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Abstract

Viral marketing has been one of the main marketing modes. However, theoretical study of

viral marketing is still lacking. This paper focuses on the problem of developing a cost-

effective dynamic discount pricing strategy for a viral marketing campaign. First, based on a

novel word-of-mouth propagation model, we model the original problem as an optimal con-

trol problem. Second, we show that the optimal control problem admits an optimal control

and present the optimality system for solving the optimal control problem. Next, we solve

some optimal control models to get their respective optimal dynamic discount pricing strate-

gies. Finally, we examine the effect of some factors on the maximum marketing profit.

These results contribute to gaining insight into viral marketing.

1 Introduction

Viral marketing, also known as word-of-mouth (WOM) marketing, is an effective marketing

mode, in which the marketing information spreads in the form of WOM among customers

[1]. When consumers willingly become promoters of a product or service and spread the word

to their friends, they are driven to do so either through an explicit incentive or simply out of a

desire to share the product benefits with friends [2]. With the proliferation of online social net-

works, viral marketing can achieve market adoption more cost-effectively than traditional

marketing modes such as TV advertising [3–6].

To accurately evaluate the cost profit of a viral marketing campaign, we have to gain a deep

insight into the laws of WOM propagation [7]. For this purpose, in recent years some WOM

propagation models based on homogeneous networks have been proposed [8–13]. Yet, it was

reported that many online social networks are highly heterogeneous and highly structured

[14–16]. Consequently, WOM propagation models based on heterogeneous networks have

received considerable interest [17–20]. However, all of these work except [20] were done

through simulation experiments, not shaping a theoretic system. To establish a general theo-

retic framework about viral marketing, we need to introduce and study WOM propagation

models based on arbitrary networks.
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Node-level epidemic modeling is recognized as an effective approach to the understanding

of complex propagation phenomena over arbitrary networks [21]. In a node-level epidemic

model, the probability of each node in any given state obeys a separate differential equation.

As a result, the effect of the network structure on the epidemic process is accounted for [22].

In recent years, the node-level epidemic modeling technique has been applied to areas as

diverse as malware spreading [23–28], rumor spreading [29, 30], and cyber defense [31–33].

To our knowledge, this epidemic modeling technique has not been employed to characterize

the propagation of WOM over arbitrary networks.

Discount is one of the major marketing tools [6]. This paper focuses on the dynamic dis-

count pricing (DDP) problem, i.e., the problem of developing a cost-effective dynamic dis-

count pricing (DDP) strategy for a viral marketing campaign. First, we propose a node-level

WOM propagation model with discount mechanism. On this basis, we model the DDP prob-

lem as an optimal control problem we refer to as the DDP model problem. Second, we show

that the DDP model problem admits an optimal control, and we derive the optimality system

for solving the DDP model problem. Next, we solve some DDP models to get the correspond-

ing optimal DDP strategies. Finally, we examine the effect of some factors on the maximum

marketing profit. These results contribute to the deep understanding of viral marketing.

The subsequent materials are organized in this fashion: Section 2 models the DDP problem as

the DDP model problem. Sections 3 and 4 develop a method for solving the DDP model prob-

lem and use the method to solve some DDP models, respectively. The influence of some factors

on the maximum marketing profit is examined in Section 5. Section 6 summarizes this work.

2 The modeling of the dynamic discount pricing problem

This section focuses on the following problem.

Dynamic discount pricing (DDP) problem: For a marketing campaign launched by a mer-

chant, develop a dynamic discount pricing strategy to maximize the profit of the merchant.

For this purpose, this section is devoted to the modeling of the DDP problem according to

the four-step procedure: (1) introduce basic terminologies and notations, (2) formulate

dynamic discount pricing strategies, (3) establish a WOM propagation model, and (4) model

the DDP problem as an optimal control problem.

2.1 Basic terminologies and notations

Suppose a merchant intends to launch a viral marketing campaign in the time horizon [0, T].

