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Abstract

Certain nonlinear systems can switch between dynamical attractors occupying different

regions of phase space, under variation of parameters or initial states. In this work we

exploit this feature to obtain reliable logic operations. With logic output 0/1 mapped to

dynamical attractors bounded in distinct regions of phase space, and logic inputs encoded

by a very small bias parameter, we explicitly demonstrate that the system hops consistently

in response to an external input stream, operating effectively as a reliable logic gate. This

system offers the advantage that very low-amplitude inputs yield highly amplified outputs.

Additionally, different dynamical variables in the system yield complementary logic opera-

tions in parallel. Further, we show that in certain parameter regions noise aids the reliability

of logic operations, and is actually necessary for obtaining consistent outputs. This leads us

to a generalization of the concept of Logical Stochastic Resonance to attractors more com-

plex than fixed point states, such as periodic or chaotic attractors. Lastly, the results are veri-

fied in electronic circuit experiments, demonstrating the robustness of the phenomena. So

we have combined the research directions of Chaos Computing and Logical Stochastic Res-

onance here, and this approach has potential to be realized in wide-ranging systems.

Introduction

Nonlinear systems yield a rich gamut of dynamical behaviors that range from fixed points and

limit cycles of varying periodicities, to chaotic attractors. In this work we will exploit the pres-

ence of dynamical attractors localized in different regions of phase space, and the possibility of

hopping between such attractors, to obtain logic operations.

Consider a general nonlinear system of the form:

_x ¼ y � gðxÞ;

_y ¼ � ay � xþ bþ I þ f ðtÞ;
ð1Þ

where f(t) is a periodic forcing signal, g(x) is a nonlinear function, b is a constant bias and I is
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an input signal. Specifically, consider a simple easily implementable piecewise linear form for

gðxÞ ¼ c1xþ
1

2
ðc2 � c1Þðjðxþ 1Þj � jðx � 1ÞjÞ ð2Þ

and f(t) = A sin(ωt), where ω is the frequency and A is the amplitude of the periodic forcing.

These dimensionless coupled first order differential equations underlie the readily implemen-

table MLC circuit [1].

The bifurcation diagrams of the system with respect to all the different parameters are

shown in Fig 1, depicting the richness of behaviors which may be exploited for implementing

different logic operations. Specifically we seek attractors in parameter space that occupy clearly

distinct regions. The most suitable parameter that offers this feature, as well as the simplest

Fig 1. Bifurcation diagrams displaying the distinct dynamical attractors obtained with respect to the different

parameters in the system (cf. Eqs 1 and 2). Frequency ω, amplitude A, c1, c2, a and bias parameter b. While one of the

parameters is being varied, the other parameters (whichever are relevant) are fixed at: a = 1.015, c1 = −0.55, c2 = −1.02,

ω = 0.74, A = 0.11, b = 0 in Eq 1.

https://doi.org/10.1371/journal.pone.0209037.g001
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one to manipulate, is the bias parameter b. So in this work we will use the patterns evident in

the bifurcation diagram of the system, with respect to bias b, to design logic gates.

In order to conceive of a mapping of the dynamics to logic operations, we need to specify

the inputs-to-output correspondence. We first focus on the encoding of logic inputs. In gen-

eral, N logic inputs are encoded by N square waves which constitute the input signal I in Eq 1.

In particular, for two logic inputs, the input signal I is the sum I1 + I2, with I1 and I2 encoding

the two logic inputs. Since the logic inputs can be either 0 or 1, they can combine to give four

logic input sets (I1, I2): (0, 0), (0, 1), (1, 0) and (1, 1), with the input sets (0, 1) and (1, 0) giving

rise to the same I. This implies that the four input conditions (I1, I2) reduce to three distinct

values of I. Hence, the input signal I, generated by adding two independent uncorrelated input

signals, is a 3-level aperiodic waveform. In this work the input signal I will be considered to be

of very low amplitude, compared to the typical size of the chaotic attractor. The central idea

here rests on the capability of the nonlinear system to yield a large response, such as a very dif-

ferent dynamical attractor, in response to a very small input signal.

