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Abstract

Interval mapping approaches have been playing significant role for quantitative trait locus

(QTL) mapping to discover genetic architecture of diseases or traits with molecular markers.

Composite interval mapping (CIM) is one of the superior approaches of the interval mapping

for discovering both linked and unlinked putative QTL positions. However, estimators of this

approach are not robust against phenotypic outliers. As a result, it fails to detect true QTL

positions in presence of outliers. In this study, we investigated the performance of β-Com-

posite Interval Mapping (BetaCIM) for detecting both linked and unlinked important QTLs

positions from the robustness points of views. Performance of this approach depends on

the value of tuning parameter β. It reduces to the classical CIM approach for β!0. We

described and formulated the cross-validation procedure for selecting trait specific optimum

value of β. It was observed that the optimum value of β depends on both amount of contami-

nated observations and their scatteredness. BetaCIM approach discover similar QTL posi-

tions as classical IM/CIM in absence of phenotypic outliers, but gives better results in

presence of phenotypic outliers in terms of detecting true QTLs and effects estimation. We

formulated the generalized forms of robust QTL analysis and developed an R-package

named “BetaCIM” by implementing this robust approach. Left and right kidney weight data

sets of mouse intercross population (129 S1/SvlmJ × A/J) were analyzed by using BetaCIM,

CIM, and IM approaches. For right kidney weight (RKW) CIM and BetaCIM provided similar

LOD score profile, and both approaches identified 3 QTL positions. IM approach also identi-

fied 3 QTL positions. For left kidney weight (LKW), there was evidence of one outlying

observation; and in this case the BetaCIM approach identified 2 QTL positions. However,

none of the QTLs were significant by CIM and IM approaches at 5% level of significance.

Gene expression ontology (GEO) search showed that the candidate genes (Otof and

A330033J07Rik) of the identified QTLs for LKW were expressed in kidney. Both simulation

and real data analysis results showed that BetaCIM approach improves the performance

over the existing methods in presence of phenotypic outliers. Otherwise, it keeps almost

equal performance.
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Introduction

QTL mapping approaches have been used successfully to discover the genetic variants by

using experimental cross populations [1, 2]. Arranging a cross between two inbred lines,

which are different in quantitative trait, then scoring the segregating progeny for the trait and

for a number of genetic marker are the basic steps of QTL mapping [3]. Due to advances in

molecular biology, the availability of genetic markers has rapidly increased, leading to exten-

sive use of QTL mapping in genetic studies of quantitative traits.

Genetic effects associated with marker genotypes are generally confounded by the position

of functional QTL and its actual effect. By exploiting this property, interval mapping [3] has

become a superior way to find QTLs [4, 5]. However, in the case of multiple linked QTLs,

genetic effects need to be sufficiently separated [6]. Interval-mapping approach cannot sepa-

rate the effects of linked putative positions completely [7]. Composite Interval Mapping (CIM)

is a powerful analytical technique that improves the reliability and accuracy of QTL mapping

by separating the effect of QTL from its locations [6, 8]. The CIM approach has advantages

over other mapping methods for detecting linked QTLs. By utilizing the properties of multiple

regression, test statistic of this approach was constructed to be unaffected by the QTLs outside

of testing interval [6]. CIM can eliminate influence of genetic background by using a set of rep-

resentative markers of the background QTL as covariates. Likelihood ratio test statistics for

this approach was constructed by joining interval mapping for QTL position and multiple

regression analysis for background markers that permits to identify linked QTL located near at

the same chromosome.

Real phenotypic data might be contaminated by some abnormal observations, known as

outliers. In general, outliers have a large impact on any classic statistical estimator. For QTL

mapping, the presence of phenotypic outlying observations might be the reason for misrepre-

senting multiple linked QTLs and could hinder the efficient and accurate resolvability of QTLs

[9]. For experimental population, phenotypic datasets often contain outlying observations that

may seriously affect the estimates of model parameters and can lead to the wrong detection of

QTL positions and their estimated effects [10, 11]. Mollah and Eguchi [12, 13] proposed β-