Let V = {1, 2, . . ., N} denote the target market for the campaign, i.e., the set of all customers

and potential customers in the campaign. For brevity, we refer to all customers and potential

customers as nodes. Define the influence network of the target market as a network G = (V, E),

where (i, j) 2 E represents that node i has a direct influence on node j through online social

networks (OSNs). The merchant can have full knowledge of the influence network by means

of an OSN analysis software. Let A = (aij)N × N denote the adjacency matrix of G, i.e, aij = 1 or 0

according as (i, j) 2 E or not.

Generally speaking, every node in the influence network has a certain influence in the mar-

keting campaign, and a node with a larger out-degree has a larger influence [34]. In this paper,

we take the normalized quantity

di ¼
PN

j¼1
aij

max 1�k�N

PN
j¼1

akj
ð1Þ

as the measure of the influence of node i.
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2.2 Dynamic discount pricing strategies

Suppose for sales promotion, the merchant decides to give to each node a certain discount,

and the discount rate given to each node is proportional to his or her influence. Let θ(t) denote

the basic discount rate at time t. Then the discount rate given to node i at time t is di θ(t).
We refer to the function θ defined by θ(t), 0� t� T, as a dynamic discount pricing (DDP)

strategy. For technical reasons, we assume θ is both Lebesgue integrable and Lebesgue square

integrable [35]. That is, the admissible set of DDP strategies is

Y ¼ fy 2 L½0;T� \ L2½0;T� j 0 � yðtÞ � 1; 0 � t � Tg; ð2Þ

where L[0, T] represents the set of all Lebesgue integrable functions defined on [0, T], L2[0, T]

represents the set of all Lebesgue square integrable functions defined on [0, T].

2.3 A WOM propagation model

Suppose each and every node in the target market is in one of four possible states: susceptible,
infected, positive, and negative. Susceptible nodes are those who currently have intentions to

purchase new items. Infected nodes are those who currently have no intentions to purchase

new items, but have previously purchased some items and have made no comment on the

items. Positive nodes are those who currently have no intentions to purchase new items, but

have previously purchased some items and have made a general positive comment on the

items. Negative nodes are those who have no intentions to purchase new items, but have previ-

ously purchased some items and have made a general negative comment on the items. Initially,

all nodes are susceptible.

Let Xi(t) = 0, 1, 2, and 3 denote that node i is susceptible, infected, positive, and negative at

time t, respectively. Then the vector

XðtÞ ¼ ðX1ðtÞ; � � � ;XNðtÞÞ ð3Þ

represents the state of the target market at time t. In particular, we have X(0) = 0.

Let Si(t), Ii(t), Pi(t), and Ni(t) denote the probabilities of node i being susceptible, infected,

positive, and negative at time t, respectively.

SiðtÞ ¼ Pr fXiðtÞ ¼ 0g; IiðtÞ ¼ PrfXiðtÞ ¼ 1g;

PiðtÞ ¼ PrfXiðtÞ ¼ 2g; NiðtÞ ¼ PrfXiðtÞ ¼ 3g:
ð4Þ

As Si(t) = 1 − Ii(t) − Pi(t) − Ni(t), the vector

xðtÞ ¼ ðI1ðtÞ; � � � ; INðtÞ; P1ðtÞ; � � � ; PNðtÞ;N1ðtÞ; � � � ;NNðtÞÞ ð5Þ

represents the expected state of the target market at time t. In particular, we have x(0) = 0.

Next, let us introduce a set of hypotheses as follows.

(H1) Encouraged by positive comments, the susceptible node i purchases new items and hence

becomes infected at time t at the rate of bP
PN

j¼1
ajiPjðtÞ, where βP is a positive constant. We

refer to βP as the positive infection force. This hypothesis implies that a more influential

node contributes more to the marketing than a less influential node.

(H2) Encouraged by discount, the susceptible node i purchases new items and hence becomes

infected at time t at the rate of βD di θ(t), where βD is a positive constant. We refer to βD as

the discount infection force. This hypothesis implies that a node who can get a higher dis-

count rate tends to purchase items.
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(H3) Due to good feeling of recently purchased items, each infected node makes a general posi-

tive comment and hence becomes positive at the rate of αP, which is a positive constant. We

refer to αP as the positive comment rate.

