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Abstract

Measuring biomaterials is usually subject to error. Measurement errors are classified into

either random errors or biases. Random errors can be well controlled using appropriate sta-

tistical methods. But, biases due to unknown, unobserved, or temporary causes, may lead

to biased conclusions. This study describes a verification method to examine whether mea-

surement errors are random or not and to determine efficient statistical methods.

A number of studies have dealt with associations between hair minerals and exposures

such as health, dietary or environmental conditions. Most review papers, however, empha-

size the necessity for validation of hair mineral measurements, since large variations can

cause highly variable results. To address these issues, we answer the following questions:

1. How can we ascertain the reliability of measurements?

2. How can we assess and control the variability of measurements?

3. How do we efficiently determine associations between hair minerals and exposures?

4. How can we concisely present the reference values?

Since hair minerals all have distinctive natures, it would be unproductive to examine each

mineral individually to find significant and consistent answers that apply to all minerals. To

surmount this difficulty, we used one simple model for all minerals to explore quantitative

answers. Hair mineral measurements of six-year-old children were analyzed based on the

statistical model. The analysis verified that most of the measurements were reliable, and

their inter-individual variations followed two-parameter distributions. These results allow for

sophisticated study designs and efficient statistical methods to examine the effects of vari-

ous kinds of exposures on hair minerals.

Introduction

Kempson et al. [1] remark “Hair analysis has received a large amount of academic and com-
mercial interest for wide-ranging applications, however the degree of success of analytical
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interpretation with hair mineral analysis has been quite minimal with respect to extent of such
endeavors”. They attribute this limited success to large variabilities in hair mineral measure-

ments and are more concerned with the biochemical aspects of hair mineral analysis to reduce

and regulate the variations. Our primary concern in this study is to examine variations in hair

mineral measurements from a statistical perspective. Since scientific research deduces based

on measurements, the credibility of the research results depends on the reliability of the mea-

surements. And since most measurements are subject to errors, researchers need to draw con-

clusions taking into account the effects of these measurement errors. In biomedical research,

individual differences can increase the complexity as well as the magnitude of the errors. Indi-

vidual differences sometimes follow natural laws and result in a simple statistical distribution,

hereafter referred to as the inter-individual distribution. Since measurement errors and inter-

individual distributions are the major sources of hair mineral measurement variability, it is

necessary to fully understand these variabilities in order to perform valid and efficient statisti-

cal analyses of hair mineral measurements, however clarifying the nature of measurement

errors and inter-individual distribution for over 30 different hair minerals is not straightfor-

ward. Consequently, nonparametric methods are generally used in statistical analysis of hair

mineral measurements, since they are valid regardless of the nature of the variability. However,

nonparametric methods are not very efficient for detecting the effects of exposures such as

therapeutic effects, dietary intakes or environmental changes on study subjects. This disadvan-

tage seems to be one of the main causes that led Kempson et al. [1] to remark about minimal

success.

Previously we conducted a cohort study of 834-mother-infant pairs to determine the associ-

ation between hair minerals at one-month and the onset of atopic dermatitis at ten-months

after birth with hair minerals measured using the Particle Induced X-ray Emission (PIXE)

method [2]. In executing the study, we encountered large variations in hair mineral measure-

ments as repeatedly pointed out in the review literature [1, 3–5]. This experience prompted us

to examine the statistical nature of the variations in hair mineral measurements and develop

statistical methods to obtain results corrected for the biases caused by these variations [6–9].

In this study, we are concerned with four questions:

1. How can we ascertain the reliability of hair mineral measurements?

2. How can we assess and control the variability of hair mineral measurements?

3. How do we efficiently determine associations between hair minerals and exposures?

4. How can we concisely present the reference values, or the coverage intervals?

A number of studies have been devoted to questions 3 and 4. Some describe gender-specific

reference values [10,11,12,13,14,15,16,17,18,19], and some extensively examined the effects of

dietary intake on hair mineral concentrations [10, 11, 20, 21, 22, 23]. Others explored the

effects of environmental factors on hair minerals [11, 16, 24, 25, 26]. The most common sub-

jects were associations between hair minerals and health conditions [14, 22, 24, 27, 28, 29, 30,

31, 32]. Commonalities among most of those studies were the use of nonparametric methods

for statistical analysis without clarifying the nature of the variability in hair mineral measure-

ments. Unfortunately there are few studies describing the application of statistical methods to

answer Q1 and Q2.