Composite Interval Mapping (BetaCIM) for robustly identifying putative QTL positions,

where parameters were estimated by maximizing β-likelihood functions. Maximization of β-

likelihood function is equivalent to minimization of Beta-Divergence [14–17]. However, in

their study, they did not provide any theoretical discussion about the robustness. Moreover,

they did not investigate the performance for detection of linked QTLs. In this work, we con-

ducted simulation study to observe the performance of BetaCIM approach for detecting multi-

ple linked and unlinked QTLs and compared the analysis results with classical interval

mapping (IM) and composite interval mapping (CIM) approaches in presence and absence of

phenotypic outliers. We provided the theoretical discussion about the robustness property,

cross validation procedure of selecting the tuning parameter β, and generalized the formulas of

BetaCIM approach. Two real datasets, left and right kidney weight data sets of mouse inter-

cross population (129 S1/SvlmJ × A/J), were analyzed to demonstrate the usefulness of using

BetaCIM approach for QTL mapping. We developed an R package, named BetaCIM, for

implementing this approach.

Materials and methods

Genetic model

Genetic cross between two parental inbred lines P1 and P2 is performed to produce an F1 pop-

ulation, consist of all heterozygotes genotypes, which are used to produce the segregating
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progeny B1 = F1× parent (backcross) or an F2 = F1×F1 (intercross). The genetic model for

intercross population is as follows
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Here G2, G1 and G0 are the genotypic values of genotypes QQ, Qq and qq. D is known as the

genetic design matrix and E = [a, d]T is the vector of genetic parameters. The first and second

columns of D, denoted by D1 and D2, represent the status of the additive and dominance

effects.

The genetic model of backcross population can be written as

G ¼
G2

G1

" #

¼
1

1

" #

mþ
1

0

" #

½a� ¼ 12�1mþ DE ð2Þ

All notations are similar as described in the upper of this section.

CIM statistical model for QTL mapping

Phenotypic traits might be controlled by several QTLs. Estimators of simple interval mapping

approach might be biased for confounding effects of multiple background QTLs [18]. Usually

QTLs are highly linkage disequilibrium with corresponding flanking markers, therefore highly

significant markers choosing through stepwise procedure could be a good representative set of

background QTLs. Composite interval mapping approach modified the simple interval-map-

ping approach by including several significant markers as cofactors. Some others confounding

factors (e.g. sex, age, diet etc.) also might have influence on traits, can be used as cofactor in

the model to adjust their effects.

Suppose, we want to test for a QTL on a marker interval for F2 population, then the statisti-

cal model for composite interval mapping can be written as

yj ¼ ax
�

j þ dz
�

j þ Xjgþ εj ð3Þ

where yj is the phenotypic value of the jth individual; a is the additive effect of the testing QTL

position; d is the dominance effect of testing QTL position; Xj is the matrix, may contain some

chosen markers and other explanatory variables; γ is the vector of partial regression coeffi-

cients including the general mean effect μ; εj is a random error. The value of (x�j , z
�
j ) is (1, -0.5)

if QTL genotype is QQ, (0, 0.5) if genotype is Qq, and (-1, -0.5) if genotype is qq.

Statistical genetic model for backcross population can be written as

yj ¼ ax
�

j þ Xjgþ εj ð4Þ

Notations of this equation are similar as described in upper of this section. The value of x�j
is 1 if QTL genotype is QQ, and 0 if genotype is Qq.

Robustification of CIM approach using beta-likelihood estimators

Composite interval mapping approach use the estimators derived from classical likelihood

function to estimate genetic parameters, which might produce false positive or reduce detect-

ing power of true loci in presence of phenotypic outliers. Instead of classical estimators of

genetic parameters, β-Composite Interval Mapping uses the robust estimators derived from
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beta-likelihood function for robustly estimating the QTL positions in presence and absence of

phenotypic outliers.

