ

where HT is the transpose of H, C is a penalty coefficient, and I is an identity matrix with the

size ~N � ~N .

Here, the procedures for training an SLFN using ELM theory are as follows:

Step 1: Initialize the number ~N of hidden nodes; note that ~N � N.

Step 2: Select the suitable activation function g.

Step 3: Randomly assign the input weight matrix α.

Step 4: Construct the output matrix H of the hidden layer.

Step 5: Calculate the output weight matrix β.

2.2 Hypercomplex extreme learning machine

To classify the multisource patterns, an invariant of ELM—Hypercomplex extreme learning

machine—is presented. Instead of using a fusion strategy to combine the multisource informa-

tion, HELM is built on hypercomplex representation, by which the model converts the multi-

source features into a hypercomplex space. It circumvents the process of designing fusion

rules and therefore avoids the interference due to someone’s limited knowledge. In addition,

HELM takes advantages of all multispectral images and learns the model parameters adaptively

according to training data. Thus HELM could be more efficient and accurate than the fusion-

based strategy. To elaborate on the HELM model, initially we must introduce some basic con-

cepts of hypercomplex operation. Mathematically, a hypercomplex number is a linear combi-

nation of a real scalar and the fixed number d of imaginary units:

y ¼ yð1Þ þ yð2Þe1 þ yð3Þe2 þ � � � þ yðdþ1Þed; ð10Þ

where y(1),y(2),� � �,y(d+1) are real numbers, and e1,e2,� � �,ed are the imaginary units. They have

the following relationship:

e1
2 ¼ e2

2 ¼ � � � ¼ ed
2 ¼ e1e2 � � � ed ¼ � 1; ð11Þ

y
�

denotes the conjugate of y and is calculated by

y� ¼ yð1Þ � yð2Þe1 � yð3Þe2 � � � � � yðdþ1Þed: ð12Þ

The norm of a hypercomplex number is defined as

jyj ¼
ffiffiffiffiffiffi
yy�

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðyð1ÞÞ2 þ ðyð2ÞÞ2 þ � � � þ ðyðdþ1ÞÞ
2

q

: ð13Þ

HELM aims to extend the extreme learning theory to hypercomplex space. In the case of

classification of multisource features, HELM utilizes each type of feature to construct a hyper-

complex matrix. Then, the weights of an SLFN are analytically determined with the hypercom-

plex operation rules. Fig 1 shows the structure of the proposed HELM network, which

primarily consists of four key stages: mapping the multisource features into the hidden layer

using the randomly generated real input weights, constructing the hypercomplex hidden layer

output matrix, calculating the hypercomplex output weight matrix, and performing a fusion

strategy on the output nodes to achieve a final decision.

Multispectral palmprint recognition
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For N distinct training samples with multisource features, i.e., {xi
(1),xi

(2),xi
(3),� � �,xi

(d+1),ti},

i = 1,2,� � �,N, where xi
(j)2R1×n denotes the jth attribute of sample i, the core task for HELM is

to determine the input weights and output weights of an SLFN. Similar to the settings in the

ELM, we take a randomly generated map as the input weights. Each attribute of the training

samples is mapped into the hidden layer as

HðjÞ ¼ gðxeðjÞαðjÞÞ; j ¼ 1; 2; � � � ; d þ 1; ð14Þ

where xeðjÞ ¼

xeðjÞ1

..

.

xeðjÞN

2

6
6
6
4

3

7
7
7
5

N�ðnþ1Þ

and αðjÞ ¼ ½α1
ðjÞ � � � α~N

ðjÞ�
ðnþ1Þ�~N . H(j) denotes the hidden layer out-

put matrix for the jth attribute, and xi
e(j) is the augmenting vector of xi

(j) with the format of

[xi
(j) 1]2Rn+1. α(j) is the real input weight matrix for the jth attribute. The input layer and the

hidden layer are connected with the set of real input weight matrices α(j), j = 1,2,� � �,d+1.

A hypercomplex output matrix of the hidden layer is constructed using a hypercomplex

representation, that is,

Fig 1. Structure of the proposed HELM model.

https://doi.org/10.1371/journal.pone.0209083.g001

Multispectral palmprint recognition

PLOS ONE | https://doi.org/10.1371/journal.pone.0209083 April 15, 2019 6 / 18

https://doi.org/10.1371/journal.pone.0209083.g001
https://doi.org/10.1371/journal.pone.0209083


For sample i, different attributes share the same output vector ti. Thus, the hypercomplex

output vector can be constructed as

This vector can be compactly described as

where T(j) denotes the output matrix for the jth attribute, and is the hypercomplex output

matrix of an SLFN.

