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Abstract

Background

The gold standard for pediatric sleep apnea hypopnea syndrome (SAHS) is overnight poly-

somnography, which has several limitations. Thus, simplified diagnosis techniques become

necessary.

Objective

The aim of this study is twofold: (i) to analyze the blood oxygen saturation (SpO2) signal

from nocturnal oximetry by means of features from the wavelet transform in order to charac-

terize pediatric SAHS; (ii) to evaluate the usefulness of the extracted features to assist in the

detection of pediatric SAHS.

Methods

981 SpO2 signals from children ranging 2–13 years of age were used. Discrete wavelet trans-

form (DWT) was employed due to its suitability to deal with non-stationary signals as well as

the ability to analyze the SAHS-related low frequency components of the SpO2 signal with high

resolution. In addition, 3% oxygen desaturation index (ODI3), statistical moments and power

spectral density (PSD) features were computed. Fast correlation-based filter was applied to

select a feature subset. This subset fed three classifiers (logistic regression, support vector

machines (SVM), and multilayer perceptron) trained to determine the presence of moderate-

to-severe pediatric SAHS (apnea-hypopnea index cutoff� 5 events per hour).

Results

The wavelet entropy and features computed in the D9 detail level of the DWT reached signif-

icant differences associated with the presence of SAHS. All the proposed classifiers fed with
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a selected feature subset composed of ODI3, statistical moments, PSD, and DWT features

outperformed every single feature. SVM reached the highest performance. It achieved

84.0% accuracy (71.9% sensitivity, 91.1% specificity), outperforming state-of-the-art studies

in the detection of moderate-to-severe SAHS using the SpO2 signal alone.

Conclusion

Wavelet analysis could be a reliable tool to analyze the oximetry signal in order to assist in

the automated detection of moderate-to-severe pediatric SAHS. Hence, pediatric subjects

suffering from moderate-to-severe SAHS could benefit from an accurate simplified screen-

ing test only using the SpO2 signal.

Introduction

The American Academy of Pediatrics (AAP) defines pediatric sleep apnea-hypopnea syn-

drome (SAHS) as a breathing disorder characterized by recurrent episodes of complete cessa-

tion (apnea) and/or significant reduction (hypopnea) of airflow during sleep [1]. SAHS is a

highly prevalent condition among children (in the range of 1% to 5%) that may lead to many

adverse consequences on the overall health and quality of life, such as cognitive deficits, behav-

ioral abnormalities, sleepiness, systemic inflammation, and cardiac and metabolic derange-

ments [1].

The gold standard technique for pediatric SAHS diagnosis is overnight polysomnography

(PSG). It involves recording a wide range of biomedical signals in a specialized sleep laboratory

[2,3]. These recordings are used to score apneas and hypopneas in order to compute the

apnea-hypopnea index (AHI), defined as the number of apneas and hypopneas per hour (e/h)

of sleep. AHI is the clinical variable used to establish SAHS. The diagnosis of moderate-to-

severe pediatric SAHS is confirmed when they present an AHI�5 e/h, irrespective of other

co-morbidities [1]. These children are at increased risk of suffering from the major negative

consequences of the disease [3–5]. Thus, to expedite the diagnosis and treatment is essential in

these patients. In this sense, surgical treatment with adenotonsillectomy is consistently recom-

mended for children suffering from SAHS with an AHI�5 e/h [6]. This treatment leads to an

improvement in the condition in the majority of pediatric patients who suffer from moderate-

to-severe childhood SAHS [1]. However, in spite of the PSG serving as the current recom-

mended diagnostic gold standard, it is costly and complex due to the necessary equipment and

trained staff, as well as highly intrusive due to the use of multiple sensors. In addition, it is a

time-demanding method that shows limited availability and absent scalability, thereby delay-

ing the diagnosis and treatment of SAHS patients [7,8].

These drawbacks have led to extensive exploration of the use of simplified diagnostic tech-

niques [9,10]. One common approach is the analysis of a reduced set of cardiorespiratory sig-

nals involved in PSG. In this regard, overnight oximetry is a common alternative due to its

reliability, simplicity, and suitability for children [7,11]. Nocturnal oximetry records the blood

oxygen saturation (SpO2) signal, which provides a numerical measure of the oxygen content in

hemoglobin [12]. Apneic events result in decreases in blood oxygen levels and such events are

termed oxyhemoglobin desaturations [12]. Hence, the SpO2 signal contains useful information

to detect pediatric SAHS. Previous studies have shown the usefulness of automated analysis of

the SpO2 signal from nocturnal oximetry to assist in the screening of moderate-to-severe pedi-

atric SAHS [13–19]. However, the results obtained in these studies indicate that an accurate
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diagnosis of pediatric SAHS is difficult, and in fact, substantially more difficult than in adults,

particularly because the frequency of apneic events and reductions in SpO2 is markedly lower

in children. Thus, further scientific evidence is still necessary before the diagnostic ability of

the SpO2 signal can be widely implemented as a pragmatic tool to assist in an automated detec-

tion of childhood SAHS.

Different signal processing techniques have already been applied to characterize the

changes produced in the SpO2 signal as elicited by apneic events. Conventional oximetry indi-

ces, statistical measures, nonlinear parameters, and spectral analysis from the SpO2 recordings

have all been evaluated [13–19]. Among these approaches, the use of spectral analysis is a com-

mon choice due to the recurrence of apneic events. In this sense, previous studies have assessed

features extracted from the power spectral density (PSD) and bispectrum [17–19]. However,

these methods are based on the Short-Time Fourier Transform (STFT), thus having a fixed

time-frequency resolution [20]. In contrast, wavelet transform (WT) offers high frequency res-

olution at low frequencies as well as high time resolution at high frequencies [20,21]. This

property makes WT a potentially more suitable technique to accurately detect low frequency

components, such as those associated with the duration of SpO2 desaturations. Additionally,

WT is also suitable to analyze non-stationarities like those occurring in the SpO2 signal by

apnea-hypopnea events. In this sense, wavelet analysis has proven its usefulness to detect

changes produced in biomedical signals by apneic events among adult SAHS patients [22–27].