(H4) Due to bad feeling of recently purchased items, each infected node makes a general nega-

tive comment and hence becomes negative at the rate of αN, which is a positive constant.

We refer to αN as the negative comment rate.

(H5) Due to the desire of online shopping, each infected node becomes susceptible at the rate

of γI, which is a positive constant. We refer to γI as the neutral desire rate.

(H6) Due to the desire of online shopping, each positive node becomes susceptible at the rate of

γP, which is a positive constant. We refer to γP as the positive desire rate. Obviously, γP> γI.

(H7) Due to the desire of online shopping, each negative node becomes susceptible at the

rate of γN, which is a positive constant. We refer to γN as the negative desire rate. Obviously,

γN< γI.

Remark 1. The merchant can estimate the seven parameters, βP, βD, αP, αN, γI, γP, and γN, by
collecting and analyzing relevant historical data.

These hypotheses are shown in Fig 1. So, the expected state of the target market evolves

according to the following differential dynamical system:

(
dIiðtÞ
dt

¼ bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ

" #

½1 � IiðtÞ � PiðtÞ � NiðtÞ�

� ðaP þ aN þ gIÞIiðtÞ; 0 � t � T; 1 � i � N;
dPiðtÞ
dt

¼ aPIiðtÞ � gPPiðtÞ; 0 � t � T; 1 � i � N;

dNiðtÞ
dt

¼ aNIiðtÞ � gNNiðtÞ; 0 � t � T; 1 � i � N;

xð0Þ ¼ 0:

ð6Þ

We refer to the model as the node-level WOM propagation model. This model may be abbre-

viated as

dxðtÞ
dt

¼ fðxðtÞ; yðtÞÞ; 0 � t � T;

xð0Þ ¼ 0:

ð7Þ

2.4 The modeling of the DDP problem

Obviously, the gross profit of the merchant is increasing with the rate at which a susceptible

node becomes infected. In this paper, we introduce an added hypothesis as follows.

(H8) The resulting gross profit per unit time when any susceptible node becomes infected at

the rate of β is equal to β units.

A dynamic discount pricing strategy for viral marketing
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The hypotheses (H1)-(H2) tell us that the susceptible node i becomes infected at time t at

the rate of

bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ: ð8Þ

In view of the hypothesis (H8) and the discount rate, the net profit in the infinitesimal time

interval [t, t + dt) owing to the state transition of node i is

bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ

" #

½1 � diyðtÞ�dt ð9Þ

if Xi(t) = 0, and this net profit is zero otherwise. So, the expected net profit in the time interval

[t, t + dt) owing to the state transition of node i is

bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ

" #

½1 � diyðtÞ�½1 � IiðtÞ � PiðtÞ � NiðtÞ�dt: ð10Þ

Hence, the expected net profit resulting from performing the DDP strategy θ is

PðyÞ ¼
Z T

0

XN

i¼1

bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ

" #

½1 � diyðtÞ�½1 � IiðtÞ � PiðtÞ � NiðtÞ�dt: ð11Þ

Fig 1. Diagram of state transitions of node i under the hypotheses (H1)-(H7).

https://doi.org/10.1371/journal.pone.0208738.g001
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Combining the above discussions, we may model the DDP problem as the following opti-

mal control problem:

max
y2Y

PðyÞ ¼
Z T

0

FðxðtÞ; yðtÞÞdt

s:t:
dxðtÞ
dt
¼ fðxðtÞ; yðtÞÞ; 0 � t � T;

xð0Þ ¼ 0:

ð12Þ

Here,

FðxðtÞ; yðtÞÞ ¼
XN

i¼1

bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ

" #

½1 � diyðtÞ�½1 � IiðtÞ � PiðtÞ � NiðtÞ�: ð13Þ

We refer to this optimal control problem as a DDPmodel. In this model, each control repre-

sents a DDP strategy, the objective functional represents the expected net profit of the mer-

chant under a DDP strategy, and an optimal control represents a DDP strategy that achieves

the maximum possible expected net profit. The DDP model (12) is determined by the 9-tuple

MDDP ¼ ðG;T; bP; bD; aP; aN ; gP; gI; gNÞ: ð14Þ

We refer to the problem of solving DDP models as the DDP model problem. In the subse-

quent section, we are going to develop a method for solving the DDP model problem by

means of optimal control theory.