Having obtained and , we can solve the hypercomplex output weight matrix accord-

ing to the following equations:

where is the hypercomplex transposition-conjugate matrix of . is the hypercomplex

identity matrix with the size of ~N � ~N . is the hypercomplex matrix inversion and is calcu-

lated by a blockwise recursion process described as

where , , and are the hypercomplex matrix sub-blocks of arbitrary size. To be inverted,

must be square. If the number of the rows (or columns) of exceeds one, can be recur-

sively solved by Eq (19). When is scalar, is computed by

where is the conjugate of , and is the norm of . The same procedures are performed in

the calculation of .

With Eq (18), the output weight matrix of the hidden layer is obtained. The hidden layer

and the output layer are connected with hypercomplex weights. The input weights α(j),

j = 1,2,� � �,d+1 and the output weights of an SLFN are determined. The input weights are a

series of real matrices, and the output weights are represented using a hypercomplex matrix.

Once the training process is completed, a sum rule-based fusion strategy is performed on

the hypercomplex output nodes, which considers the information from multisource features.

Let denote the hypercomplex output of a HELM network for

a new sample with multisource features {nx(1),nx(2),� � �,nx(d+1)}. The final fusion result can be

achieved by

fðjÞ ¼
Xdþ1

k¼1

ntðkÞðjÞ � min tðkÞðjÞ
max tðkÞðjÞ � min tðkÞðjÞ

� �

ð21Þ

where f(j) denotes the jth element of the fusion result f2R1×m. nt(k)(j) denotes the jth element

of nt(k). min_t(k)(j) and max_t(k)(j) are calculated by

min tðkÞðjÞ ¼ minft1
ðkÞðjÞ; t2

ðkÞðjÞ; � � � ; tN
ðkÞðjÞg ð22Þ
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max tðkÞðjÞ ¼ maxft1
ðkÞðjÞ; t2

ðkÞðjÞ; � � � ; tN
ðkÞðjÞg ð23Þ

where ti
(k)(j) is the jth element of the ti

(k). ti
(k) is the HELM network output of the training

sample i for the kth attribute.

Here, the procedures for training and testing an SLFN using HELM theory are as follows:

Step 1: Initialize the number ~N of hidden nodes; note that ~N � N.

Step 2: Select the suitable activation function g.

Step 3: Randomly assign the input weight matrix α(j), j = 1,2,� � �,d+1.

Step 4: Construct the hypercomplex output matrix H of the hidden layer.

Step 5: Calculate the hypercomplex output weight matrix .

Step 6: Obtain the fusion result using a sum rule.

2.3 Multispectral palmprint recognition using HELM

To evaluate the performance of the proposed HELM network, we have applied it to multispec-

tral palmprint recognition. Images captured from different spectral bands are taken as the

multisource features. Fig 2 demonstrates a multispectral palmprint sample.

Before using the HELM network to classify the multispectral palmprint images, the inten-

sity normalization process illustrated in Eq (24), must be implemented on the palmprint

images to remove the global intensity influence.

Iðx; yÞ ¼
Iðx; yÞ � min v
max v � min v

ð24Þ

where I(x,y) denotes the pixel value of image I at position (x,y). min_v and max_v are the min-

imum and maximum, respectively, of all pixels in I. Fig 3 shows the palmprint images after

intensity normalization operation.

As the input features of HELM network, an image must be adjusted to a row vector. Fig 4

lists typical training data for the HELM network. xi
(1), xi

(2), xi
(3) and xi

(4) are the multisource

input features, i.e., the multispectral images captured at Blue, Green, Red and Near-infrared

(NIR) bands. ti denotes the hypercomplex output of the HELM network. The entry with the

value of 1+e1+e2+e3 denotes the class to which sample i belongs.

With all training data, we can follow the steps described in HELM theory to train an SLFN

and complete the palmprint recognition task.

Fig 2. Multispectral palmprint sample: (a) Blue, (b) Green, (c) Red and (d) Near-infrared.

https://doi.org/10.1371/journal.pone.0209083.g002
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3 Experimental results and performance analysis

In this section, we present the experimental results and assess the performance of the proposed

HELM method. All experiments have been conducted on a computer with a 2.50 GHz Intel

core processor and 8 GB memory. MATLAB 2017a was utilized as the simulation software.