Nevertheless, only two single preliminary studies by our group evaluated the usefulness of the

wavelet analysis in the detection of pediatric SAHS using the SpO2 signal [28,29]. Therefore,

additional research is clearly needed to further corroborate previous findings in a small cohort

and to assess the usefulness of wavelet analysis of SpO2 in the diagnosis of pediatric SAHS.

Thus, we propose to develop a more exhaustive wavelet analysis with a larger database of 981

overnight SpO2 recordings.

We hypothesized that the multiresolution analysis afforded by the WT could provide a set

of useful features to precisely characterize changes occurring in the SpO2 signal associated

with pediatric SAHS. Consequently, the aim of this study was twofold: (i) to analyze oximetry

dynamics by means of WT-derived features in order to characterize differences associated

with the presence of SAHS; and (ii) to assess the usefulness of these features to assist in an

automated detection of moderate-to-severe pediatric SAHS.

Materials and methods

Subjects and signals under study

The database is composed of 981 pediatric subjects (602 males and 379 females) ranging from

2 to 10 years of age. All children were referred to the Pediatric Sleep Unit at the University of

Chicago Medicine-Comer Children’s Hospital (Chicago, IL, USA) in the context of clinical

suspicion of SAHS. All legal caretakers of the children gave their informed consent as a prereq-

uisite to be part of the study and the Ethics Committee of the hospital approved the protocols

(#11-0268-AM017, # 09-115-B-AM031, and # IRB14-1241).

Children’s sleep was monitored using a digital polysomnography system (Nihon Kohden

America Inc., CA, USA). SpO2 recordings were acquired during overnight polysomnography

at sampling rates of 25, 200, or 500 Hz. In a preprocessing stage, artifacts were removed by dis-

carding those SpO2 values below 50% and those intervals with a slope higher than 4%/s [30].

Then, SpO2 recordings were resampled to a common rate of 25 Hz, as recommended by the

American Academy of Sleep Medicine (AASM) [12], and were rounded to the second decimal

place in order to have the same resolution [31]. The guidelines of the AASM were used by a

certified pediatric sleep specialist to quantify sleep and cardiorespiratory events. The AHI was
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subsequently derived in order to diagnose pediatric SAHS. An AHI of 5 e/h was the threshold

used to establish moderate-to-severe SAHS because of the enhanced risk of morbidity and

thus the importance of an early detection and treatment in these cases. According to this AHI-

based cutoff, 405 children were in the group AHI�5 e/h, whereas 576 children were in the

group AHI <5 e/h.

The dataset was randomly divided into an optimization set (60%) and a cross-validation set

(40%) [19]. Table 1 shows demographic and clinical data of the population under study (median

[interquartile range] or n (%)). No statistically significant differences (p-value < .01) emerged

in either age or body mass index (BMI) between optimization and cross-validation groups.

Methods

Our methodology is divided into three steps: feature extraction, selection, and classification. In

the first step, the wavelet transform was applied to analyze each SpO2 signal. A set of features

was computed using the discrete wavelet transform (DWT) to characterize the changes pro-

duced in SpO2 recordings due to SAHS. In addition, 3% oxygen desaturation index (ODI3),

statistical moments in the time domain and PSD features, which are common features from

the SpO2 signal [17,19], were obtained to compose a wide initial feature set with relevant as

well as complementary information. In the second step, a feature subset was selected using the

fast correlation-based filter (FCBF) method [32]. Finally, binary logistic regression (LR) [33],

support vector machines (SVM) [34] and multi-layer perceptron (MLP) neural network [35]

classifiers were trained using this selected feature subset in order to detect moderate-to-severe

pediatric SAHS.

Fig 1 shows the validation approach employed in each methodological step. The first set

(optimization set) was employed to perform descriptive analysis of the extracted features,

select a subset of features with FCBF, and select the optimal design parameters of the SVM and

MLP classifiers. Bootstrapping has been employed in the feature selection stage, in order to

avoid overfitting [36]. In the same way, 10-fold stratified cross validation has been applied to

optimize the design parameters of SVM and MLP. The second set (cross-validation set) was

used to evaluate the diagnostic performance of the single features and classifiers. Stratified K-

fold cross validation (K = 5) was applied for this purpose [37].

Feature extraction.

Discrete Wavelet Transform

WT can be seen as the decomposition of a signal x(t) onto a set of basis functions, called

wavelets [20]. Wavelets are obtained by time translations and scaling of a unique function

called the mother wavelet. WT can be seen as an extension of the Fourier transform where,

Table 1. Demographic and clinical characteristics of the patient groups under study.