In the model (3), observation yj’s are influenced by three QTL genotypes QQ, Qq, and qq;

therefore, each phenotypic observation (yj) is assumed to follow a mixture of three possible

gaussian densities with different means and mixing proportion. The distribution function of

each phenotypic observation (yj’s) can be defined as

f ðyjjy;XjÞ ¼
1

s

X3

i¼1

pijφ
yj � mji
s

� �

where θ = (p,a,d,γ,σ2), ϕ() is a standard normal probability density function, mj1 ¼ a � d
2
þ Xjg,

mj2 ¼
d
2
þ Xjg, and mj3 ¼ � a � d

2
þ Xjg. The mixing proportions pji’s, which are functions of the

QTL position parameter p, are the conditional probabilities of QTL genotypes given marker

genotypes. For n individuals, the objective function for estimating θ is defined as

LbðyjY;XÞ ¼
1

b

1

nlbðyjXÞ

Xn

j== 1

ff ðyjjy;XjÞg
b
� 1

" #

ð5Þ

where lβ(θ|X) = [
R

{f(y|θ,X}β+1dy]β/(β+1)

It was induced from the beta-divergence [19] for estimation of the parameters. It reduces to

the log likelihood function for β!0. That is

lim
b!0

LbðyjY;XÞ ¼ L0ðyjY;XÞ

Therefore, the objective function (5) called as beta-likelihood function. Maximization of

this type of beta-likelihood function is equivalent to the minimization of beta-divergence [19]

for estimating model parameter θ. The β-LOD score for the evidence of a QTL in a marker

interval from the robustness point of view is defined by

LODb ¼ 0:434n sup
y

LbðyjY;XÞ � sup
y0

LbðyjY;XÞ
� �

ð6Þ

where θ0 and θ are the restricted and unrestricted parameter spaces. For β!0, the LODβ

reduces to the classical LOD criterion. The threshold value to reject the null hypothesis can be

computed by permutation test [19].

Generalized form of the formulas for QTL mapping

The formulas for robust estimators of genetic parameters were elaborately described in related

publications [12, 13]. In this section, we described the generalized forms of the robust estima-

tors for QTL mapping. If kmarker intervals (k putative QTLs) are considered jointly in map-

ping, the dimension of the genetic design matrix D augment to 2k × k for a backcross

population and to 3k × 2k for an F2 population when epistasis is ignored. Let us consider a

backcross population as an example to see how to use these general formulas for other genetic

models and populations. If we want to consider three marker intervals (three putative QTLs)
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simultaneously and use an additive model, the genetic model can be defined as
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where G111, G110, G101, G100, G011, G010, G001 and G000 represent genotypic values of QTL geno-

types AABBCC, AABBCc, AABbCC, AABbCC, AABbCc, AaBBCC, AaBBCc, AaBbCC and

AaBbCc respectively. The notations a1, a2 and a3 represent the effects of QTLs A, B, and C

respectively. The genetic design matrix D with dimension 8 × 3 specifies that the correspond-

ing likelihood is a mixture of 8 normal densities and has 3 genetic parameters (excluding μ) to

be estimate. Accordingly, the matrix of β weighted posterior probabilities Pβ, defined in the

related publication [12], is an n × 8 matrix. In deriving the β-estimators, in the E-step Pβ of

the eight QTL genotypes are updated, and in the M-step the following equations

Eðtþ1Þ ¼ mðtÞ � MðtÞEðtÞ ð8Þ

gðtþ1Þ ¼ ½XT fX#ðP
ðtÞ
b 1Þg�

� 1
½XT fY#ðP

ðtÞ
b 1Þ � P

ðtÞ
b DE

ðtþ1Þg� ð9Þ

s2ðtþ1Þ ¼ ð1þ bÞ½ðY � Xgðtþ1ÞÞ
T
fðY � Xgðtþ1ÞÞ#ðPb1Þg
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T
P
ðtÞ
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ðtÞ
b 1�
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are applied to maximize Q(θ | θ(t)). Here,

V ¼

1TPbðD1#D1Þ 1TPbðD1#D2Þ 1TPbðD1#D3Þ

1TPbðD2#D1Þ 1TPbðD2#D2Þ 1TPbðD2#D3Þ
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m ¼
ðY � XgÞTPbDi

1TPbðDi#DiÞ

( )

andM ¼
1TPbðDi#DjÞ

1TPbðDi#DiÞ
� dði 6¼ jÞ

( )

3�3

:

δ is an indicator variable. For details about Q(θ | θ(t)) and Pβ, see the related publication

[12]. To infer the joint conditional probability matrix Q for the three putative QTLs, we use

the property that if there is no interference in crossing over, the conditional distributions of

the individual putative QTL genotypes given the flanking marker genotypes are independent,

irrespective of whether the QTLs are linked or not. This independence property simplifies the

inference of Q matrix. If pair-wise epistasis of QTLs A × B, A × C, and B × C are also analyzed,

the dimensions of genetic design matrix D in Eq (7) augment to 8 × 6. Columns 4, 5, and 6,

which are the products of columns 1 and 2, 1 and 3, and 2 and 3, of the genetic design matrix

represents the status of the epistatic parameters of different genotypes. The Q matrix is the
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same as that for the additive model. If higher order of QTL epistasis is considered, the corre-

sponding column vector of D can be extended by the same procedure. For more details discus-

sion about general formulas for CIM algorithm, please see the paper of Kao and Zeng [20].