3.1 Database description and evaluation criteria

To demonstrate the effectiveness of the proposed method, we conducted a series of experi-

ments using the following two public multispectral palmprint databases.

The PolyU database is [29–32] created by Hong Kong Polytechnic University. The database

consists of 24000 plamprint images collected from 250 volunteers, who comprised 195 males

and 55 females. The age of each volunteer ranged from 20 to 60 years old. During the acquisi-

tion process, each volunteer was sampled 12 times in two separate sessions for his/her left and

right palms. The palmprint images were acquired at four spectral bands, i.e., Red, Green, Blue

and NIR. For the convenience of researchers, the Hong Kong Polytechnic University provides

the region of interest (ROI) images with the size 128×128. Fig 5 shows some multispectral

palmprint samples in the PolyU database.

The CASIA database [33] is provided by the Chinese Academy of Sciences’ Institute of

Automation. It has 7200 palmprint images in total collected from 100 volunteers. The

Fig 3. Multispectral palmprint sample after intensity normalization: (a) Blue, (b) Green, (c) Red and (d) Near-

infrared.

https://doi.org/10.1371/journal.pone.0209083.g003

Fig 4. Typical input for HELM network.

https://doi.org/10.1371/journal.pone.0209083.g004
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acquisition was performed in two separate sessions with a minimum time interval of one

month. In one session, each volunteer was required to provide 3 samples for his/her left and

right palm respectively. Each sample was captured at 460nm, 630nm, 700nm, 850nm, 940nm

and white light (WHT) spectral bands respectively. Fig 6 shows some multispectral palmprint

images in the CASIA database.

The performance of the proposed method is evaluated in terms of recognition accuracy and

computational cost. In the recognition process, a certain number of multispectral palmprint

images are treated as the testing samples. If the determined class label of one testing sample is

the same with its actual label, it is considered as a correctly recognized sample. Otherwise, it is

an incorrectly recognized one. Then the recognition accuracy is defined as

RA ¼ Nc=N ð25Þ

where Nc is the number of the correctly recognized samples in the testing group. N is the num-

ber of the samples in the testing group.

The computational cost including the training and testing time is also used to compare the

performance of the method. The training time is referred to as the time cost for constructing

the HELM model using the training data. And the testing time is the time cost for determining

the class labels of the testing samples using the trained HELM model.

3.2 Result analysis of the proposed method

To complete the training of the HELM network and achieve excellent generalization perfor-

mance, the penalty coefficient C and the number ~N of hidden nodes need to be appropriately

Fig 5. Multispectral palmprint samples in the PolyU database.

https://doi.org/10.1371/journal.pone.0209083.g005
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chosen. We have employed different settings of C and ~N . The results of the experiments on the

two databases are demonstrated in Fig 7. It is clear from the figure that no matter which data-

base the experiments are conducted on, for a given penalty coefficient C the recognition accu-

racy has an increasing trend as the number ~N of hidden nodes progressively increases. It

converges to the optimal accuracy when the value of ~N is sufficiently large. We observe that a

smaller value of C yields a higher recognition accuracy. When C is zero, the best results are

generated.

Considering the randomness of the HELM training method, ten repeated experiments were

performed. We also tested the performance of the HELM network with different activation

functions. The sigmoid, sin and atan functions were compared to determine which function

can achieve the optimal result. Table 1 lists the recognition accuracies in the ten repetitions.

Based on these repeating results, Table 2 gives the statistical comparison by using the one-

sided Two-sample Student T-test. It makes the hypothesis that two independent samples come

Fig 6. Multispectral palmprint samples in the CASIA database.

https://doi.org/10.1371/journal.pone.0209083.g006

Fig 7. Performance with different settings in HELM: (a) PolyU, (b) CASIA.

https://doi.org/10.1371/journal.pone.0209083.g007
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from normal distributions with equal means and variances. The value of test statistic can be

calculated as:

t ¼
�X1 �

�X2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1 � 1ÞS2

1
þðn2 � 1ÞS2

2

n1 � n2 � 2
ð 1

n1
þ 1

n2
Þ

q ð26Þ

where �X1 and �X2 denote the means of the two series of measurements, S2
1

and S2
2

denote the

corresponding variances, n1 and n2 are the numbers of measurements in each series. The num-

ber of degrees of freedom for the Two-sample T-test is n1+n2−2. To complete this statistical

comparison, the built-in Matlab function of “ttest2(x, y, α, ‘right’)” is used. Here, x and y

denote the two series of measurements. α is the significance level. ‘right’ denotes the right-

sided test.