Now, this nonlinear system is capable of exhibiting attractors that are bounded in different

regions of phase space. For instance, it can give rise to attractors where the value of the x (or y)

variable is entirely positive, as well as attractors whose x (or y) values are entirely negative,

under variation of the small input signal I. Dynamically, these attractors may be fixed points,

periodic cycles or even chaotic attractors. So as the value of I switches, i.e. the input set

switches, we observe that the attractors can jump from a certain sector of phase space to a very

different sector. This is the feature which we will exploit to implement a robust input-output

correspondence in this system [2–11].

So the dynamical attractor of the system will yield the logic output. For instance, if x(t) (or

y(t)) is greater than xthresh or ythresh) respectively, it is mapped to logic output 1, and if x(t) (or

y(t)) is lower than xthresh or ythresh) respectively, it is mapped to logic output 0. The thresholds

for output determination xthresh and ythresh can be suitably chosen, and are typically close to

zero. As mentioned earlier, specifically, we can have xthresh = ythresh = 0, namely we can con-

sider the output to be a logical 1 if the inputs yield a positive attractor, and the output to be a

logical 0 if it is a negative attractor, i.e. if x(or y)< 0, Logic Output is 0 and if x(or y)> 0, Logic

Output is 1.

Results

We will now demonstrate here that a given set of inputs (I1, I2) yields an output in accordance

with the truth tables of the basic logic operations shown in Table 1. Crucially, the different

outputs will arise from the chaotic attractor hopping induced by the input stream. We present

explicit examples of this phenomenon, from numerical simulations, in Figs 2 and 3. These fig-

ures show illustrative cases of positive and negative chaotic attractors yielding Logic Output 1

and 0 respectively, under a stream of external input signals. So as the system receives different

inputs it switches between these qualitatively different dynamical attractors, yielding the

Table 1. Relationship between the two inputs and the output of the fundamental OR, AND, NOR and NAND

operations. Note that the four distinct possible input sets (0, 0), (0, 1), (1, 0) and (1, 1) reduce to three conditions as (0,

1) and (1, 0) are symmetric. Note that any logical circuit can be constructed by combining the fundamental NOR (or

the NAND) gates [12].

Input Set (I1, I2) OR AND NOR NAND

(0,0) 0 0 1 1

(0,1)/(1,0) 1 0 0 1

(1,1) 1 1 0 0

https://doi.org/10.1371/journal.pone.0209037.t001
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Fig 2. Logic output from attractor hopping: Panels (a) and (b) show a stream of inputs I1 and I2. Panel (c) shows the expected OR/NOR logic output and (e) shows

the AND/NAND logic output corresponding to logic input set (I1, I2). Panels (d) and (f) show outputs x(t) and y(t) of the nonlinear system given by Eq 1 with a = 1.015,

c1 = −0.55, c2 = −1.02, A = 0.11, ω = 0.74. The input signals take value −0.002 when logic input is 0 and value 0.002 when logic input is 1, and logic output is 1 when x(t)
(or y(t)) > 0, and logic output is 0 when x(t) (or y(t))< 0. In (d), bias b = −0.002, and clearly the x variable yields a consistent logical OR output, while the y variable

yields a consistent NOR logic output. In (f), bias b = +0.002, and clearly the x variable yields a consistent logical AND output, while the y variable yields the

complementary NAND logic gate.

https://doi.org/10.1371/journal.pone.0209037.g002
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appropriate output. Fig 3 specifically shows the two one-band/single-scroll chaotic attractors

that occupy distinct regions of phase space, characterizing the two outputs. So, as the system

hops between these chaotic attractors, the output toggles between 0 and 1. Significantly, the

very low-amplitude input signals yield highly amplified outputs. For instance, in our represen-

tative example, the input signal I = 0.002 results in dynamical attractors that differ on average

by*2, i.e. approximately two orders of magnitude larger. Namely, the input signal (which is of
the order of 10−3) is very small, vis-a-vis the size of chaotic attractor (which is of the order of 1),
implying that a small change in the system yields a significantly different dynamical outcome.