All Optimization set Cross-validation set

Subjects (n) 981 589 392

Age (years) 6 [3–9] 6 [3–8] 6 [3–9]

Males (n) 602 (61.4%) 347 (58.9%) 255 (65.1%)

BMI (kg/m2) 17.9

[15.8–21.9]

17.6

[15.9–22.0]

18.1

[18.1–21.7]

AHI (e/h) 3.8 [1.5–9.3] 4.1 [1.7–9.9] 3.3 [1.4–7.8]

Group AHI <5 e/h (n) 576 (58.7%) 330 (56.0%) 246 (62.8%)

Group AHI�5 e/h (n) 405 (41.3%) 259 (44.0%) 146 (37.2%)

BMI: Body Mass Index; AHI: Apnea Hypopnea Index. Data are presented as median [interquartile range] or n (%)

https://doi.org/10.1371/journal.pone.0208502.t001
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instead of analyzing a single scale, a multiscale analysis is performed. This multiscale property

of the WT allows decomposing a signal into a set of scales, where each scale analyzes a different

frequency range of the signal. WT can be continuous (Continuous Wavelet Transform, CWT)

or discrete (DWT), depending on the scale and translation values [20]. CWT computes WT

for each scale, whereas DWT only computes WT for dyadic (power of 2) scales, thus present-

ing lower complexity and higher computational efficiency than CWT [38]. Consequently,

DWT was chosen in this study. In addition, it has previously shown its usefulness to detect dif-

ferent frequency components in physiological signals associated to SAHS events in adult

patients [22–27].

Fig 2 shows how DWT is computed. In Fig 2A, the decomposition process of a SpO2 signal

x[n] using DWT, the so-called subband coding scheme, is illustrated. It is a filter-bank tree

where each stage consists of a high pass-filter g[n] (the mother wavelet) and a low pass filter h
[n] (the mirror version of the mother wavelet), followed by a subsampling process of factor

two [20]. The relationship between these two filters is as follows [20]:

g½L � 1 � n� ¼ ð� 1Þ
n
� h½n�; ð1Þ

where L, an even number, is the length of the filter. First, x[n] is decomposed in an approxima-

tion signal (lowpass version), A1, and a detail signal (highpass version), D1. Then, A1 is further

decomposed into another approximation signal, A2, and another detail signal, D2. Each itera-

tion increases the frequency resolution of the approximation and the detail version by two, as

well as decreases the number of samples of both approximation and detail signals. This process

continues until the maximum detail level of the signal, N = log2(M) is reached, being M the

Fig 1. Validation approach employed in each methodological step of the study.

https://doi.org/10.1371/journal.pone.0208502.g001
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length of x[n] [39]. At each level (i = 1, 2, . . ., N), the approximation signal, Ai, and the detail

signal, Di, can be computed as follows:

Di½k� ¼
P

nAi� 1½n� � g½2k � n�; ð2Þ

Ai½k� ¼
P

nAi� 1½n� � h½2k � n�: ð3Þ

where Ai-1 is the approximation signal in the level i-1. In the level 1, A0 is the original signal x
[n]. Fig 2B shows an example of SpO2 signal, x[n], the detail signal Di obtained at each level i
of the DWT decomposition, and the approximation signal AN obtained at the level N of the

DWT decomposition.

DWT was applied to the upper power of 2 for 5 minute segments (M = 213 samples (5.5

minutes)) and, consequently, N = 13 [23]. In this study, the Haar wavelet was chosen as mother

wavelet. The reason is twofold [27]: (i) its suitability for picking up abrupt changes, which is

appropriate to detect the changes produced in the SpO2 values due to apneic events; and (ii) its

Fig 2. DWT computation. (A) Decomposition process of a signal using DWT. (B) Original SpO2 signal, detail signals at each decomposition level and

approximation signal at the maximum level of the decomposition.

https://doi.org/10.1371/journal.pone.0208502.g002
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smoothing feature, which does not distort the original form of the SpO2 signal. At each level of

the decomposition, detail coefficients contain information about a different frequency band,

as stated in Fig 2B. We focused on the detail coefficients of the level 9 (D9, i.e., 0.0244–0.0488

Hz), since it is the level which is contained in the band of interest previously related to the

recurrence of apneic events [18]. SpO2 signal presents both drops and rises associated to

apneic events, which result in decreased and increased values in D9 coefficients, respectively.

The information contained in the D9 coefficients may be canceled due to the presence of both

positive and negative values, such as mean or skewness. To avoid this, the absolute values of

the DWT coefficients were used. The following seven features were extracted from the DWT

coefficients:

• Statistical moments of the D9 coefficients (Mean (M1D9), variance (M2D9), skewness (M3D9)

and kurtosis (M4D9)). M1D9–M4D9 measure the central tendency, dispersion, asymmetry

and peakedness of the data, respectively.

• Maximum amplitude of the D9 coefficients (MaxD9). It quantifies the highest amplitude in

this frequency band.

• Energy of the D9 coefficients (EnD9). It measures the averaged quadratic amplitude of the sig-

nal in D9. It is computed as follows:

EnD9
¼
P

kjD9½k�j
2
; ð4Þ

• Wavelet Entropy (WE), which measures the irregularity introduced in the DWT. It was

extracted in order to obtain information about the changes produced in the energy distribu-

tion of the different detail levels of the DWT of the SpO2 signal by apneic events [39]. It is

computed as follows:

WE ¼ �
PN

i¼1
pi � lnðpiÞ; ð5Þ

where pi is the relative wavelet energy at the detail level Di:

pi ¼
EnDiPN
i¼1

EnDi

; ð6Þ

Where EnDi is the wavelet energy at the detail level Di:

EnDi
¼
P

kjDi½k�j
2
; ð7Þ

Conventional features from the SpO2 signal

In order to enhance the diagnostic ability of our proposal, the following features, that are

common parameters of the oximetry signal [17,19], were computed:

• ODI3. It was estimated as the number of desaturations of at least 3% from preceding baseline

per hour of recording [40]. This parameter has shown its usefulness in clinical studies, even

though it underestimates AHI [13–15].