To address these four questions, this paper proposed using a simple statistical model to

examine the data. The results revealed that most intra-individual variations in hair mineral

measurements were normal random errors. Furthermore, the inter-individual variation was

approximated by an ordinary two-parameter distribution for each mineral. These results make

Statistical model for hair mineral analysis
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it possible to apply efficient statistical methods, rather than nonparametric techniques, for the

analysis of hair mineral measurements.

Traditionally, Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Inductively

Coupled Plasma Atomic Emission Spectrometry (ICP-AES) have been the multi-element

instruments most frequently used for hair mineral analysis, and most of the studies targeted by

the above review literature [1, 3–5] used ICP-MS or ICP-AES. Although this study deals with

hair mineral measurements obtained using PIXE, the statistical methods described in this

study can be immediately applied without modification to measurements obtained using

either ICP-MS or ICP-AES.

Methods

Subjects and PIXE analysis

The original cohort sample consisted of 834 mother-infant pairs, who were recruited by their

obstetricians at the infants’ first one-month national health checkups starting in November

2005, and who participated in their ten-month national follow up health checkups [2]. The

subjects lived in Fukuoka city and voluntarily presented their hair samples at both checkups,

which were performed by 13 obstetricians and 77 pediatricians at 90 hospitals throughout

Fukuoka. Fukuoka is located on Kyushu Island, faces the Sea of Japan, and has a population of

about 2 million. It was elected as the best city to live in Asia several times, because of the mod-

erate climate, good infrastructure and non-polluting industry.

In 2011, six years after the initial research, we sampled 209 then 6-year-old children from

the original cohort using PIXE. Hair samples were collected from the base of the scalp close to

the occipital region at a length not exceeding 5 cm using a pair of stainless steel scissors. For

target preparation, the root-sides of the hairs were attached to the bottom of a holder with

adhesive tape and then fixed on the topside in order to avoid overlapping. The target samples

were analyzed by the standard-free PIXE method described in S2 Text, in the Nishina Memo-

rial Cyclotron Center, Iwate Medical University, Japan.

Each of the 209 children’s hair strand samples was divided into two specimens for PIXE

analysis to obtain two independent measurements for each subject. We statistically analyzed

the measurements based on a simple statistical model described S1 Text.

Detectability

One issue particular to statistical analysis of hair minerals is how to treat “0”, since 0 does not

necessarily mean exactly 0, rather it indicates a small amount less than the detection limit.

When the two measurements of a pair are both 0, we call the pair Zero. Since the difference

between two 0’s is exactly 0, it seems operationally relevant to consider their true value to be

also 0 and disregard 0’s in an analysis of differences between pair of measurements to avoid

analyzing variations in measurements below the detection limit. Treatment of Zero in applica-

tions is addressed in the Discussion.

Validity

First we examined the differences between the two measurements of each pair; see S1 Text for

the statistical model and calculations. When the differences were approximately normally dis-

tributed for a mineral, the mineral was termed valid, since the differences were considered to

be caused solely by chance. The Shapiro-Wilk W test was used for testing the normality [33].

Pairs where the differences between the two measurements were too large to fit the normal dis-

tribution were termed outliers and excluded in the testing for normality. Pairs other than
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outliers were termed valid. However, since outliers sometimes carry the most significant infor-

mation [34], they should not be simply disregarded. Treatment of the outliers in applications

is addressed in the Discussion.

Tractability

Only valid pairs were treated in the following statistical analysis. For a valid pair, the mean of

the two measurements is more reliable than the individual measurements. Thus, we obtained a

histogram of the mean of the two measurements of each pair and determined a parametric dis-

tribution that well fit it. Since extreme values are inevitable for some minerals due to unusual

food consumption, medication, hair treatments, environment, and other exposures [1], a few

extremely large values were disregarded in the fitting analysis. Kolmogorov D test and Cra-

mer-von Mises W test were used for testing the fitness of the log-normal and Weibull distribu-

tion, respectively [33]. When a parametric distribution is well fitted for a mineral, we call the

mineral statistically tractable. S1 Fig illustrates the flow of the statistical analysis.

This study was approved by the Institutional Review Board of Kyushu University and the

informed consent was provided on a written document and signed by each mother.