Also note that the response time of the system is very short, with the system taking of the order

of microseconds on average to switch between the desired states, leading to low latency.

Further, under a different bias parameter b in Fig 2(f), we also obtain a consistent OR logic

operation, again by switching between chaotic attractors confined in distinct quadrants of

phase space. So the system has the capablity of implementing different logic operations flexibly
through a simple change of bias parameter, leading to potentially reconfigurable logic gates.

Additionally, the x and y variables yield complementary logic outputs in parallel. So in the

specific examples presented in Fig 2d and 2f, variable x yields a consistent AND/OR gate

response, while variable y yields a consistent NAND/NOR gate response. Thus this two-

dimensional system allows us to implement operations in parallel by simultaneously yielding

the two complementary logic outputs.

Quantifying the reliability of obtaining a logic output

We can quantify the consistency (or reliability) of obtaining a given logic output by calculating

the probability, denoted by P(logic), of obtaining the desired logic output for different input

Fig 3. Phase portraits of the dynamical attractors arising from the different input sets in Fig 2 (with a = 1.015, c1 =

−0.55, c2 = −1.02, A = 0.11, ω = 0.74 in Eq 1). Here the time evolution under different input sets is depicted in

different colors. It is clearly evident that the trajectory switches between chaotic attractors in two distinct quadrants as

the logic input sets change, yielding appropriate output states.

https://doi.org/10.1371/journal.pone.0209037.g003
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sets. P(logic) is estimated from numerical simulations by calculating the ratio of the number of

successful runs to the total number of runs. Each run consists of a permutation of the inputs

sets (0, 0), (0, 1)/(1, 0), (1, 1) fed sequentially to the system. If the logic output obtained from

the system is the desired output for all input sets in the run, it is considered a “success”. Even

if one input set returns a wrong output, the full run is considered a “failure”. So this quantity

offers a very stringent measure of reliability. When P(logic) is 1, the logic operation is very reli-

able, as the system yields the correct output in response to all the input sets (I1, I2) provided to

it. Specifically in the numercial results presented here we sample 103 runs.

It is evident from Fig 4, which shows P(logic) obtained from numerical simulations, that the

fundamental logic operations NOR and NAND are realized consistently in an optimal band of

moderate forcing amplitude A and bias b. The logic response is 100% accurate in this reason-

ably wide window. That is, in a broad region of parameter space the system yields outputs, in

response to external inputs, in complete accordance with the fundamental logic functionalities

shown in the truth tables (cf. Table 1). Also, importantly, a simple switch in bias b changes the

logic gate from NOR/OR to NAND/AND. This implies that the system can operate flexibly as

a NOR/OR logic gate or a NAND/AND logic gate, with the small bias parameter having the

capacity to morph the system to operate as different logic gates.

Experimental verification

Now we will verify this concept in electronic circuit analogs of the nonlinear system described

by Eq 1, and ascertain its robustness in experiments. The schematic of the circuit realization of

the simple non-autonomous MLC circuit is shown in Fig 5. It contains a capacitor, an induc-

tor, a linear resistor, an external periodic forcing g(t) and only one nonlinear element, namely,

the Chua’s diode (N) [1]. The complete circuit implementation of MLC circuit is depicted in

Fig 6(a). To measure the inductor current iL in our experiments, we insert a current sensing

resistor Rs as shown in Fig 6a to give the voltage VL [1]. By applying Kirchhoff’s laws to this

circuit, the governing equations for the voltage (V) across the capacitor C and the current iL
through the inductor L are represented by the rescaled Eq 1 [1]. Two op-amps (AD712, TL082,