In Table 2, t denotes the value of the test statistic, p denotes the probability of observing the

given result if the null hypothesis H0 is true and T-test denotes the test result. The significance

level α is set to be α = 0.05. By making the comparison between the two activation functions of

sigmoid and sin, it can be found that the p values for PolyU and CASIA databases are much

less than the significance level α. Thus the null hypothesis H0 is rejected and the alternative

hypothesis H1 is accepted, meaning that the sigmoid function can produce higher recognition

accuracy than the sin function. Similarly, the inference that the sigmoid function outperforms

the atan function can be obtained by making the T-test between the two functions of sigmoid

and atan. As for the comparison between sin and atan functions, two different test results are

achieved. The performance of the atan function is not significantly better than sin function for

the CASIA database. It can be concluded that for the two databases, the sigmoid function

Table 1. Recognition accuracies of the ten repeated measurements with different activation functions.

Number of measurement RA (%)

PolyU CASIA

Sigmoid Sin Atan Sigmoid Sin Atan

1 100 99.20 99.87 98.17 97.50 97.67

2 99.90 98.83 99.70 98.33 97.67 97.83

3 99.90 99.03 99.83 98.50 97.50 97.67

4 99.97 99.13 99.83 98.00 97.83 97.67

5 99.93 98.97 99.83 98.00 97.67 97.83

6 100 99.00 99.93 98.17 97.50 97.50

7 99.90 98.97 99.93 98.00 97.33 98.00

8 99.93 99.20 99.87 98.50 97.83 97.67

9 99.97 99.03 99.83 98.33 97.67 97.83

10 100 98.97 99.93 98.17 97.83 97.83

https://doi.org/10.1371/journal.pone.0209083.t001

Table 2. Student T-test of the ten repeated measurements with different activation functions.

Hypothesis PolyU CASIA

t p T-test t p T-test

H0: RASigmoid�RASin

H1: RASigmoid>RASin

23.59 2.740E-15 H1 7.158 5.746E-7 H1

H0: RASigmoid�RAAtan

H1: RASigmoid>RAAtan

3.666 8.845E-4 H1 6.205 3.714E-6 H1

H0: RAAtan�RASin

H1: RAAtan>RASin

19.30 8.902E-14 H1 1.670 0.0561 H0

https://doi.org/10.1371/journal.pone.0209083.t002
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consistently produces the highest recognition accuracy among the three types of activation

functions. In the ten repeated measurements for the sigmoid function, the best recognition

accuracies for the PolyU database and CASIA database are 100% and 98.50% respectively.

To evaluate the performance of the HELM network in the case of different combinations of

input spectral bands, a series of experiments were conducted using different hypercomplex

representations, i.e., y = y(1)+y(2)e1, y = y(1)+y(2)e1+y(3)e2, y = y(1)+y(2)e1+y(3)e2+y(4)e3 or y =

y(1)+y(2)e1+y(3)e2+y(4)e3+y(5)e4. In the situation with a single input spectral band, the HELM

degraded into a traditional ELM network. Considering the randomness in the training of the

HELM network, ten repeated runs were performed. The average accuracy and the correspond-

ing standard deviation were employed as the assessment. We also applied three activation

functions in the network. Tables 3 and 4 illustrate the experimental results of different spectral

combinations when testing the HELM method on the PolyU and CASIA multispectral data-

bases. As shown in the Table 3, the recognition accuracies of the experiments with more than

Table 3. Recognition accuracies for different combinations of spectral bands on the PolyU database.

Input spectral bands RA (%)

Sigmoid Sin Atan

Blue 94.79±0.18 93.64±0.14 97.13±0.16

Green 93.55±0.19 92.23±0.16 96.54±0.19

Red 94.28±0.20 92.67±0.13 96.68±0.13

NIR 94.65±0.15 91.98±0.19 97.03±0.19

Blue Green 98.63±0.14 97.24±0.12 98.37±0.13

Blue Red 99.42±0.14 98.35±0.11 99.31±0.19

Blue NIR 99.66±0.10 98.94±0.12 99.58±0.10

Green Red 99.31±0.16 98.58±0.13 99.15±0.15

Green NIR 99.74±0.10 98.62±0.14 99.44±0.12

Red NIR 99.25±0.13 97.76±0.15 99.03±0.10

Blue Green Red 99.68±0.08 98.59±0.11 99.41±0.13

Blue Green NIR 99.87±0.07 99.27±0.09 99.76±0.08

Green Red NIR 99.86±0.04 98.70±0.07 99.76±0.05

https://doi.org/10.1371/journal.pone.0209083.t003

Table 4. Recognition accuracies for different combinations of spectral bands on the CASIA database.