3 A method for solving the DDP model problem

This section is dedicated to developing a method for solving the DDP model problem. We pro-

ceed following this procedure: (1) prove the DDP model problem admits an optimal control,

(2) derive the optimality system for solving the DDP model problem, and (3) describe an algo-

rithm for numerically solving the DDP model problem.

3.1 The existence of an optimal control

Before starting out to solve the DDP model problem, we must first show that the problem is

solvable, i.e., it admits an optimal control. To this end, we need the following lemma, which is

a direct consequence of a well-known theorem in optimal control theory [36].

Lemma 1. The DDP model (12) has an optimal control if the following six conditions hold
simultaneously.

(C1)Θ is closed.

(C2)Θ is convex.

(C3) There exists θ 2Θ such that dxðtÞdt ¼ fðxðtÞ; yðtÞÞ (0� t� T) is solvable.

(C4) f(x, θ) is bounded by a linear function in x.

(C5) F(x, θ) is concave onΘ.

(C6) There exist ρ> 1, c1 > 0 and c2 such that F(x, θ)� c1 kθkρ + c2.

Remark 2. To help understand the lemma, below let us elaborate the roles of the six conditions
involved in the lemma. First, it is obvious that a control is feasible if and only if it falls intoΘ and

A dynamic discount pricing strategy for viral marketing
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makes the constraint system (7) solvable. Hence, the third condition formally states that the opti-
mal control problem has a feasible control. This is the foundation for solving the model. Second, it
follows from convexity analysis theory [37] that the second and fifth conditions imply that the
objective functional is concave and hence is likely to have maximum as desired. Third, recall that
the concave function f ðxÞ ¼ x

1þx defined on the interval [0, 1) has no maximum, because its
domain is not closed. Hence, the first condition is necessary for the objective functional to have
maximum. Finally, it follows from optimal control theory that these three conditions together
with the remaining two technical conditions indeed guarantee the existence of an optimal control.

We are ready to show the existence of an optimal control.

Theorem 1. The DDP model (12) admits an optimal control.
Proof: Let θ� be a limit point of Θ. Then there exists a sequence of points, θ1, θ2, � � �, in Θ

that approaches θ�. As L[0, T]
T
L2[0, T] is complete, we have θ� 2 L[0, T]

T
L2[0, T]. Hence,

the closeness of Θ follows from the observation that 0� θ� = limn!1 θn� 1.

Let θ1, θ2 2 Θ, 0< η< 1. As L[0, T]
T
L2[0, T] is a real vector space, we have (1 − η)θ1 + ηθ2

2 L[0, T]
T
L2[0, T]. Hence, the convexity of Θ follows from the observation that 0� (1 − η)

θ1+ ηθ2� 1.

Let θ = 0. As f(x, 0) is continuously differentiable, it follows by Continuation Theorem for

Differential Systems [38] that the differential system
dxðtÞ
dt ¼ fðxðtÞ; 0Þ (0� t� T) is solvable.

The fourth condition in Lemma 1 follows from the boundedness of x and θ. The concavity

of F(x, θ) on Θ is obvious. Finally, we have F(x, θ)� 0� θ2 − 1. It follows from Lemma 1 that

the claim holds.

Remark 3. Theorem 1 lays a solid foundation for solving the DDP model problem.