Results

S2 Fig presents a scatter plot for each pair of measurements for each mineral with units in

ppm. The number of pairs used in each plot is that of positive pairs described in Table 1. Each

mineral shows a peculiar variation between the two measurements obtained from the same

subject at the same time. S2 Fig clearly shows how large the differences may be between two

measurements of the same subject. Using Mg as an example, a subject’s first measurement

could be 40 ppm while the second could be less than 5 or larger than 100. Uncertainties in

measurements are unavoidable unless their major causes are identified and corrected. But this

is often difficult even in physical sciences, since, as Bailey [34] points out, outliers may also be

a sign of healthy science.

To gain better insight into the significance of these variations, we classified the variations

into three categories. The “Large variation” category consists of Na, Mg, S, Ti, and Pb. The

“Linear regression” category consists of Si, Cl, K, Ca, Fe, Cu, Zn, Br and Sr. And the “Regression
to the mean” category consists of Al, P, V, Cr, Mn, Co, Ni, Ga, As, Se, Rb, Mo and Hg. Mineral

measurements in the Large variation category are not very reliable because of the large varia-

tions. Measurements in the Linear regression category appear more reliable and suitable for lin-

ear regression analysis. However, for some minerals, this good appearance is due to the

presence of very large measurements which obscure the relatively large variations of smaller

measurements. For instance, scatter plots for Si<300, Cl<1500, K<300, Fe<20, Br<15 and

Sr<10, are all close to those in the first category.

The Regression-to-the mean phenomenon of the minerals in the last category is rarely

described in applications. For minerals in this category, variations may be so large that one mea-

surement of a pair might be 0, while the other may be 0 or the nearly maximum of the mineral.

These results suggest that hair mineral measurements are subject to large variations and the

statistical nature of the variations also vary among minerals.

Detectability

Table 1 summarizes the results. Among the 32 minerals, Ag, Cd, I and Ba were not detected in

any pairs and excluded. Table 1 column 2 shows the number of positive pairs, and column 3

the proportion of them. 17 minerals (60%) and 27 minerals (96%) have a positive rate greater

than or equal to 97% and 68%, respectively.

Statistical model for hair mineral analysis
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Validity

S3 Fig shows the histogram of the differences, overwritten with a normal distribution, for each

mineral that is associated with mean, SD, sample size, skewness, kurtosis, minimum, maxi-

mum and p-value by the Shapiro-Wilk W test of normality. A two-tailed p<0.05 is considered

significant, and all minerals were confirmed to be valid. No pair was excluded for the 6 miner-

als, less than 2% were excluded for 17 minerals and less than or equal to 5% were excluded for

25 minerals. As described in S1 Text, SD2/2 is an unbiased estimate of the intra-individual var-

iance σ2, or the variance due to locations within a subject. The 4th column of Table 1 indicates

that three minerals, Ca, Ti and Cu, were log transformed to confirm the validity. The 5th and

6th columns indicate the number of valid pairs and the proportion of the excluded pairs, or

outliers, in the positive pairs.

Tractability

S4 Fig presents the histogram of the mean of the two measurements of a pair, overwritten with

a parametric distribution for each mineral. Associated with them are mean, median, SD, mini-

mum, maximum, type of distribution, parameter values, p-value obtained from the statistical

Table 1. The number of subjects and the transformations used in S3 and S4 Figs.

Detectability Validity Tractability

Positive pairs % Trans form. Valid pairs Excluded % Transform. Distribution Included pairs Excluded %