• Statistical moments. First-to-fourth order statistical moments were computed from the SpO2

signal in the time domain (M1T -M4T): mean (M1T), variance (M2T), skewness (M3T), and

kurtosis (M4T) [17,19]. These features measure the central tendency, dispersion, asymmetry,

and peakedness of the data, respectively.
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• PSD features. PSD was estimated using the Welch’s method (213-sample Hamming window,

50% overlap and 214-points DFT) [41]. The following features were obtained: first-to-fourth

order statistical moments (M1PSD- M4PSD) and maximum amplitude (MaxPSD) from the

band of interest determined in [18] (0.018–0.050 Hz) and spectral entropy (SEPSD) in the full

spectrum. These features provide information about the recurrence and duration of apneic

events.

Feature selection: Fast Correlation-Based Filter (FCBF). The FCBF method was applied

to select a subset of relevant and non-redundant features [32]. FCBF is a feature selection algo-

rithm that has previously shown its usefulness in the context of pediatric SAHS [18,19]. First,

FCBF computes the symmetrical uncertainty (SU) between each feature (xi) and the AHI (y).

SU is a normalization of the information gain between two variables. SU is computed as fol-

lows [32]:

SU xi; yð Þ ¼ 2
IGðxijyÞ

HðxiÞ þHðyÞ

� �

; i ¼ 1; 2; :::;N; ð8Þ

where IG(xi|y) = H(xi)—H(xi|y), N is the total number of features extracted and H refers to

Shannon’s entropy [32]. According to their SU value (between 0 and 1), features are ranked

from the most relevant (highest SU with the AHI) to the least relevant one (lowest SU with the

AHI). Then, a redundancy analysis is performed. SU between each pair of features (xj, xi) is

computed. Features xj sharing more information with a more relevant one than with the AHI

(SU (xj| xi)� SU(xj|y)) were discarded. Finally, an optimum subset composed of the features

not discarded in this process is obtained.

A bootstrap approach was employed in order to obtain a subset of features independent of

a particular dataset. In this regard, FCBF was applied to 1000 bootstrap replicates built with a

sample with replacement procedure from the optimization set [42,43]. Those variables that

were selected with FCBF more than 500 times (50% of runs) formed the feature subset [18,19].

Feature classification. In this study, we employed LR, SVM, and MLP, which are well-

known algorithms in the context of binary classification. Particularly, these algorithms were

applied to assign each subject to the groups AHI <5 e/h and AHI�5 e/h [33–35].

Logistic regression

LR is a standard machine learning approach for binary classification. Given a set of input

features, LR estimates the posterior probability of a given instance (subject) belonging to one of

two mutually exclusive groups (AHI<5 e/h and AHI�5 e/h) by the use of the logistic function

[33]:

p Cljxkð Þ ¼
1

1þ e� ðb0þb1x1;kþ:::þbNxN;kÞ
; ð9Þ

where Cl represents the two groups (AHI <5 e/h and AHI�5 e/h), β = β0, β1, . . ., βN are the

coefficients of the model for each input feature, xk = x1,k, . . ., xN,k, is the input pattern for the

instance k, and N is the number of features. A Bernoulli distribution is used to model the prob-

ability density function and β coefficients are optimized using the maximum likelihood ratio

[33].

Support vector machines

A SVM is a binary classifier that searches for the best hyperplane that separates instances

from the classes under study [34]. The hyperplane has the following expression [34]:

yðx;wÞ ¼ wTɸðxÞ þ w0; ð10Þ

where x � RN is the input pattern of dimension N (number of features), ɸ(x) � RP transforms
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the data into a high-dimensional space P>N, and w is the weight vector. The weight vector w
is optimized in order to maximize the margin of separation between the two groups [34]. A

regularization parameter C was applied to control the trade-off between maximizing the mar-

gin of separation between groups and obtaining a good generalization ability in an indepen-

dent set [34]. The optimization problem of SVM is formulated using Lagrange multipliers:

yðx;wÞ ¼
P

i2SZ
itiKðxi; xÞ þ w0; ð11Þ

where S is a subset of the indices {1, . . ., L} corresponding to the non-zero Lagrange multipliers

(support vectors) ηi, L is the number of observations in the training set, ti are the output labels

(±1 for the AHI�5 and AHI <5 e/h groups), and K(�,�) is the kernel function in the trans-

formed space. In this study, a linear kernel was used, which has previously shown its usefulness

in the context of adult SAHS [44]. The value of C was optimized by means of 10-fold cross-val-

idation using the optimization set.

Multi-layer perceptron neural network

A MLP is an artificial neural network arranged in several fully connected layers: input, hid-

den, and output layers [35]. These layers are composed of computing units called perceptrons

or neurons. Each neuron consists of an activation function gk{.} and adaptive weights wkj that

interconnect the neuron with neurons from the subsequent layer [35]. The input layer was

composed of one neuron for each input feature. Additionally, a configuration with one single

hidden layer with a hyperbolic tangent activation function was applied since it provides a fast

convergence for the training algorithm [35]. This configuration can provide universal approxi-

mation to any continuous function with the only condition that there are enough hidden units

[35,45]. Finally, two neurons composed the output layer, since our problem is a binary classifi-

cation task. A logistic sigmoid activation function has been used in the output layer, because it

allows the output neurons to be interpreted probabilistically [35]:

yk ¼ gkf
PNH

j¼1
wkjg

jf
PN

i¼1
wjixi þ bjg þ bkg; ð12Þ

where yk are the outputs neurons, wkj are the weights connecting the hidden layer to the output

layer, wji are the weights connecting the input layer to the hidden layer, bj and bk are the bias

associated to the hidden and the output units, respectively, xi is the feature i, gk{.} and gj{.} are

the activation functions of the output and hidden layer, respectively, NH is the number of neu-

rons in the hidden layer, and N is the number of input features [35]. Random initialization was

performed for the weights of the network. Then, the scaled conjugate gradient algorithm with

weight-decay regularization was used to optimize the weights [35]. NH and the regularization

parameter (α) were optimized by means of 10-fold cross-validation using the optimization set.