3.2 The optimality system for the DDP model problem

The Hamiltonian of the DDP model (12) is

HðxðtÞ; yðtÞ; lðtÞÞ

¼
XN

i¼1

bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ

" #

½1 � diyðtÞ�½1 � IiðtÞ � PiðtÞ � NiðtÞ�

þ
XN

i¼1

liðtÞ bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ

" #

½1 � IiðtÞ � PiðtÞ � NiðtÞ�

(

� ðaP þ aN þ gIÞIiðtÞg þ
XN

i¼1

miðtÞ½ðaPIiðtÞ � gPPiðtÞ�

þ
XN

i¼1

niðtÞ½aNIiðtÞ � gNNiðtÞ�;

ð15Þ

where λ = (λ1, � � �, λN, μ1, � � �, μN, ν1, � � �, νN) is the adjoint.

We give a necessary condition for the optimal control of a DDP model as follows.
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Theorem 2. Suppose θ is an optimal control for the DDP model (12), x is the solution to the
corresponding dynamical system (7). Then, there exists an adjoint λ such that(

dliðtÞ
dt

¼ bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ

" #

1 � diyðtÞ½ � þ bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ

"

þ aP þ aN þ gI

#

liðtÞ � aPmiðtÞ � aNniðtÞ;

dmiðtÞ
dt

¼ bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ

" #

½1 � diyðtÞ� � bP
XN

j¼1

aij½1 � djyðtÞ�½1 � IjðtÞ

� PjðtÞ � NjðtÞ� þ bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ

" #

liðtÞ

� bP

XN

j¼1

aij½1 � IjðtÞ � PjðtÞ � NjðtÞ�ljðtÞ þ gPmiðtÞ;

dniðtÞ
dt

¼ bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ

" #

½1 � diyðtÞ� þ bP

XN

j¼1

ajiPjðtÞ þ bDdiyðtÞ

" #

liðtÞ

þ gNniðtÞ;
0 � t � T; 1 � i � N:

ð16Þ

with λ(T) = 0. Moreover,

yðtÞ ¼ max

(

min

(
gðtÞ
hðtÞ

; 1

)

; 0

)

; 0 � t � T; ð17Þ

where

gðtÞ ¼
XN

i¼1

di 1 � IiðtÞ � PiðtÞ � NiðtÞ½ � 1þ liðtÞ �
bP
bD

XN

j¼1

ajiPjðtÞ

" #

;

hðtÞ ¼ 2
XN

i¼1

d2

i ½1 � IiðtÞ � PiðtÞ � NiðtÞ�:

ð18Þ

Proof: It follows from Pontryagin Maximum Principle [39] that there exists λ such that

(
dliðtÞ
dt

¼ �
@HðxðtÞ; yðtÞ; lðtÞÞ

@Ii
; 0 � t � T; 1 � i � N;

dmiðtÞ
dt

¼ �
@HðxðtÞ; yðtÞ; lðtÞÞ

@Pi
; 0 � t � T; 1 � i � N;

dniðtÞ
dt

¼ �
@HðxðtÞ; yðtÞ; lðtÞÞ

@Ni
; 0 � t � T; 1 � i � N:

ð19Þ

Eq (16) follow by direct calculations. As the terminal cost is unspecified, and the final state

is free, the transversality condition λ(T) = 0 holds. Again by Pontryagin Maximum Principle

[39], we have

HðxðtÞ; yðtÞ; lðtÞÞ 2 arg min
y2Y

HðxðtÞ; y; lðtÞÞ; 0 � t � T: ð20Þ

A dynamic discount pricing strategy for viral marketing

PLOS ONE | https://doi.org/10.1371/journal.pone.0208738 December 28, 2018 8 / 19

https://doi.org/10.1371/journal.pone.0208738


So,

yðtÞ 2 arg min
0�y�1

(

y
XN

i¼1

di 1 � IiðtÞ � PiðtÞ � NiðtÞ½ � 1þ liðtÞ �
bP
bD

XN

j¼1

ajiPjðtÞ

" #

� y
2
XN

i¼1

d2

i ½1 � IiðtÞ � PiðtÞ � NiðtÞ�

)

; 0 � t � T:

ð21Þ

Eq (17) follows by direct calculations.