Na 209 100% 206 1.4% Lognormal 188 8.7%

Mg 188 90% 186 1.1% Weibull 186 0.0%

Al 161 77% 161 0.0% Weibull 161 0.0%

Si 209 100% 208 0.5% Lognormal 205 0.5%

P 143 68% 141 1.4% Weibull 141 0.0%

S 209 100% 209 0.0% Normal 209 0.0%

Cl 209 100% 193 7.7% Lognormal 193 0.0%

K 209 100% log 202 3.3% Lognormal 180 11.0%

Ca 209 100% 200 4.3% Lognormal 200 0.0%

Ti 209 100% log 203 2.9% Normal 182 10.3%

V 144 69% 144 0.0% Weibull 144 0.0%

Cr 203 97% 202 0.5% √ Normal 202 0.0%

Mn 81 39% 79 2.5% Weibull 79 0.0%

Fe 209 100% 198 5.3% Lognormal 198 0.0%

Co 150 72% 150 0.0% √ Weibull 150 0.0%

Ni 202 97% 199 1.5% Weibull 196 1.5%

Cu 209 100% log 206 1.4% Lognormal 186 9.7%

Zn 209 100% 203 2.9% Normal 198 2.5%

Ga 185 89% 184 0.5% Weibull 184 0.0%

As 145 69% 143 1.4% Weibull 143 0.0%

Se 205 98% 205 0.0% Weibull 205 0.0%

Br 209 100% 197 5.7% Lognormal 193 0.0%

Rb 179 86% 170 5.0% Weibull 170 0.0%

Sr 208 100% 203 2.4% √ Weibull 203 0.0%

Nb 144 69% 140 2.8% Weibull 140 0.0%

Mo 171 82% 168 1.8% Weibull 168 0.0%

Hg 205 98% 205 0.0% Weibull 205 0.0%

Pb 209 100% 205 1.9% Weibull 202 1.5%

https://doi.org/10.1371/journal.pone.0208816.t001
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test for the fitness. The fitness for the Normal, Weibull, and Lognormal distributions were

tested by Kolmogorov D, Cramer-von Mises W and Kolmogorov D tests, respectively. The SD
will be denoted by SDB to distinguish it from the SD shown in S3 Fig. The 7th column shows

that Cr, Co and Sr were square-root transformed to analyze the tractability. The 8th column

shows the type of distribution fitted for the mineral. The 9th column shows the number of

pairs used to confirm the tractability and the 10th the proportion of excluded pairs among the

valid pairs. No pair was excluded for 20 minerals, less than or equal to 2.5% were excluded for

24 minerals and less than 10% were excluded for 26 minerals. All excluded pairs were too large

to fit the distribution, and all minerals were confirmed to be tractable. Distribution types used

for the fitting are Normal, Log-normal, Weibull, √-Normal or √-Weibull. As described in S1

Text, the inter-individual variance σB2, the variance due to individual differences, is obtained

by SDB
2—SD2/2.

The results described in this section apply to positive measurements. In other words, com-

paring positive measurements among populations is performed using the two parameters of

those distributions. On the other hand, for 0, the proportion of 0’s is compared among

populations.

Discussion

We described a verification method to examine the validity of measurements. The method is

applicable to ICP-MS, ICP-AES, or any other methods. To demonstrate how to use this

method, it was applied to hair mineral measurements obtained using PIXE. This verification

method can be used to assess the validity of data as well as to determine the most efficient sta-

tistical method so that biomedical professions may correctly and adequately interpret the data.

Detection rate and LOD

Table 1 reveals that some elements have low detection rates of positive pairs such as Mg, Al, P,

V. Further studies should investigate the reason for these low rates from a biomedical or physi-

cal point of view to determine whether these elements should or should not be used for main

analysis.

Measurements below LOD are frequently observed with hair element analysis. The appro-

priate treatment of them depends on the objective of the study. According to Molina-Villalba

et al. [12], values below the LOD were “assigned the LOD divided by the square root of 2“. How-

ever, Varrica et al. [16] and Dongarrà et al. [18] set “values below the detection limit. . . at one-
third the detection level and treated (them) as real values”.

In our study, we obtained hair strands from each subject and separated them to make two

analytes from different locations. The difference in the true value between the two locations is

the intra-individual variation that is estimated using the difference between measurements

obtained from the analytes. We assigned measurements <LOD “0”. The results of this study

suggested that the differences between observed values in the two locations were regarded as

random errors, implying that the magnitude of the difference between the true value and “0”

was relatively negligible as compared to that of the difference in observed values between the

two locations.

The four questions

To answer the first and the second questions described in the Introduction, we sampled two

hair-strand specimens from each subject to obtain two statistically independent hair mineral

measurements. If the distribution of the differences between the two measurements is approxi-

mately normally distributed then the differences are regarded as normal random errors; the

Statistical model for hair mineral analysis
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measurements are considered valid and follow a simple random model described in S1 Text.

These measurements are qualified for statistical analysis assuming this model.

A valid mineral is termed tractable when the distribution of the mean of the two measure-

ments, after excluding the outliers, is well approximated by a parametric distribution. In this

study, all minerals were confirmed tractable. That is, all of the minerals are approximated by

either Normal, Lognormal or Weibull distribution, and it will be quite useful in applications

that each distribution is determined by only two parameters. For instance, if exposures such as

medical treatments, environmental changes, or dietary intakes affect some hair minerals, then

the effects of the exposure can be assessed by comparing the two parameters of the distribution

with those of the distribution without exposure. This answers the third question. It is also

straightforward to calculate any coverage interval and percentile points from a parametric dis-

tribution. Coverage intervals adjusting for those exposures may also be obtained by modifying

parameter values. This answers the fourth question.