Statistical analysis. The software tools Matlab version R2017a was used for performing

signal processing and statistical analyses. Normality and homoscedasticity tests showed that

extracted parameters were not normality distributed and had different variances. Conse-

quently, the Mann-Whitney U test was applied to search for statistical significant differences

in the extracted features (p-value <0.01) between groups. Diagnostic performance was

assessed by means of sensitivity (Se, percentage of patients with an AHI�5 e/h correctly classi-

fied), specificity (Sp, percentage of children with an AHI <5 e/h correctly classified), positive

predictive value (PPV, proportion of subjects classified as positive that are true positives), neg-

ative predictive value (NPV, proportion of subjects classified as negative that are true nega-

tives), positive likelihood ratio (LR+, likelihood ratio for subjects classified as positive),

negative likelihood ratio (LR-, likelihood ratio for subjects classified as negative), and accuracy

(Acc, percentage of subjects correctly classified).
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K-fold stratified cross validation (K = 5) was applied to assess the performance of the

extracted features and the binary classifiers [37]. The cross-validation set was randomly

divided into K subsets, preserving the proportion of subjects belonging to the groups AHI <5

e/h and AHI�5 e/h. K-1 folds formed the training folds (80% of the cross-validation set),

whereas the remaining one formed the test fold (20% of the cross-validation set). Accordingly,

Receiver Operating Characteristics (ROC) curves were used to obtain optimum classification

cut-off points for the single features using the K-1 training folds. Similarly, the classification

algorithms were trained using the training folds. Then, the diagnostic performance of the sin-

gle features and the LR, SVM, and MLP classifiers was measured using the test fold. This pro-

cess was repeated K times, so each fold was considered once as the test fold. Finally, all the

metrics are averaged across the K = 5 iterations.

Results

Feature separability

A total of seven DWT-derived features were obtained for each SpO2 recording (S1 Table). Fig

3 shows the histogram of the D9 coefficients in the optimization set for the groups AHI <5 e/h

and AHI�5 e/h. It can be observed that D9 coefficients are more concentrated near zero in

the AHI <5 e/h group, whereas in the group AHI�5 e/h these coefficients are more disperse.

Table 2 shows the median and interquartile range of all these extracted features in the optimi-

zation set for both groups. All features showed significant statistical differences (p-value

<0.01) between groups. M1D9, M2D9, MaxD9, EnD9, and WE showed higher values in the AHI

�5 e/h group, whereas M3D9 and M4D9 showed higher values in the AHI <5 e/h group. ODI3,

statistical moments and PSD features were also computed for each SpO2 recording (S1 Table).

ODI3, 3 out of 4 statistical moments (M1T, M2T, and M3T) and 3 out of 6 spectral features

(M1PSD, M2PSD, and MaxPSD) also showed significant statistical differences (p-value <0.01),

which agrees with previous studies [17,18].

Fig 3. Histogram of the D9 coefficients for each group in the optimization set.

https://doi.org/10.1371/journal.pone.0208502.g003
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Optimum feature subset

FCBF was applied to each bootstrap replicate from the optimization set, each one composed of

all the extracted features (ODI3, statistical moments, PSD, and DWT features). ODI3, 1 statisti-

cal moment (M2T), 3 features from PSD (M2PSD, M3PSD, and MaxPSD), and 3 DWT-derived

features (M3D9, EnD9 and WE) were selected more than 50% of times (500) (S2 Table). Thus,

these features formed the selected feature subset [18,19]. Notice that features from all the dif-

ferent methodological approaches were selected.

Classification models optimization

LR, SVM, and MLP classifiers were designed using the selected feature subset obtained with

FCBF (ODI3, M2T, M2PSD, M3PSD, and MaxPSD, M3D9, EnD9, and WE). Optimum values for

the design parameters of the SVM (regularization parameter: C) and MLP classifiers (number

of neurons in the hidden layer: NH; regularization parameter: α) were obtained as those for

which the Acc of the classifiers was the highest in the optimization set. Concerning SVM, the

following values of C were assessed: 10−5, 10−4, 10−3, . . ., 104, 105. The optimum value of the

input parameter C was 103, which maximizes Acc. Regarding MLP, NH was varied from 2 up

to 50 and α was varied from 0 up to 10. Since the network depends on the initial random values

of the weights, the accuracy was computed and averaged for a total of 10 runs for each pair

NH-α. Finally, user-dependent network parameters NH = 5 and α = 1 were chosen since this

pair reached the highest accuracy.