Robustness

Let G be the distribution function of g, then we can view the β-estimator, which is a function

of G defined by

yb½G� ¼ arg min Dbðg; fyÞ

¼ arg max f
R
Obðy; yÞdGðyÞg

ð11Þ

where

ObðyÞ ¼
1

bCbðyÞ

X3

i¼1

pi
s
�
y � mi
s

� �h ib

� p
ðtÞ
i �

1

b
ð12Þ

is the objective function. Therefore, the robustness of the β-estimator can be investigated by

the influence function. The influence function (IF) for the β-estimator at y under the distribu-

tion function G is defined as

IFðy; yb;GÞ ¼ lim
ε!0
fyb½ð1 � εÞGþ εDy� � yb½G�g=ε ð13Þ

where Δy is the probability measure that puts mass 1 at the point y. An estimator is said to be

B-robust if its influence function is a bounded function of y [21]. Since the β-estimator satisfies

the properties of M-estimator, the influence function for the robust estimator also can be writ-

ten as

IFðy; yb;GÞ ¼ Hðcb;GÞ
� 1
cbðy; yb½G�Þ ð14Þ

where ψβ(y;θ) = @Oβ(y;θ)/@θ is the estimating function for the β-estimator and

Hðcb;GÞ ¼ �
R @cbðy;yÞ

@y

h i

y¼yb ½G�
dGðyÞ ð15Þ

is a matrix which does not depend on y; thus, the B-robustness is equivalent to the boundness

of the estimating function for the M-estimator as well as the β-estimator [14, 22]. To prove the

boundedness of the estimating function ψβ(y;θ) for the β-estimator, let us consider the general

form of estimating function as defined by

cbðy; yÞ ¼
1

b

X3

i¼1

pi
s
�
y � mi
s

� �h ib
� p

ðtÞ
i

@½CbðyÞ�
� 1

@y
þ

½CbðyÞ�
� 1
X3

i¼1

pi
s
�
y � mi
s

� �h ib @log
pi
s
�
y � mi
s

� �h i

@y
� p

ðtÞ
i

ð16Þ

Obviously, the boundedness of the estimating function depends only on the second term of

the right-hand side of (16), since Cβ(θ) is independent on observations. In the second term of

the right-hand side of (16), we have

@log pi
s
�

y� mi
s

� �� �

@a
¼

(
þðy � m1Þ=s

2; for i ¼ 1

0; for i ¼ 2

� ðy � m3Þ=s
2; for i ¼ 3

ð17Þ

θ

θ
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@log pi
s
�

y� mi
s

� �� �

@d
¼

(
� ðy � m1Þ=2s2; for i ¼ 1

þðy � m2Þ=2s2; for i ¼ 2

� ðy � m3Þ=2s2; for i ¼ 3

ð18Þ

@log pi
s
�

y� mi
s

� �� �

@g
¼ ðy � miÞX

T=s2 ð19Þ

@log pi
s
�

y� mi
s

� �� �

@s2
¼ ½ðy � miÞ

2
� s2�=2s4 ð20Þ

Thus, we can conclude that if β> 0, then all components of estimating function are

bounded with respect to y and X. This is because all the terms corresponding to the Eq (17–20)

are of the form e� bz2 f ðzÞ with f(z) being polynomial in z, which is bounded in z 2 <. In case of

β = 0 or equivalently the maximum likelihood estimator, all the terms corresponding to the Eq

(17–20) become unbounded. Typically, for example, supzje� bz
2zj ¼ e�

1
2b=

ffiffiffiffiffiffi
2b
p

. Thus, we may

conclude that the estimating function ψβ(z;θ) for the β-estimator is bounded for β> 0. There-

fore, the β-estimators are B-robust against outliers.