Remark 4. Recall from the multivariate calculus theory [40] that to optimize a multivariate
function subject to a set of equality constraints, we need to introduce a set of auxiliary parameters
known as the Lagrange multipliers to incorporate the constraints into the objective function. As a
result, the original constrained optimization problem boils down to an unconstrained optimiza-
tion problem that is solvable relatively easily. Adjoints in optimal control theory are something
like Lagrange multipliers in multivariate function optimization theory.

By optimal control theory, the optimality system for the DDP model (12) consists of Eqs

(7), (16) and (17), x(0) = 0, and λ(T) = 0. By solving the optimality system, we can get a unique

DDP strategy. Theorem 1 guarantees that this DDP strategy is indeed an optimal DDP strat-

egy. In the next subsection, we are going to present an algorithm for numerically solving opti-

mality systems.

3.3 An algorithm for solving optimality systems

Inspired by the forward-backward sweep method for solving ordinary differential equations

[41], in Algorithm 1 we describes an algorithm (the DDP algorithm) for numerically solving

the optimality system of a DDP model, where ||ϕ|| = sup0�t�T|ϕ(t)|. In all of the following

experiments, we set � = 10−6, K = 103. The DDP strategy obtained by running the DDP algo-

rithm on a DDP model is a numerical version of the optimal DDP strategy. In the next section,

we are going to solve some DDP models.

Algorithm 1 DDP
Input: DDP model MDDP ¼ ðG;T; bP; bD; aP; aN; gP; gI ; gNÞ, convergence error �,
upper bound K on the number of iterations.
Output: DDP strategy θ.
1: θ(0) = 0; k ≔ 0;
2: // generate the final DDP strategy through iterations; //
3: repeat
4: k = k + 1;
5: use the system (7) with θ = θ(k−1) and x(0) = 0 to forwardly calcu-

late x; x(k) ≔ x;
6: use the system (16) with θ = θ(k−1), x = x(k), and λ(T) = 0 to back-
wardly calculate λ; λ(k): = λ;
7: use the system (17) with x = x(k) and λ = λ(k) to calculate θ;

θ(k) = θ;
8: until ||θ(k) − θ(k−1)|| < � or k � K
9: return θ(k).

4 Examples of optimal DDP strategy

In this section, we execute the DDP algorithm given in the previous section on the correspond-

ing DDP models to obtain the corresponding optimal DDP strategies.
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4.1 Scale-free network

Scale-free networks are networks with an approximate power-law degree distribution. It was

reported that many real-world networks are scale-free [15, 16]. By using the Pajek software

[42], we get a synthetic scale-free network GSF on 100 nodes. See Fig 2.

Fig 2. A synthetic scale-free network GSF.

https://doi.org/10.1371/journal.pone.0208738.g002
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Example 1. Consider the DDP model with G = GSF, T = 10, βP = 0.1, βD = 0.1, αP = 0.2,

αN = 0.1, γP = 0.3, γI = 0.2, γN = 0.1. By solving the associated optimality system, we get an opti-
mal control θopt, which is shown in Fig 3(a). Define a set of static controls as follows: θk = 0.1 × k,

k = 0, 1, � � �, 10. Fig 3(b) exhibits PðyÞ, θ 2 {θopt}
S

{θk: k = 0, 1, � � �, 10}. It is seen that the opti-
mal control is superior to all of the remaining controls in terms of the expected net profit.

4.2 Small-world network

Small-world networks are networks with a relatively small diameter. It was reported that many

real-world networks are small-world [14, 16]. By using Pajek, we get a synthetic small-world

network GSW on 100 nodes. See Fig 4.

Example 2. Consider the DDP model with G = GSW, T = 10, βP = 0.1, βD = 0.2, αP = 0.1,

αN = 0.1, γP = 0.3, γI = 0.2, γN = 0.1. By solving the associated optimality system, we get an opti-
mal control θopt, which is shown in Fig 5(a). Define a set of static controls as follows: θk = 0.1 × k,

k = 0, 1, � � �, 10. Fig 5(b) exhibits PðyÞ, θ 2 {θopt}
S

{θk: k = 0, 1, � � �, 10}. It is seen that the opti-
mal control outperforms all of the remaining controls in terms of the expected net profit.