Disregarded measurements

The 0’s are not used in fitting a parametric distribution, since interpretation regarding the bio-

logical abnormality of 0 depends on the objective of the study. For an essential mineral in clini-

cal medicine, 0 should be regarded as abnormally low, whilst for a toxic element in an

environmental science, 0 should be considered normal. In certain applications, it may be use-

ful to consider jointly the number of 0’s and the parameter values of a distribution fitted for

the positive pairs.

When the differences between the two measurements are normally distributed, the pairs

are termed valid. Conversely, when a difference is too large to fit the normal distribution, a

detailed examination might find particular factors causing the unusually large differences

between the measurements in the same subject. They could be experimental errors or unex-

pected responses.

In fitting a parametric distribution, too large measurements were excluded as outliers.

However, those measurements may carry unobserved but significant information [34], unless

they are caused simply by mistakes. Appropriate treatment of those measurements should be

considered according to the objective of the study. Conversely, determining the distribution

that most subjects follow makes it possible to identify outliers.

Reliability of hair mineral analysis

When examining the reliability of hair mineral results from laboratories, a standard procedure

is to split the hair sample of a single healthy volunteer, send them to different laboratories,

compare the reported results, and conclude on the reliability of the hair mineral analysis of the

laboratories [35–37]. This design of reliability analysis treats hair like blood. Most minerals are

uniformly distributed in the blood in the same density regardless of volume. However, most

minerals are not uniformly distributed in hair strands and the density may vary considerably

between hair strands within a subject. Thus, to comprehensively understand the variations in

hair mineral measurements, appropriate statistical analysis taking into account intra-individ-

ual variations is necessary. However, many studies rarely considered this aspect. They ascribe

the differences in measurements between laboratories to systematic factors such as variations

in sample preparations or calibration standards between laboratories.

We demonstrated a statistical analysis assuming a simple statistical model to assess the reli-

ability of hair mineral measurements. The model requires two measurements from each sub-

ject. The results of this analysis verified that the differences are regarded as normal random

errors. In other words, the hair mineral measurements obtained from PIXE analysis in this
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study are reliable. Therefore, results obtained from applying an appropriate statistical model to

the measurements are also reliable.

Large variations

Large intra-individual variations in hair minerals cause troubles in various applications. Dul-

gaszek et al. [5] concluded “Taking into account the high variability of results, further research

on the content of elements in human hair should be continued”. Kempson et al. [1] overview

possible causes of the variability of hair minerals, and suggest much more normalization and

accurate quality controls for hair mineral analysis. Wołowiec et al. [4] review associations

between the mineral composition of hair, and physical or mental disorders, and insist on the

standardization of sample preparation. Mikulewicz et al. [38] review reference values of ele-

ments in human hair. They screened 52 studies to leave only five as eligible for their review.

However, since the reported reference values still varied, they concluded it is necessary to fur-

ther elaborate the standard procedures to validate hair mineral analysis.

To surmount these large intra-individual variations, it is crucial to understand the statistical

nature of the variations in hair mineral measurements. We must first define the true value of

hair mineral measurements for a subject, and then define the intra-individual and inter-indi-

vidual variations. Statistical analysis using a simple random model (S1 Text) revealed that the

intra-individual variations are mostly random, rather than caused by any temporal accident or

systematic biases. More interestingly, the inter-individual variations are approximated by ordi-

nary two-parameter distributions. In other words, those variations are statistically tractable, or

controllable. The ratio of the inter-individual variance to the intra-individual variance will be

particularly useful for designing studies taking into account the variability of hair mineral

measurements.

Hair minerals as possible biomarkers for intractable diseases

Intractable diseases refer mainly to rare diseases with unidentified preventions or treatments.