Selection of the tuning parameter β
The value of the tuning parameter β plays a key role in the performance of the BetaCIM method. It

controls the trade-off between robustness and efficiency of estimators. This method shows good

performance for a wide range of β. A large β decreases the efficiency and increases the robustness

of an estimator, and vice-versa for the smaller β. However, an optimum value for β depends on the

initialization of model parameters, data contamination rates, type of data contamination, type of

datasets and so on. So heuristic selection of the tuning parameter β, may produces misleading

results in some satiations. To find an optimum β for minimum β-divergence method, Mollah et al.

[16, 17] used β-divergence with a fixed value β0 of β as a measure for evaluation of the minimum

β-divergence estimators. In this paper, we also use the same measure for β selection using cross val-

idation. To define the measure for β selection using K-fold cross validation, the entire dataset D ¼
fðyj;XjÞ : j ¼ 1; 2; . . . ; ng intoK subsets D1, D2, . . ., Dk and let D0k ¼ fðyj;XjÞ : ðyj;XjÞ=2Dkg.

Then the measure for β selection by K-fold cross validation can be defined by

Db0
ðbÞ ¼

1

n

XK

k¼1

L0
b0
ðŷbjDkÞ ð21Þ

where ŷb ¼ ðâb; d̂b; ĝb; ŝ2
b
Þ are estimated using dataset D0k and

L0
b0
ðŷbjDkÞ ¼

1

b0

1 �
1

nklb0
ðŷbjXÞ

X

ðy;XÞ2Dk

ff ðyjŷb;XÞg
b0

" #

ð22Þ

with

lb0
ðŷbjXÞ ¼

"
R n

f ðyjŷb;X
ob0þ1

dy

#b0=ðb0þ1Þ

ð23Þ

where nk is the number of observation in the subset Dk. Under null hypothesis the distribution
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function is f ðyjŷb;XÞ ¼ 1

ŝb
�

y� Xĝb
ŝb

� �
, where ŷb ¼ ðĝb; ŝ

2
b
Þ. We select an appropriate β by the min-

imizer ofDb0
ðbÞ for β. To compute β-LOD score for testing the evidence of a QTL in a specific

position in a chromosome, we need to select β by cross validation under null hypothesis and alter-

native hypothesis separately. So, it takes a lot of time to compute the genome-wide β-LOD scores.

However, we can use the same β by cross validation under null hypothesis, for each of alternative

cases also to save the computational time, since the estimators show good performance for a wide

range of β> 0 also. If cross validation results find the value of β significantly larger than 0, it indi-

cates that outliers contaminate the dataset. If cross validation results find the value of β very close

to 0, it indicates that the dataset is not contaminated by outliers and the robustified CIM algorithm

reduce to the traditional CIM.

Results

Simulation study

Simulations studies were conducted for Backcross (BC) and Intercross (F2) populations based

on the assumptions of multiple linked and unlinked QTLs, and in presence and absence of

phenotypic outliers. LOD scores were calculated for classical interval mapping and composite

interval mapping approaches and β-LOD scores were calculated for BetaCIM approach that is

equivalent to classical LOD scores for β!0. Trait specific optimum β was selected by using k-

fold cross-validation procedure, implemented in our BetaCIM R-package. We simulated geno-

type data by using the implemented functions (sim.map and sim.cross) of popular R/qtl pack-

age. Then by setting effects corresponding to some specific markers the phenotypic data sets

were generated. Mean sum of squares of the parameters were calculated by using the following

formula-

MSE ¼
1

p

Xp

i¼1

ðyi � ŷ iÞ
2
:

Detection power of the QTL was calculated as the numbers of times calculated LOD scores

of a QTL position exceed the significant threshold level divided by the number of simulations.

Threshold value of the test statistic was calculated by using permutation test.