Input spectral bands RA (%)

Sigmoid Sin Atan

460nm 90.55±0.46 90.38±0.51 91.17±0.30

630nm 91.85±0.48 91.81±0.36 92.13±0.33

700nm 90.53±0.42 90.37±0.49 90.87±0.30

850nm 92.25±0.35 92.07±0.48 92.36±0.28

940nm 93.23±0.42 93.15±0.37 93.50±0.22

WHT 92.50±0.37 92.22±0.38 92.75±0.21

460nm 940nm 96.86±0.17 96.38±0.11 96.53±0.21

940nm WHT 95.40±0.16 95.11±0.25 94.93±0.22

460nm 850nm WHT 97.12±0.24 96.95±0.24 96.97±0.22

460nm 940nm WHT 97.58±0.23 97.52±0.12 97.55±0.21

460nm 700nm 850nm 940nm 97.88±0.14 97.33±0.21 97.38±0.22

460nm 850nm 940nm WHT 97.93±0.16 97.68±0.16 97.73±0.22

460nm 630nm 700nm 850nm 940nm 97.90±0.11 97.30±0.11 97.68±0.17

460nm 630nm 850nm 940nm WHT 98.03±0.12 97.89±0.14 97.93±0.15

https://doi.org/10.1371/journal.pone.0209083.t004
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one input spectral band are higher than the recognition accuracies of the experiments with a

single spectral band. The recognition results based on the HELM network are satisfied when

the number of input spectral bands is two or three, which has proven that the proposed HELM

network is applicable for any spectral band combination. We also observe that the sigmoid

function achieves the optimal results among the three activation functions when the number

of input spectral bands is two or three. Regarding the case of a single spectral band, the Atan

function obtains the best results for the ELM model. Similarly, we can also obtain these conclu-

sions from Table 4. For the CASIA database, using the proposed HELM model with multispec-

tral palmprint images can obviously improve the performance of palmprint recognition. The

sigmoid activation function provides the optimal recognition accuracies for these experiments

with more than one input spectral band.

HELM employs a hypercomplex representation to complete the classification task of multi-

source features. To verify its effectiveness, a comparison was performed with two different

strategies for ELM to process the multisource features, i.e., fusing the multisource features

either at a feature level or a matching score level. These methods were compared in terms of

computational cost and recognition accuracy. Similarly, ten repeated runs were performed.

The time and accuracy were employed in the assessment. As reported in Table 5, we conclude

that for either benchmark database, the hypercomplex representation-based method obtains

the highest recognition accuracy and maintains a distinct advantage over the other two strate-

gies. Regarding computation time, although the hypercomplex representation based-method

cannot compete with the feature level fusion based method in terms of testing time, it requires

the lowest training time and provides the highest recognition accuracy. The hypercomplex

representation strategy outperforms both of the comparison methods.

A comparison was made with some state-of-art multispectral palmprint recognition meth-

ods, including two image level fusion methods, two matching score level fusion methods, a

QPCA+QDWT method and two improved ELM-based methods. In addition, we also investi-

gated the performance of the HELM model when using different features as the input. A

dimensionality reduction method and a texture feature extraction method—PCA [34] and

LBP [35]—were employed to extract the palmprint features. The experiments were conducted

on the pure PolyU and CASIA databases as well as the corresponding manually generated

ones by introducing different kinds of noises. Fig 8 demonstrates the manually generated

palmprint samples used in these experiments. The Gaussian white noise with mean 0 and stan-

dard deviation 36, the Salt & Pepper noise with 10% noise density and the Speckle noise with

variance 0.05 were utilized respectively to generate the noisy palmprint images. Table 6 lists

the recognition accuracies of the comparison methods. We can discover that the HELM-based

and PCA+HELM-based multispectral palmprint recognition methods consistently outperform

the fusion-related methods and the QPCA+QDWT method on the testing databases. Although

the two improved ELM-based methods could achieve quite satisfactory results on the PolyU

database, the performance degrades when they are tested on the CASIA database. The LBP

+HELM method could produce the highest recognition accuracies on the pure PolyU and

Table 5. Comparison with different strategies of processing the multisource features of ELM.