Early and accurate diagnosis is critically important for those patients; however, the current sit-

uation for specific rare disease identification is not optimistic [39]. Tang and Makuuti [39]

suggest that biomedical research on rare diseases will provide insights into underlying mecha-

nisms, which may ultimately reveal possible avenues to therapeutics. Since a cohort study with

the endpoint being the onset of a rare disease is difficult to perform, a case/control study is the

only possible study design for finding risk factors for those diseases. The most difficult part in

implementing the case/control study is the need for accurate information on the subject’s envi-

ronment or health condition a few months to a few years before the onset. In that respect, hair

minerals are ideal biomarkers for case/control studies, since hair strands are usually easy to

obtain, and hair minerals are measured using PIXE or ICP methods. Thus, it is expected that

hair minerals will contribute to providing useful information for studies on underlying mecha-

nisms of rare diseases, if a standard method for the analysis of hair mineral measurements is

established.

If a study is designed to confirm hair minerals to be significant biomarkers for intractable

diseases, then information on the nature of measurement errors and inter-individual distribu-

tions of hair minerals would be of critical importance [40, 41].

Dataset used in this study is presented in S1, S2 and S3 Dataset.
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19. Chojnacka K, Zielinska A, Michalak I, Górecki H. Reference values for hair minerals of Polish students.

Environmental Toxicology and Pharmacology 2010; 29: 314–319. https://doi.org/10.1016/j.etap.2010.

03.010 PMID: 21787619

20. Jeruszka-Bielak M, Brzozowska A. Relationship Between Nutritional Habits and Hair Calcium Levels in

Young Women. Biol Trace Elem Res. 2011; 144: 63–76. https://doi.org/10.1007/s12011-011-9030-0

PMID: 21448562

21. Chojnacka K. The effect of dietary habits on mineral composition of human scalp hair. Environmental

Toxicology and Pharmacology 2010; 30: 188–194. https://doi.org/10.1016/j.etap.2010.06.002 PMID:

21787651

22. Kolachi NF, Gul Kazi TG, Afridi HI, Kazi NG, Khan S. Investigation of essential trace and toxic elements

in biological samples (blood, serum and scalp hair) of liver cirrhotic/cancer female patients before and

after mineral supplementation. Clinical Nutrition 2012; 31: 967–973. https://doi.org/10.1016/j.clnu.

2012.04.015 PMID: 22607713

23. Suliburska J. A Comparison of Levels of Select Minerals in Scalp Hair Samples with Estimated Dietary

Intakes of These Minerals in Women of Reproductive Age. Biol Trace Elem Res. 2011;0 144:77–85.

https://doi.org/10.1007/s12011-011-9034-9 PMID: 22068726

24. Shah F, Kazi TG, Afridi HI, Kazi N, Baig JA, Wadhwa SK, et al. Evaluation of Status of Trace and Toxic

Metals in Biological Samples (Scalp Hair, Blood, and Urine) of Normal and Anemic Children of Two Age

Groups. Biol Trace Elem Res. 2011; 141:131–149. https://doi.org/10.1007/s12011-010-8736-8 PMID:

20526751

25. DongarràG, Varrica D, Tamburo E, D’Andrea D. Trace elements in scalp hair of children living in differ-

ing environmental contexts in Sicily (Italy). Environmental toxicology and pharmacology 2012; 34: 160–

169. https://doi.org/10.1016/j.etap.2012.03.005 PMID: 22522426

26. Szynkowska MI, Marcinek M, Pawlaczyk A, Albi´nska J. Human hair analysis in relation to similar envi-

ronmental and occupational exposure. Environmental Toxicology and Pharmacology 2015; 40: 402–

408. https://doi.org/10.1016/j.etap.2015.07.005 PMID: 26247617

27. Ha-Na Kim HN, Song SW. Concentrations of Chromium, Selenium, and Copper in the Hair of Viscerally

Obese Adults are Associated with Insulin Resistance. Biol Trace Elem Res. 2014; 158:152–157.

https://doi.org/10.1007/s12011-014-9934-6 PMID: 24643468

28. Yasuda H, Yoshida K, Segawa M, Tokuda R, Tsutsui T, Yasuda Y, Magara S. Metallomics study using

hair mineral analysis and multiple logistic regression analysis: relationship between cancer and miner-

als. Environ Health Prev Med. 2009; 14:261–266. https://doi.org/10.1007/s12199-009-0092-y PMID:

19568830

29. Suliburska J, Bogdański P, Pupek-Musialik D, Krejpcio Z. Dietary Intake and Serum and Hair Concen-

trations of Minerals and their Relationship with Serum Lipids and Glucose Levels in Hypertensive and

Obese Patients with Insulin Resistance. Biol Trace Elem Res. 2011; 139:137–150. https://doi.org/10.