Multiple unlinked QTLs

We simulated data for backcross population by assuming the QTLs located far enough to be

linkage equilibrium to each other’s. Four QTLs situated in different chromosomes were con-

sidered for simulation study. Four chromosomes each with fifteen markers separated in 10cM

intervals were simulated. Phenotypic data sets were generated by assuming some of the specific

marker positions (Chromosome-Marker: C1M3, C2M6, C3M4 and C4M4) as QTLs. Variations

of phenotypic data was contributed 50% by QTLs and 50% by random error. We generated

100 simulated data and analyzed by using IM, CIM, and BetaCIM approaches, and then plot-

ted the average LOD scores (Fig 1). Sample size for each simulation was 300. Moreover, simu-

lation was conducted with 5% contaminated phenotype data to investigate the robustness

property of classical approaches and BetaCIM approaches. Same approach was used to gener-

ate contaminated data described in previous publications [12, 15], randomly selected 5% of the

observations and then added random numbers.

Simulation results showed that all approaches could identify the true loci in absence of phe-

notypic outliers, and provided good estimates of genetic parameters with smaller standard

error (Table 1).
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Although, detection powers of 3 QTL positions were similar for IM, CIM and BetaCIM

approaches, for QTL C4M4 detection power of IM approach was low (power = 64%) as com-

pared to others two methods. Therefore, in the case of multiple unlinked QTL, detection

power of the QTLs is better for CIM and BetaCIM approaches as compared to IM. Moreover,

in the case of 5% phenotypic outlying observations, IM and CIM approaches failed to detect

true QTL positions (Fig 1B). Detection powers of these approaches were very low (8~27% for

IM, and 6~31% for CIM), as well as standard errors of the parameters were very high, implying

Fig 1. Simulations results without and with phenotype outliers in the case of multiple unlinked QTL. (A) Analysis results in absence of outliers; (B) analysis results

in presence of 5% outliers. Threshold for each method were calculated using permutation test with 1000 replicates.

https://doi.org/10.1371/journal.pone.0208234.g001

Table 1. Detection power of different approach for multiple unlinked QTLs.

Marker Parameters IM CIM BetaCIM

a Estimate SE Power Estimate SE Power Estimate SE Power

C1M3 2.12 2.16 0.23 97 2.13 0.39 100 2.13 0.39 100

C2M6 -1.23 -1.40 0.20 88 -1.19 0.38 91 -1.19 0.38 91

C3M4 -1.46 -1.48 0.19 98 -1.49 0.34 98 -1.49 0.34 98

C4M4 1.74 1.65 0.20 64 1.72 0.32 99 1.72 0.32 99

With 5% Outliers

C1M3 2.12 2.30 0.80 27 2.22 0.84 31 2.16 0.38 100

C2M6 -1.23 -1.39 0.67 2 -1.16 0.99 6 -1.22 0.42 88

C3M4 -1.46 -1.52 0.73 8 -1.48 0.87 15 -1.49 0.34 97

C4M4 1.74 1.79 0.68 8 1.83 0.97 18 1.68 0.36 98

Analysis results for 100 simulations with multiple unlinked QTL. Marker: genetic markers; Parameters: genetic effects of QTL; Estimate: estimated value of genetic

parameters; SE: standard error of the estimates; Power: detection power of the QTLs.

https://doi.org/10.1371/journal.pone.0208234.t001
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the estimated genetic effects highly varied across different simulated data sets (Table 1). Inter-

estingly, the BetaCIM method provides consistent results, just as there is no outlying observa-

tions, identified all QTL positions with high power and provided good estimates of genetic

parameters with smaller standard errors (Table 1). Therefore, BetaCIM approach significantly

improved the performance over classical CIM approach in the case of multiple unlinked QTLs

and presence of phenotypic outliers.

Multiple linked QTLs

One of the crucial properties of CIM is the ability of identifying multiple linked QTLs. In this

scenario, we conducted simulation with similar parameter setting as previous publication for

CIM [6]. We simulated data from four chromosomes, each with 16 markers and separated in

15 10cM intervals. The traits were controlled by 10 QTLs with positions and effects given in

Table 2. Among the 10 QTLs, 9 were in 1st three chromosomes and 1 was in chromosome 4.

Together, the QTLs account for 50% and 70% of the phenotypic variance for two different

sets of simulated data. Sample size was 300. In Fig 2, we plotted the average LOD scores for

300 simulations under two different scenarios, with and without phenotypic outliers, and for

two different heritability settings. Results showed that BetaCIM can provide similar LOD score

profile as CIM approach in absence of phenotypic outliers (Fig 2A and 2C).