Method PolyU CASIA

Training

Time (s)

Testing Time (s) RA (%) Training

Time (s)

Testing Time (s) RA (%)

Feature level fusion 3.95±0.11 0.65±0.09 97.13±0.14 2.14±0.11 0.21±0.04 95.40±0.17

Matching score

level fusion

7.52±0.21 1.63±0.08 92.74±0.12 3.26±0.12 0.31±0.08 90.56±0.45

Hypercomplex representation 3.42±0.15 1.68±0.09 99.95±0.04 1.34±0.11 0.19±0.05 98.22±0.19

https://doi.org/10.1371/journal.pone.0209083.t005
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CASIA databases (100% and 99.83). However, the recognition accuracies decrease seriously

when the images are corrupted with noises. This is because the LBP features depend on the

local structure of images and are very sensitive to the variation of pixel value.

Table 7 gives the statistical comparison of the ten methods in Table 6 by using the one-

sided Two-sample Student T-test. The significance level is set to be α = 0.05. Here, the mean-

ings of t, p and T-test are same with those in Table 2 and the value of t is calculated as shown

in Eq (26). IPCA denotes the method of “Image level fusion by PCA”. MPCA denotes the

method of “Matching score level fusion by PCA”. IDWT denotes the method of “Image level

fusion by DWT”. MDWT denotes the method of “Matching score level fusion by DWT”.

QPCA denotes the method of “QPCA+QDWT”. By making the comparison between HELM

method (Or PCA+HELM method) with the fusion-related methods, the QPCA+QDWT

method and the improved ELM-based methods, we can find that the values of p are obviously

less than the significance level α. Therefore the alternative hypothesis H1 is accepted. That is to

say, the HELM method (Or PCA+HELM method) could achieve higher recognition accuracies

than the comparison methods from a statistical viewpoint. In addition, it is observed that the

LBP+HELM method is not significantly better than the comparison methods due to the noise

effect. As for the Student T-test between the three HELM-related methods, the test results

show that the PCA+HELM method can produce the highest recognition accuracies.

4 Conclusions

In this paper, we have proposed HELM, which is a novel learning method for SLFNs. HELM

introduces the hypercomplex representation concept into ELM theory. In contrast to the

Fig 8. Pure and noisy palmprint samples: (a) Pure image, (b) Image with Gaussian white noise, (c) Image with Salt &

Pepper noise, (d) Image with Speckle noise.

https://doi.org/10.1371/journal.pone.0209083.g008

Table 6. Recognition accuracy comparison with different multispectral palmprint recognition methods.

Method RA (%)

PolyU CASIA

Pure Gaussian Salt &

Pepper

Speckle Pure Gaussian Salt &

Pepper

Speckle

Image level fusion by PCA [36] 95.53 94.03 94.40 94.23 93.67 92.33 93.33 92.17

Matching score level fusion by PCA [37] 97.97 96.83 97.07 96.67 96.50 96.16 96.33 95.83

Image level fusion by DWT [32] 96.60 71.20 61.07 71.87 94.00 65.67 58.50 65.33

Matching score level fusion by DWT [38] 98.00 97.46 97.37 96.97 96.67 96.16 95.83 95.50

QPCA+QDWT [39] 98.83 98.60 97.90 97.90 96.67 96.33 96.17 95.67

MPELM [25] 99.53 98.80 98.87 98.63 90.00 84.67 88.00 85.00

TELM [24] 99.95 99.00 99.17 99.10 96.83 94.83 96.00 93.50

HELM 100 99.80 99.70 99.67 98.50 98.00 97.83 97.67

PCA+HELM 100 99.93 99.83 99.90 98.50 98.17 98.00 97.83

LBP+HELM 100 93.70 91.90 90.43 99.83 93.17 90.83 89.50

https://doi.org/10.1371/journal.pone.0209083.t006
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conventional ELM model, the proposed method maintains all merits of ELM, such as fast

learning speed, excellent generalization ability and ease of implementation. HELM can easily

complete the classification task of multisource features by benefitting from the hypercomplex

representation. We have applied this method to the task of multispectral palmprint recognition

to verify the actual performance. Comprehensive experiments carried out on the PolyU and

CASIA multispectral palmprint databases have demonstrated that the proposed HELM net-

work can obtain favorable results compared with several state-of-the-art multispectral palm-

print recognition methods.
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