1007/s12011-010-8650-0 PMID: 20195917

30. Beck M, Levander OA, Jean H. Selenium deficiency and viral infection. The Journal of Nutrition; May

2003; 133, 5S.

31. Afridi HI, Kazi TG, Talpur FN, Kazi A, Arain SS, Ali J, et al. Assessment of selenium and mercury in bio-

logical samples of normal and night blindness children of age groups (3–7) and (8–12) years. Environ

Monit Assess. 2015; 187: 82. https://doi.org/10.1007/s10661-014-4201-z PMID: 25655123

32. Golasik M, Przybyłowicz A, zniak A, Herman M, Gawe W˛cki, Piekoszewski W, et al. Essential metals

profile of the hair and nails of patients with laryngeal cancer. Journal of Trace Elements in Medicine and

Biology 2015; 31: 67–73. https://doi.org/10.1016/j.jtemb.2015.03.001 PMID: 26004894

33. SAS Institute Inc. About JMP. Retrieved 2 July 2016.

34. Bailey D. Why outliers are good for science. Significance 2018; 15: 14–18.

35. Seidel S, Kreutzer R, Smith D, McNeel S, Gilliss D. Assessment of commercial laboratories performing

hair mineral analysis. JAMA 2001; 285: 67–72. PMID: 11150111

36. Drasch G, Roider G. Assessment of hair mineral analysis commercially offered in Germany. J Trace

Elem Med Biol 2002; 16: 27–31. https://doi.org/10.1016/S0946-672X(02)80005-0 PMID: 11878749

37. Namkoong S, Hong SP, Kim MH, Park BC. Reliability on Intra-Laboratory and Inter-Laboratory Data of

Hair Mineral Analysis Comparing with Blood Analysis. Ann Dermatol. 2013; 25: 67–72. https://doi.org/

10.5021/ad.2013.25.1.67 PMID: 23467102

Statistical model for hair mineral analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0208816 December 26, 2018 11 / 12

https://doi.org/10.1016/j.etap.2011.03.003
http://www.ncbi.nlm.nih.gov/pubmed/21787726
https://doi.org/10.1016/j.etap.2010.03.010
https://doi.org/10.1016/j.etap.2010.03.010
http://www.ncbi.nlm.nih.gov/pubmed/21787619
https://doi.org/10.1007/s12011-011-9030-0
http://www.ncbi.nlm.nih.gov/pubmed/21448562
https://doi.org/10.1016/j.etap.2010.06.002
http://www.ncbi.nlm.nih.gov/pubmed/21787651
https://doi.org/10.1016/j.clnu.2012.04.015
https://doi.org/10.1016/j.clnu.2012.04.015
http://www.ncbi.nlm.nih.gov/pubmed/22607713
https://doi.org/10.1007/s12011-011-9034-9
http://www.ncbi.nlm.nih.gov/pubmed/22068726
https://doi.org/10.1007/s12011-010-8736-8
http://www.ncbi.nlm.nih.gov/pubmed/20526751
https://doi.org/10.1016/j.etap.2012.03.005
http://www.ncbi.nlm.nih.gov/pubmed/22522426
https://doi.org/10.1016/j.etap.2015.07.005
http://www.ncbi.nlm.nih.gov/pubmed/26247617
https://doi.org/10.1007/s12011-014-9934-6
http://www.ncbi.nlm.nih.gov/pubmed/24643468
https://doi.org/10.1007/s12199-009-0092-y
http://www.ncbi.nlm.nih.gov/pubmed/19568830
https://doi.org/10.1007/s12011-010-8650-0
https://doi.org/10.1007/s12011-010-8650-0
http://www.ncbi.nlm.nih.gov/pubmed/20195917
https://doi.org/10.1007/s10661-014-4201-z
http://www.ncbi.nlm.nih.gov/pubmed/25655123
https://doi.org/10.1016/j.jtemb.2015.03.001
http://www.ncbi.nlm.nih.gov/pubmed/26004894
http://www.ncbi.nlm.nih.gov/pubmed/11150111
https://doi.org/10.1016/S0946-672X(02)80005-0
http://www.ncbi.nlm.nih.gov/pubmed/11878749
https://doi.org/10.5021/ad.2013.25.1.67
https://doi.org/10.5021/ad.2013.25.1.67
http://www.ncbi.nlm.nih.gov/pubmed/23467102
https://doi.org/10.1371/journal.pone.0208816
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