AD844, or equivalent) and six linear resistors are used to implement the Chua’s diode (N). The

parameters of the circuit elements are fixed as resistors R = 1340 O, R1 = R2 = 22 kO, R3 = 3.3

kO, R4 = R5 = 220O, R6 = 2.2 kO and Rs = 20 O. The capacitor C = 10 nF and the inductor

L = 18 mH (TOKO type 10RB or equivalent). The frequency of the external sinusoidal force

f(t) as in Fig 6(b) is fixed at 8890 Hz. The circuit of Fig 6(b) is used to generate the driving

Fig 4. Regions in the parameter space of bias b (y-axis) and forcing amplitude A (x-axis, left), input I1/I2 (x-axis,

right), and where the probability of obtaining NAND (orange) and NOR (blue) logic is 1. Here a = 1.015, c1 =

−0.55, c2 = −1.02, ω = 0.75 and the inputs I1/I2 take values −0.025/0.025 for logic input 0/1 in (a) and A = 0.14 in (b).

Here the dynamical attractors may be limit cycles or chaotic attractors.

https://doi.org/10.1371/journal.pone.0209037.g004
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signal g(t) for the circuit of Fig 6(a). In the circuit of Fig 6(b), g(t) is basically generated by a set

of op-amp summing amplifiers by adding the logic input signals I1 and I2, external bias voltage

(b), external noise signal and the sinusoidal signal f(t). All the op-amps are employed with

AD712 (or TL082 or AD844 or equivalent). The voltage supply for all the op-amps are fixed at

±9 V. All the resistors are fixed as R = 10 kO.

As indicated by the numerical simulations in Fig 4, the amplitude of the forcing has to be in

an optimal moderate range to obtain logic operations. Figs 7 and 8 verify this behavior in elec-

tronic circuits. When the forcing amplitude is too small, the system tends to get stuck in some

region of phase space and is unable to hop to the appropriate attractor. On the other hand,

too large forcing amplitude results in the system hopping randomly from one sector of phase

space to another, due to underlying double scroll attractors. Clearly, the intermediate forcing

amplitude yields consistent logic operation, with appropriate attractor hopping induced only

by changes in the input signal.

Influence of noise: Generalized logical stochastic resonance

Lastly, we will investigate the effect of noise on the logic responses of the system [13, 14]. The

first issue is to ascertain the robustness of the logic response with respect to ambient noise, i.e.

we will check if noise degrades performance, or not. Secondly, we would like to investigate if

there are some regions of dynamical behavior where noise aids the reliability of obtaining the

correct logic output. In earlier studies it has been shown that a bistable system supporting two

fixed point states, driven by a stream of sub-threshold input signals, yields enhanced probabil-

ity of correct logic responses, in a window of optimal noise. This phenomena has been called

Logical Stochastic Resonance (LSR) [15–20], and it has been realized in systems ranging from

nanomechanical oscillators [21], coulomb-coupled quantum dots [22] and optical systems [23,

24] to chemical systems [25] and synthetic genetic networks [26–32]. Extensions of the idea to

include the effect of periodic forcing was demonstrated in [33], where the width of the optimal

Fig 5. Schematic of a simple electronic circuit, known as the MLC circuit [1], implementing the rescaled

dynamical equations given in Eq 1. In the circuit, the voltage across the capacitor C, the current through the

inductor L and the external forcing signal g(t) correspond to x, y and b + I + f(t) in Eq 1 respectively. The

nonlinear element N is the Chua’s diode implemented as in [1], with rescaled piecewise-linear characteristic curve

gðxÞ ¼ c1xþ 1

2
ðc2 � c1Þðjðxþ 1Þj � jðx � 1ÞjÞ.

https://doi.org/10.1371/journal.pone.0209037.g005
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Fig 6. (a): Realization of MLC circuit using two op-amps (AD712, TL082, AD844, or equivalent) and six linear resistors to

implement the Chua’s diode (N). The resistors R = 1340O, R1 = R2 = 22 kO, R3 = 3.3 kO, R4 = R5 = 220 O, R6 = 2.2 kO and Rs = 20