With 50% genetic heritability both approaches identified 6 QTLs out of 10 QTLs at 5% level

of significance (Fig 2A). These approaches provided lower picks at others five true QTL posi-

tions. Although, with 70% genetic heritability both approaches detected one additional QTL

positions, referring that increasing of genetic heritability of the phenotypic traits can increase

the detection power of the approaches. IM approach detected 4 true QTL positions with 50%

and 70% genetic heritability respectively. This approach provided wider picks, failed to sepa-

rate multiple linked QTLs and detected several wrong QTL positions (Fig 2A and 2C). There-

fore, in the case of multiple linked QTLs, CIM and BetaCIM provided better result than IM

approach.

Simulation with single replicate showed that IM approach could provide larger mean sum

square error (MSE = 0.124) compared to CIM and BetaCIM approaches, referring that param-

eter estimation of IM approach could be biased in the case of multiple linked QTL. CIM and

BetaCIM approaches provided similar estimates of the genetic parameters and equal mean

Table 2. Parameters and point estimates of effects with and without phenotypic outliers.

Chr 1 Chr 2 Chr 3 Chr 4

QTL C1M3 C1M6 C1M12 C2M2 C2M6 C2M9 C3M4 C3M8 C3M14 C4M4 MSE

Position (cM) 20 50 110 10 50 80 30 70 130 40

Effect 0.42 0.75 0.58 1.02 -1.23 -1.26 -0.46 1.61 0.88 0.74

Without Outliers

IM 0.75 0.95 0.57 0.41 -1.37 -1.55 0.26 1.37 1.07 0.69 0.124

CIM 0.45 0.85 0.61 1.00 -1.20 -1.32 -0.45 1.37 0.88 0.77 0.007

BetaCIM 0.45 0.84 0.61 1.00 -1.20 -1.32 -0.45 1.37 0.88 0.76 0.007

With 5% Outlying Observations

IM -0.57 0.70 1.10 1.37 -1.41 -1.54 0.55 1.33 0.69 0.28 0.283

CIM -1.29 -1.01 1.00 2.17 -1.74 -1.10 0.01 1.40 0.55 0.26 0.841

BetaCIM 0.51 0.46 0.59 1.05 -1.26 -1.26 -0.37 1.33 0.90 0.73 0.018

Simulation results from 1 replicate with total heritability 70%. CiMj denote the jth marker of ith chromosome; Position: QTL position; Effect: QTL effect.

https://doi.org/10.1371/journal.pone.0208234.t002
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sum square error (MSE = 0.007), indicating the CIM and BetaCIM approaches could provide

better results compared to the IM approach in the case of multiple linked QTL.

With 5% contaminated observations, CIM and IM failed to detect true QTL positions (Fig

2B and 2D). However, BetaCIM provided similar results as without outliers, detected the true

QTL positions (Fig 2B and 2D). Therefore, BetaCIM is robust against phenotypic contamina-

tion, can detect true QTL positions in presence and absence of outliers. Outlying observations

had large impact on parameter estimation of IM and CIM approaches. Estimation was biased

upward or downward for these approaches (Table 2), and provided larger MSE. BetaCIM

approach significantly improved the performance in effects estimation and identifying true

QTLs in the case of outlying observations, provided smaller MSE. Simulation with F2 popula-

tion provided similar results for the approaches (Text A, Figs A and B, and Table A in S1 File).

Fig 2. Simulation results in presence and absence of phenotypic outliers in the case of multiple linked QTLs. Total genetic heritability was set as 50% and 70% for

two different sets of simulated data. 5%-contaminated data was added to phenotypes to investigate the robustness property of the approaches. (A) Analysis results in

the case of 50% genetic heritability and no outlying observation; (B) analysis results in the case of 50% genetic heritability and 5% outlying observations; (C) Analysis

results in the case of 70% genetic heritability and no outlying observation; (D) analysis results in the case of 70% genetic heritability and 5% outlying observations.

Threshold for each method were calculated using permutation test with 1000 replicates.

https://doi.org/10.1371/journal.pone.0208234.g002
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Beta selection for QTL analysis

In simulation study, we observed that BetaCIM approach significantly improved the analysis

results in presence and absence of phenotypic outliers. Tuning parameter β plays key role for

controlling effects of contaminated data. Value of β depends on proportion of contamination

in phenotypic data; its value can increase with respect to increasing outlying observations. We

calculated the average value of β with different proportion of phenotypic outliers (Fig 3).