4.3 Email network

Fig 6 exhibits a realistic email network GEM on 100 nodes [43].

Example 3. Consider the DDP model with G = GEM, T = 10, βP = 0.2, βD = 0.1, αP = 0.1,

αN = 0.2, γP = 0.3, γI = 0.2, γN = 0.1. By solving the associated optimality system, we get an opti-
mal control θopt, hich is shown in Fig 7(a). Define a set of static controls as follows: θk = 0.1 × k,

k = 0, 1, � � �, 10. Fig 7(b) exhibits PðyÞ, θ 2 {θopt}
S

{θk: k = 0, 1, � � �, 10}. It is seen that the opti-
mal control overmatches all of the remaining controls in terms of the expected net profit.

By the above three experiments and 100 similar experiments, we conclude that for any

DDP model, the following results hold:

• The optimal control is increasing over time. This conclusion tells us that, in practice, the

basic discount rate should be enhanced gradually over time to gain the maximum possible

marketing profit.

Fig 3. Experimental results in Example 1: (a) the optimal control, (b) the comparison of the optimal control with a set of static

controls in terms of the expected net profit.

https://doi.org/10.1371/journal.pone.0208738.g003
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• The static control θk achieves the maximum expected net profit at k = 0.5. In practice, it may

be infeasible to realize a dynamic basic discount rate. In this situation, the conclusion dem-

onstrates that realizing the static basic discount rate of about 0.5 can achieve the maximum

possible marketing profit.

Fig 4. A synthetic small-world network GSW.

https://doi.org/10.1371/journal.pone.0208738.g004
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5 The influence of some factors on the optimal expected net profit

In this section we examine the influence of some factors on the optimal expected net profit of a

DDP model through computer experiments.

5.1 The two infection forces

First, we examine the influence of the two infection forces (positive infection force and dis-

count infection force) on the optimal expected net profit.

Example 4. Consider a set of DDP models with T = 10, G 2 {GSF, GSM, GEM}, αP = 0.2,

αN = 0.1, γP = 0.3, γI = 0.2, γN = 0.1. Fig 8(a) plots PðyoptÞ for βD = 0.4 and βP 2 {0.1, 0.3, � � �,

0.9}. Fig 8(b) displays PðyoptÞ for βP = 0.4 and βD 2 {0.1, 0.3, � � �, 0.9}. rom this figure, we see
that PðyoptÞ is increasing with βP and βD, respectively.

Through this example and a set of 100 similar experiments, we conclude that the expected

net profit of a DDP model is increasing with the positive infection rate and the discount infec-

tion rate, respectively. In practice, the merchant may enhance the discount infection rate by

reducing the original prices of the relevant commodities. Generally, positive infection rate is

not under the control of the merchant.

5.2 The two comment rates

Then, let us inspect the influence of the two comment rates (positive comment rate and nega-

tive comment rate) on the optimal expected net profit.

Example 5. Consider a set of DDP models with T = 10, G 2 {GSF, GSM, GEM}, βP = 0.2,

βD = 0.1, γP = 0.3, γI = 0.2, γN = 0.1. Fig 9(a) exhibits PðyoptÞ for αN = 0.1 and αP 2 {0.1, 0.3, � � �,

0.9}. Fig 8(b) shows PðyoptÞ for αP = 0.9 and αN 2 {0.1, 0.3, � � �, 0.9}. From this figure, we see that
PðyoptÞ is increasing with αP and decreasing with αN, respectively.

From this example and a set of 100 similar experiments, we conclude that the expected net

profit of a DDP model is increasing with the positive comment rate and decreasing with the

negative comment rate, respectively. In practice, the merchant may enhance the positive

Fig 5. Experimental results in Example 2: (a) the optimal control, (b) the comparison of the optimal control with a set of static

controls in terms of the expected net profit.

https://doi.org/10.1371/journal.pone.0208738.g005
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comment rate and reduce the negative comment rate by enhancing the quality of the commod-

ities or/and improving the user experience.