O. The capacitor C = 10 nF and the inductor L = 18 mH (TOKO type 10RB or equivalent). Here g(t) is the input driving signal,

the capacitor voltage is V(t) and the inductor current is iL. The current iL is sensed through the resistor Rs to give the voltage VL
[1]. (b) Circuit for generating the driving signal g(t). Here op-amps OA1—OA4 are realized with AD712. All the resistors are

fixed as R = 10 kO. The power-supply to op-amps and the bias voltage (b) are drawn from Agilent or Keysight E3631A DC Power

Supply. The sinusoidal signal f(t) and the noise signal are drawn from Agilent or Keysight 33522A, Function/Arbitrary

Waveform Generator.

https://doi.org/10.1371/journal.pone.0209037.g006
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Fig 7. Realization of OR/NOR logic gates through chaotic attractor hopping in electronic circuit experiments. Panel (a) shows stream

of inputs I1 and I2 (which take value −10 mV when logic input is 0 and value 10 mV when logic input is 1). Panel (b) shows the voltage

V(t) (yellow) clearly indicating a logical OR output (with V(t)> 0 being logic output 1, and V(t)< 0 being logic output 0). The output

voltage VL (green) yields the complementary NOR logic gate response. The amplitude A of the sinusoidal signal is 150 mV and frequency

is 8890 Hz. The bias voltage b, is fixed as 10 mV. For panel (a), the scale in the traces are: 20 mV/Div (Y-axis) and 5 mS/Div (X- axis).

For panel (b), the scale in the traces are: 100 mV/Div (Y-axis) and 5 mS/Div (X- axis). The oscilloscope used is Agilent or Keysight

DSOX2012A.

https://doi.org/10.1371/journal.pone.0209037.g007
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Fig 8. Realization of AND/NAND logic gates through chaotic attractor hopping in electronic circuit experiments. Panel (a) shows

stream of inputs I1 and I2 (which take value −10 mV when logic input is 0 and value 10 mV when logic input is 1). Panel (b) shows the

voltage V(t) (yellow) clearly indicating a logical AND output (with V(t)> 0 being logic output 1, and V(t)< 0 being logic output 0). The

output voltage VL (green) yields the complementary NAND logic gate response. The amplitude A of the sinusoidal signal is 150mV and

frequency is 8890 Hz. The bias voltage b, is fixed as −10 mV. For panel (a), the scale in the traces are: 20 mV/Div (Y-axis) and 5 mS/Div (X-

axis). For panel (b), the scale in the traces are: 100 mV/Div (Y-axis) and 5 mS/Div (X- axis).

https://doi.org/10.1371/journal.pone.0209037.g008
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noise window was shown to increase by utilizing periodic forcing, i.e. noise in conjunction

with a periodic drive yielded consistent logic outputs for all noise strengths below a certain

threshold. Further, the LSR concept has been demonstrated in coupled systems and higher-

dimensional systems, with multiple steady states [26, 34, 35]. Specifically, two complementary

gate operations were achieved simultaneously in a two-dimensional model of a gene network

[26], indicating the flexible parallel processing potential of a biological system. In another

direction for two coupled systems it was demostrated that, even when the individual systems

receive only one logic input each, due to the interplay of coupling, nonlinearity and noise, they

cooperatively respond to give a logic output that is a function of both inputs [35]. Further, the

idea was extended to multi-stable dynamical systems with more than two stable fixed points,

allowing one to obtain XOR logic, in addition to the AND (NAND) and OR (NOR) logic

observed earlier [34].

Now in all its variations (some of which are detailed above), the concept of Logical Stochas-

tic Resonace has so far been restricted only to steady states. In this work we explore the scope

of the idea of LSR for the case of more complex attractors such as periodic cycles, or even cha-
otic attractors. Our basic question is then as follows: does the idea of Logical Stochastic Reso-

nance extend beyond fixed point states, to more complex dynamical attractors? If it does

indeed hold for more complex dynamics, we will have attained a generalized concept of Logical

Stochastic Resonance.