Diagnostic performance

The value of all the extracted features (ODI3, statistical moments, PSD, and DWT features)

and the classification score of the LR, SVM, and MLP classifiers were obtained for each subject

in the cross-validation set (S3 Table). Table 3 shows the diagnostic ability of each single feature

in the cross-validation set obtained using optimum cut-off point obtained from the ROC

curve. Most of the DWT-derived features (5 out of 7) showed accuracies near 80%. In this

regard, MaxD9 achieved the highest performance (81.7±5.6% Acc, with 75.4±7.1% Se and 85.4

±6.8% Sp), outperforming statistical moments and PSD features. Only ODI3 achieved slightly

higher Acc than MaxD9, reaching 81.9±7.2% Acc (78.1±7.3% Se and 84.2±8.1% Sp). Table 4

shows the diagnostic performance of LR, SVM, and MLP classifiers, which were trained using

the selected feature subset (ODI3, M2T, M2PSD, M3PSD, and MaxPSD, M3D9, EnD9, and WE)

obtained with FCBF, in the cross validation set. These classifiers showed high diagnostic per-

formance, outperforming all the extracted features in terms of Sp, PPV, LR+, and Acc. SVM

achieved the highest accuracy (84.0±5.2% Acc, with 71.9±4.4% Se and 91.1±7.2% Sp) for the

cutoff of 5 e/h.

Table 2. DWT-derived features for each group in the optimization set.

Feature Group AHI <5 e/h Group AHI�5 e/h p-value

M1D9 3.04 [2.26 3.92] 5.36 [3.77 7.70] p<< .01

M2D9 3.78 [3.23 4.63] 5.73 [4.30 7.57] p<< .01

M3D9 1.31 [1.20 1.44] 1.19 [1.06 1.32] p<< .01

M4D9 (102) 3.58 [1.03 7.69] 0.06 [0.04 2.69] p<< .01

MaxD9 (101) 1.23 [1.04 1.55] 1.96 [1.42 2.62] p<< .01

EnD9 (103) 0.54 [0.37 0.89] 1.54 [0.78 2.96] p<< .01

WE (10−4) 1.83 [1.18 2.86] 4.27 [2.52 9.41] p<< .01

https://doi.org/10.1371/journal.pone.0208502.t002
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Discussion

In the present study, we examined the usefulness of wavelet analysis to identify features that

characterize oximetry dynamics in order to expedite detection of moderate-to-severe pediatric

SAHS. WE and features from the coefficients in D9 (M1D9-M4D9, MaxD9, and EnD9) were

obtained from the DWT of each SpO2 recording. D9 (0.0244–0.0488 Hz) was chosen according

to a previous study in the context of pediatric SAHS [18], and is related to the duration and fre-

quency of the SpO2 desaturations associated with apneic events [40]. Statistically significant

differences (p-value < 0.01) emerged in all DWT-derived features between the groups AHI <5

e/h and AHI�5 e/h in the optimization set (Table 2). The higher values showed by M1D9,

MaxD9, and EnD9 in the AHI�5 e/h group agree with a higher amplitude of the histogram for

high values of the D9 coefficients in this group. In addition, the SpO2 drops and rises caused by

apneic events are reflected in a higher dispersion in the histogram of D9 coefficients, as

reported by the higher values of M2D9 in the AHI�5 e/h group. In contrast, the lower values

that M3D9 and M4D9 as reflected in the AHI�5 e/h group indicate that the variations pro-

duced in the SpO2 signal due to apneic events result in values less proximal to zero in the histo-

gram of the D9 coefficients. Finally, the higher irregularity reported by WE in the SAHS

positive group suggests that apnea-hypopnea events alter the energy distribution of the whole

DWT profile of the SpO2 signal.

Table 3. Diagnostic ability of the proposed features (ODI3, statistical moments, PSD, and DWT) in the cross-validation set.

Feature Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%)

ODI3 78.1±7.3 84.2±8.1 75.2±10.2 86.5±5.0 6.1±2.9 0.27±0.11 81.9±7.2

M1T 62.3±6.8 65.0±2.6 51.4±2.1 74.6±3.6 1.8±0.2 0.58±0.10 64.0±2.3

M2T 72.6±13.6 67.1±6.6 56.7±2.8 81.2±6.6 2.2±0.3 0.40±0.17 69.2±3.1

M3T 65.0±8.5 61.4±6.8 50.1±2.8 74.9±2.8 1.7±0.2 0.57±0.09 62.7±2.7

M4T 60.9±15.6 49.9±8.4 41.6±5.0 69.0±7.5 1.2±0.3 0.78±0.26 54.0±5.2

M1PSD 75.3±7.9 82.5±7.4 73.0±8.5 85.1±3.5 5.3±3.1 0.30±0.08 79.9±3.8

M2PSD 69.8±7.3 83.4±5.2 71.8±6.2 82.5±3.0 4.5±1.4 0.36±0.08 78.3±3.2

M3PSD 47.2±11.7 58.1±11.9 40.4±4.1 65.0±2.8 1.2±0.2 0.91±0.12 54.1±4.5

M4PSD 63.6±8.3 47.1±6.2 41.7±4.2 68.7±6.1 1.2±0.2 0.79±0.23 53.3±5.0

MaxPSD 78.1±8.8 75.2±9.9 66.2±6.9 85.6±3.6 3.5±1.1 0.29±0.09 76.3±4.3

SEPSD 48.6±14.4 61.8±11.8 43.0±4.8 67.3±3.3 1.3±0.3 0.82±0.12 56.9±4.2

M1D9 73.4±9.1 82.6±7.8 72.2±10.2 84.0±5.1 5.2±2.7 0.32±0.12 79.1±6.2

M2D9 74.7±6.1 81.7±6.5 71.5±6.9 84.6±3.0 4.6±1.7 0.31±0.07 79.1±3.3

M3D9 58.3±9.2 63.4±6.5 48.7±3.1 72.1±3.3 1.6±0.2 0.66±0.10 61.5±3.2

M4D9 71.2±6.7 64.6±5.7 54.6±3.3 79.2±4.0 2.0±0.3 0.45±0.10 67.1±3.5

MaxD9 75.4±7.1 85.4±6.8 76.0±9.0 85.4±4.3 6.2±2.8 0.29±0.10 81.7±5.6

EnD9 78.8±4.4 81.7±5.2 72.2±5.5 86.7±2.4 4.6±1.4 0.26±0.05 80.6±3.4

WE 76.0±8.2 78.4±5.6 68.0±3.8 84.9±3.5 3.6±0.7 0.30±0.09 77.6±2.5

https://doi.org/10.1371/journal.pone.0208502.t003

Table 4. Diagnostic ability of the LR, SVM, and MLP models in the cross-validation set.