5.3 The three desire rates

Last, we examine the influence of the three desire rates (neutral desire rate, positive desire rate,

and negative desire rate) on the optimal expected net profit.

Fig 6. A realistic email network GEM.

https://doi.org/10.1371/journal.pone.0208738.g006
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Example 6. Consider a set of DDP models with T = 10, G 2 {GSF, GSM, GEM}, βP = 0.1,

βD = 0.2, αP = 0.2, αN = 0.1. Fig 10(a) shows PðyoptÞ for γP = 0.9, γN = 0.1, and γI 2 {0.1, 0.3, � � �,

0.9}. Fig 10(b) plots PðyoptÞ for γI = 0.3, γN = 0.1, and γP 2 {0.3, 0.5, � � �, 1.1}. Fig 10(c) demon-
strates PðyoptÞ for γI = 1, γP = 1.2, and γN 2 {0.1, 0.3, � � �, 0.9}. From this figure, we see that
PðyoptÞ is increasing with γI, γP, and γN, respectively.

By this example and a set of 100 similar experiments, we conclude that the expected net

profit of a DDP model is increasing with the neutral desire rate, the positive desire rate, and

the negative desire rate, respectively. In practice, the merchant may enhance the three desire

rates by improving the user experience.

Fig 7. Experimental results in Example 3: (a) the optimal control, (b) the comparison of the optimal control with a set of static

controls in terms of the expected net profit.

https://doi.org/10.1371/journal.pone.0208738.g007

Fig 8. Experimental results in Example 4: (a) the optimal expected net profits for βD = 0.4 and βP 2 {0.1, 0.3, � � �, 0.9}, (b) the

optimal expected net profits for βP = 0.4 and βD 2 {0.1, 0.3, � � �, 0.9}.

https://doi.org/10.1371/journal.pone.0208738.g008
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6 Concluding remarks

This paper has studied the problem of developing cost-effective dynamic discount pricing

strategies for viral marketing campaigns. We have modeled the problem as an optimal control

problem and have solved it by means of optimal control theory.

Toward this direction, there are some open problems that are worth study. First, how to

realize the recommended dynamic discount pricing strategies is a problem. Second, the influ-

ence index adopted in this paper may be replaced with some other influence measures [44–48]

to improve the cost profit of the proposed dynamic discount pricing strategy. Third, the idea

of this work may be applied to developing other kinds of viral marketing strategies. Next, this

work may be extended to some other application scenarios such as malware containment

[23–28], rumor restraint [29, 30, 49, 50], and cyber defense [31–33, 51]. Finally, a viral market-

ing campaign is essentially a game between the merchant and the customers, where the mer-

chant goes after the maximum possible net profit, and the customers wish to buy the desired

Fig 9. Experimental results in Example 5: (a) the optimal expected net profits for αN = 0.1 and αP 2 {0.1, 0.3, � � �, 0.9}, (b) the

optimal expected net profits for αP = 0.9 and αN 2 {0.1, 0.3, � � �, 0.9}.

https://doi.org/10.1371/journal.pone.0208738.g009

Fig 10. Experimental results in Example 6: (a) the optimal expected net profits for γP = 0.9, γN = 0.1, and γI 2 {0.1, 0.3, � � �, 0.9},

(b) the optimal expected net profits for γI = 0.3, γN = 0.1, and γP 2 {0.3, 0.5, � � �, 1.1}, (b) the optimal expected net profits for

γI = 0.3, γP = 1.2, and γN 2 {0.1, 0.3, � � �, 0.9}.

https://doi.org/10.1371/journal.pone.0208738.g010
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items at the lowest possible costs [52]. Therefore, it is expected that we can gain a deep insight

into viral marketing through game-theoretic approach [33, 53–56].
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