Fig 9 shows representative experimental results of this, for the system in Eq 1 under additive

zero-mean Gaussian noise, given as:

_x ¼ y � gðxÞ;

_y ¼ � ay � xþ bþ I þ f ðtÞ þ DZðtÞ;
ð3Þ

where η(t) is a zero-mean Gaussian noise with variance 1, and parameter D gives the noise

strength. In the circuit implementation displayed in Fig 5, g(t) now corresponds to b + I + f(t) +

Dη(t).
Now, the forcing amplitude in the case illustrated is too small to yield appropriate attractor

hopping that may be mapped to the output desired for logic operations, for subthreshold input

signals. Naturally, when noise strength is too large, the system jumps randomly between attrac-

tors, and thus the system cannot yield any reliable output. When noise is zero or too small the

system is essentially stuck in one dynamical attractor. However, remarkably, robust logic oper-

ations are realized when there is some noise in the system. So in the presence of moderate

noise the system jumps from attractor to attractor in response to inputs consistently. Since

these attractors are more complex than fixed points considered in earlier studies, these results

offer a significant generalization of the concept of Logical Stochastic Resonance. The quantifi-

cation of the reliability of obtaining a logic output through Logical Stochastic Resonance is

depicted in Fig 10. It is clear that in relatively wide windows of moderate noise, the system

yields logic operations with near certain probability i.e., P(logic)*1. Remarkably, note that
the amplitude of the logic input signal is very low here, and may even be smaller than the noise
strength. For instance, in the particular illustrative example displayed in Fig 9, the input signal

(I = 10mV) is 100 times smaller than the typical experimental noise strength in the optimal

window of noise (*1V).

We also observed the reduction of latency with increasing noise. This is evident in Fig 11.

Clearly, the system responds to inputs more rapidly when noise intensity is higher. So the

desired hopping between wells happens faster under the influence of stronger noise. This is yet

another feature where noise assists performance.

Chaotic attractor hopping yields logic operations
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Fig 9. Realization of the OR/NOR logic gate at intermediate noise strengths in electronic circuit experiments.

Panel (a) shows stream of inputs I1 and I2 (which take value −10 mV when logic input is 0 and value 10 mV when logic

input is 1). Panels (b) to (d) show the output voltage V(t) (yellow) and VL(t) (green) for different noise strengths D: (i)

100 mV, (ii) 1.0 V and (iii) 1.5 V. Clearly panel (c) depicts logical OR output (with V(t)> 0 being logic output 1, and

V(t)< 0 being logic output 0). The output voltage VL(t) (green) yields the complementary NOR logic gate response.

The amplitude A of the sinusoidal signal is 100 mV and frequency is 8890 Hz. The bias voltage b, is fixed as 10 mV. For

Chaotic attractor hopping yields logic operations
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Generalized logical stochastic resonance with input-modulated parameters

We demonstrate a further generalization of Logical Stochastic Resonance using input-

modulated parameters, offering multiplicative perturbations to the system. Fig 12 shows repre-

sentative experimental results of this, for the system in Eq 1 with the input signal I = I1 + I2

panel (a), the scale in the traces are: 20 mV/Div (Y-axis) and 5 mS/Div (X-axis). For panel (b-d), the scale in the traces

are: 100 mV/Div (Y-axis) and 5 mS/Div (X-axis). For panel (a), the scale in the traces are: 20 mV/Div (Y-axis) and 5

mS/Div (X-axis). For panel (b-d), the scale in the traces are: 100 mV/Div (Y-axis) and 5 mS/Div (X-axis).

https://doi.org/10.1371/journal.pone.0209037.g009

Fig 10. Probability of obtaining NOR logic, obtained from numerical simulations (with b = 0.025, on the left) and