Feature Se (%) Sp (%) PPV (%) NPV (%) LR+ LR- Acc (%)

LR 72.6±4.7 90.2±6.2 82.3±8.8 84.7±2.8 9.8±5.5 0.31±0.06 83.7±4.9

SVM 71.9±4.4 91.1±7.2 83.8±10.8 84.5±2.6 14.6±12.9 0.31±0.06 84.0±5.2

MLP 73.3±6.6 89.0±6.9 80.7±9.2 84.9±3.3 9.0±5.8 0.30±0.08 83.2±5.2

https://doi.org/10.1371/journal.pone.0208502.t004
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Regarding the diagnostic performance of the proposed features, ODI3 and MaxD9 reached

similar Acc in the cross-validation set, higher than the remaining features. In addition, higher

accuracies were generally obtained with the DWT-derived features with respect to statistical

moments and features from PSD. This suggests that DWT is a useful approach to analyze the

changes produced in the SpO2 signal associated to SAHS. In the feature selection stage, a fea-

ture subset composed of ODI3 (conventional oximetric index); M2T (time); M2PSD, M3PSD,

and MaxPSD (PSD), and M3D9, EnD9 y WE (DWT) was obtained with FCBF. LR, SVM, and

MLP models built with this subset obtained high diagnostic performance for the detection of

moderate-to-severe SAHS (AHI�5 e/h), improving the diagnostic ability of the single features

(Table 3) in terms of Sp, PPV, LR+, and Acc. It is worthy to note that the SVM model achieved

the highest average Acc (84.0%), Sp (91.1%), PPV (83.8%), and LR+ (14.6) among the single

features and binary classifiers. In addition, SVM reached similar NPV and LR- to LR, MLP,

ODI3 and the remaining features. A high LR+ is especially important for screening tests

[17,46]. In this sense, a LR+ greater than 10 is considered to provide strong evidence to con-

firm diagnoses [46]. Thus, our method is especially useful to confirm the presence of pediatric

SAHS.

Three DWT features were involved in the feature subset obtained with FCBF: M3D9, EnD9

and WE. As aforementioned, these features provide information about the concentration of

the D9 coefficients near zero (M3D9), the amplitude of the D9 coefficients (EnD9), and the irreg-

ularity of the distribution of the whole DWT profile of the SpO2 signal (WE). According to our

results, M3D9, EnD9 and WE provide both relevant and complementary (non-redundant)

information on the changes occurring in the SpO2 signal due to SAHS. This is consistent with

the different properties of the SpO2 signal these DWT-derived features quantify. The fact that

a high performance was reached with the three classification algorithms reinforces the notion

that DWT is a useful method to analyze the SpO2 signal in the context of pediatric SAHS.

To the best of our knowledge, this is the first study assessing wavelet analysis of SpO2

recordings in the context of pediatric SAHS. Our results suggest that DWT is an appropriate

tool to analyze the low frequency components of the SpO2 signals related to the duration of the

desaturations caused by apnea-hypopnea events since it provides high resolution at low fre-

quencies of the power spectrum [20,21]. This assumption is further supported by previous

studies, whereby DWT was also applied to quantify the frequency components of different bio-

medical signals associated to respiratory events in the context of adult SAHS [23,24].

Table 5. Summary of the state-of-the-art studies in the context of detection of moderate-to-severe pediatric SAHS using SpO2 recordings.

Studies Subjects (n) Methods Validation Se (%) Sp (%) Acc (%)

Kirk et al. [13] 58 ODI3 Direct validation�� 67.0 60.0 64.0�

Tsai et al. [14] 148 ODI4 No 83.8 86.5 85.1�

Chang et al. [15] 141 ODI3 and symptoms Direct validation�� 60.0 86.0 72.0�

Pia-Villa et al. [16] 268 Clusters of desaturations and clinical history Direct validation�� 40.6� 97.9� 69.4�

Álvarez et al. [17] 50 Statistical moments, spectral, nonlinear features, and classical

indices

Bootstrap 0.632 82.2 83.6 82.8

Vaquerizo-Villar et al.
[18]

298 Bispectrum, PSD, ODI3, anthropometric variables Feature optimization- training-

test

61.8 97.6 81.3

Hornero et al. [19] 4191 Statistical moments, PSD, nonlinear features, and ODI3 Training-test 68.2 87.2 81.7

Our proposal 981 ODI3, Statistical moments, PSD, and DWT features Optimization- cross validation 71.9 91.1 84.0

� Computed from reported data

�� Direct validation of a scoring criteria against AHI from PSG.

https://doi.org/10.1371/journal.pone.0208502.t005
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Additionally, the favorable performance of our approach may be due to the suitability of the

WT to analyze non stationary properties of a signal [20,21], which is appropriate to events

such as the non-stationary changes of the SpO2 signal associated with apneic events. The high

resolution afforded by WT at low frequencies, as well as its suitability to analyze non-stationary

signals clearly support the contention that DWT is more appropriate than conventional spec-

tral analysis techniques to analyze the SpO2 signal [20,21].