NAND logic (with b = −0.025, on the right) in the parameter space of forcing amplitude A (y-axis) and noise

strength (x-axis) in Eq 3, with ω = 0.75 and inputs I1/I2 take value −0.025 when logic input is 0 and value 0.025

when logic input is 1.

https://doi.org/10.1371/journal.pone.0209037.g010

Fig 11. Transience (averaged over a random stream of inputs) as a function of noise strength. Here transience is

estimated from numerical simulations, and is the time taken to reach the barrier from a well, when the input switches

necessitate a change in the output. It is shown in terms of the scaled time in Eq 3, where 1 unit is 0.0000134 sec. The

system parameters are those given in Fig 10.

https://doi.org/10.1371/journal.pone.0209037.g011
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Fig 12. Generalized Logical Stochastic Resonance with Input-Modulated Parameters. Results from electronic circuit

experiments, with panel (a) showing stream of inputs I1 and I2 (which take value −0.5 V when logic input is 0 and value

0.5 V when logic input is 1). Panels (b) to (d) show the output voltage V(t) (yellow) and VL(t) (green) for different noise

strengths D: (i) 100 mV, (ii) 1.0 V and (iii) 1.5 V. Clearly panel (c) depicts logical OR output (with V(t)> 0 being logic

output 1, and V(t)< 0 being logic output 0). The output voltage VL(t) (green) yields the complementary NOR logic

Chaotic attractor hopping yields logic operations
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modulating parameter b:

_x ¼ y � gðxÞ;

_y ¼ � ay � xþ bðI1 þ I2Þ þ f ðtÞ þ DZðtÞ;
ð4Þ

where η(t) is a zero-mean Gaussian noise with variance 1, and parameter D gives the noise

strength. In the circuit implementation (cf. Fig 5), g(t) now corresponds to b(I1 + I2) + f(t) +

Dη(t). The important distinction with the system in Eq 3 is that the stream of inputs now modu-
late a parameter. It is clearly evident that the system yields the appropriate logic output, as the

input sets change, with the system switching as desired between different dynamical attractors

bounded in distinct regions of phase space. Again, the logic output is obtained consistently in

a window of moderate noise. This suggests that the scope of Logical Stochastic Resonance may

be expanded to inputs-modulated parameters as well.

Conclusion

The potential significance of the results obtained in this work are two-fold. The first is the pro-

posal to implement fundamental logic operations by exploiting the switching between chaotic

attractors. The underlying idea here is as follows: certain nonlinear systems can hop between

dynamical attractors occupying different regions of phase space, under variation of parameters

or initial states. We exploit this feature to obtain reliable logic operations by explicitly demon-

strating the implementation of the fundamental NOR gate. The logic response can be morphed

from NOR to NAND by a small change in the bias parameter, and this flexibility lays the

foundation for general purpose reconfigurable circuitry [3, 36]. Further this system offers the

advantage that very low-amplitude inputs (of the order of 10−3) yield highly amplified outputs

(of the order of 1). The underlying reason for this is that small changes in the system yield sig-

nificantly different dynamical outcomes. Additionally, different dynamical variables in the sys-

tem yield complementary logic operations in parallel.

The second signficant result here is a generalization of the concept of Logical Stochastic

Resonance. We show how the idea of LSR, which has so far been realized using steady states,

may be extended to more complex dynamical attractors. So the noise floor can aid the reliabil-

ity of the logic operations even when the logic operation is based on switching between states

more complex than fixed points, such as hopping between periodic cycles or chaotic attractors.

We also demonstrated that the generalized Logical Stochastic Resonance holds true for input-

modulated parameters and multiplicative perturbations to the system.

In summary, we have shown how hopping between dynamical attractors of different geom-

etries can be exploited for the implementation of logic gates. The ideas presented here, com-

bining the research directions of Chaos Computing and Logical Stochastic Resonance, has

potential to be realized in wide-ranging systems, and represents a new direction in exploiting

chaotic systems to design computational devices.
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