Table 5 shows the performance of previous studies focused on the automated analysis of

SpO2 as an alternative to PSG in the screening of moderate-to-severe pediatric SAHS [13–19].

Oxygen desaturation index and clusters of desaturations have been employed for this task [13–

16]. Kirk et al. [13] applied ODI3, reaching 67.0% Se, 60.0% Sp, and 64.0% Acc. Tsai et al. [14]

obtained 83.8% Se, 86.5% Sp, and 85.1% Acc using 4% ODI (ODI4). However, ODI4 cutoff val-

ues were optimized and validated using the same population, such that no true post-hoc verifi-

cation was achieved. Chang et al. [15] combined ODI3 with common symptoms to assess a

discriminative score, reaching 60% Se, 86% Sp, and 72% Acc. Pia-Villa et al. [16] reported

69.4% Acc (40.6% Se and 97.9% Sp) combining clusters of desaturations and clinical history in

a discriminative score. Our approach achieved a high the diagnostic performance while also

strengthening its validity since the methods were derived using not only a much larger sample

size, but also applying a cross validation approach to validate the results.

In order to increase the diagnostic ability of the SpO2 signal, conventional oximetric indices

have been combined with features from other signal processing approaches in studies devel-

oped by our group [17–19]. Álvarez et al. [17] assessed LR models fed with conventional oxi-

metric indices, statistical parameters, PSD, and nonlinear features. These models were

validated using a bootstrap procedure, reaching 82.8% Acc (82.2% Se and 83.6% Sp). Vaquer-

izo-Villar et al. [18] assessed the usefulness of oximetry bispectrum. A multiclass multi-layer

perceptron (MLP) model fed with ODI3, anthropometrical variables, PSD, and bispectral fea-

tures reached 61.8% Se, 97.6% Sp, and 81.3% Acc in an independent test set, outperforming a

MLP classifier built without bispectral features. Finally, Hornero et al. [19] analyzed 4,191

SpO2 recordings obtained from 13 sleep laboratories in a multicenter international study. A

MLP regression model with ODI3 and the skewness of the PSD reached 68.2% Se, 87.2% Sp,

and 81.7% Acc. In contrast with the findings of these studies, our current results achieved

improved diagnostic ability for the screening of moderate-to-severe SAHS with the use of

DWT-derived features. This suggests that wavelet analysis could enhance the detection of this

clinically important and vulnerable group of SAHS severity from single-channel oximetry

recordings. In these patients, it is essential to early detect this condition, since they are more

likely to suffer from morbidities such as decreases in cognitive performance [3,4], as well as an

increased C-reactive protein level due to systemic inflammation [5]. Moreover, an AHI�5 e/h

is also associated with increased systemic blood pressure measurements and an increased risk

for cardiac strain [3]. All these important negative consequences highlight the necessity of an

early detection of moderate-to-severe pediatric SAHS [3].

Notwithstanding the highly promising results of our current approach, several limitations

must be considered. First, the exclusive use of the SpO2 signal to detect SAHS may restrict the

spectrum of physiological perturbations being detected by the oximetry signal, such as electro-

encephalographic arousals or reductions in airflow and increased intrathoracic pressure

swings [1]. In this regard, the combination of SpO2 with other physiological signals from PSG

could potentially enhance the performance of our proposed method but at the cost of adding

significant complexity to the test. In addition, future research efforts may prospectively focus

on identifying a specific mother wavelet for this task. However, our proposed approach

achieved high performance with the Haar’s mother wavelet. Of note, the lack of universally

accepted AHI severity cutoffs is another limitation that affects our study. Nevertheless, we
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have assessed the diagnostic ability of our proposal using an AHI cutoff of 5 e/h, a widely used

criterion in the clinical decision making leading to the recommendation of surgical treatment

[3,10]. Finally, it would be an interesting future goal to further validate our methodology in a

larger sample of unattended oximetry recordings obtained at patients’ homes.

Conclusions

The application of WT has enabled the identification of features with the ability to characterize

the effects of SAHS in the overnight oximetry profile of children. Features computed in the D9

detail level of the DWT as well as WE reached significant differences associated with the pres-

ence of SAHS. DWT has been found to provide complementary information to conventional

approaches. Additionally, high diagnostic performance was reached using different reference

binary classifiers, which emphasizes the usefulness of the DWT to provide discriminant infor-

mation from oximetry signals. These results suggest that wavelet analysis could be useful to

further characterize the oximetry signal and improve the diagnostic performance and imple-

mentation of abbreviated screening test for pediatric SAHS.

Supporting information

S1 Table. Actual AHI from PSG and values of all the extracted features from the SpO2 sig-

nal (ODI3, statistical moments, PSD, and DWT features) of each subject in the optimiza-

tion set.

(XLSX)

S2 Table. The number of times each feature was selected with FCBF in the optimization

set.

(XLSX)

S3 Table. Actual AHI from PSG, values of all the extracted features from the SpO2 signal

(ODI3, statistical moments, PSD, and DWT features), and the classification scores of LR,

SVM, and MLP of each subject in the cross-validation set.

(XLSX)

Author Contributions

Funding acquisition: Félix del Campo, Roberto Hornero.

Investigation: Fernando Vaquerizo-Villar, Daniel Álvarez, Leila Kheirandish-Gozal, Gonzalo
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C. Gutiérrez-Tobal, Verónica Barroso-Garcı́a, Andrea Crespo, Félix del Campo, David

Gozal, Roberto Hornero.

Project administration: David Gozal, Roberto Hornero.
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