In 100 simulations without phenotypic outliers, the median of optimum values of the tun-

ing parameter β was 0.001, referring that without phenotypic outlier optimum value of β is

very small. We observed that optimum value of the tuning parameter β increase with respect

to increasing outlying observations. For example, in the case of 2~20% of outlying observa-

tions median of optimum values of β were varies to 0.041~0.291. Therefore, selecting trait spe-

cific tuning parameter β by using cross validation is crucial for the BetaCIM approach.

Selecting the tuning parameter could be useful for real data analysis that may help in efficient

estimation of QTL positions and effects. Implemented function of “BetaCIM” R-package can

select trait specific optimum beta for analysis.

Real data analysis

Data from an experiment on multiple traits in the mouse was downloaded from mouse phe-

nome database (https://phenome.jax.org/projects/Feng1). The data was for an intercross

between 129S1/SvlmJ and A/J inbred mouse strains. There were several phenotypic traits

scored in the cross. We analyzed left and right kidney weight of mouse to identify the QTLs

underlying these traits. There were total 336 intercross individuals, aged 8 weeks, and typed at

91 markers. For more details about the data see the related publication [23]. IM, CIM and

BetaCIM approaches were used for analyses (Fig 4).

From Fig 4A, we observed that the right kidney weight (RKW) data symmetrically distrib-

uted and there had no extreme observations. None of the phenotypic observation was larger

than Q3+3�IQR or smaller than Q1-3�IQR, where Q1, Q3 and IQR are first quartile, 3rd quar-

tile, and inter quartile range of RKW data. In this case, optimum value of beta was 0.001 that

also indicated there had no contaminated observations in the data set. Analysis with CIM and

BetaCIM approaches provided similar LOD score profile and identified 3 QTL positions at 5%

level of significance (Fig 4C). Highest picks of the identified QTL positions by using CIM and

BetaCIM approaches were in 42.14 cM of chromosome 9 (LOD = 5.18, LODβ = 5.17) with

nearby marker rs3676158 (position = 40.876 cM, LOD = 5.16, LODβ = 5.15); in 67.941 cM of

chromosome 10 at the marker rs3674646 (LOD = 3.90, LODβ = 3.89); and in 45.055 cM of

chromosome 13 at the marker rs3716022 (LOD = 3.53, LODβ = 3.42). IM approach also identi-

fied three QTL positions; the highest significant picks were 45.132 cM of chromosome 9

(LOD = 3.79) with nearby marker rs3676158 (LOD = 3.67), in 67.941 cM of chromosome 10 at

the marker rs3674646 (LOD = 3.46); and 35.299 cM of chromosome 13 within the marker

interval rs3676930 (position 24.6737 cM) and rs3716022 (position 45.055 cM). The candidate

markers rs3676158 and rs3674646 are the intron variants of genes Unc13c, and Grip1 respec-

tively, however gene information of another variant rs3716022 is unknown. Unc13c is respon-

sible for an additional step of molecular and/or positional "superpriming" that substantially

increases the efficacy of Ca(2+)-triggered release [24]. Its play a role in vesicle maturation dur-

ing exocytosis as a target of the diacylglycerol second messenger pathway, and may be involved

in the regulation of synaptic transmission at parallel fiber (http://www.uniprot.org/uniprot/

Q8K0T7). Grip1 play a role as a localized scaffold for the assembly of a multiprotein signaling

complex and as mediator of the trafficking of its binding partners at specific subcellular loca-

tion in neurons (http://www.uniprot.org/uniprot/Q925T6).
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We analyzed the left kidney weight (LKW) data of the same population. In this case, there

was evidence of one outlying phenotypic observation (phenotypic value of one individual

observation was larger than Q3+3�IQR, where Q3 is the third quartile and IQR is interquartile

Fig 3. Optimum value of the tuning parameter beta with different proportion of phenotypic outliers. Triangles are locating at the median optimum value of beta.

(A-E) plots for β selection by cross-validation in presence of 0%, 2%, 5%, 10% and 20 outliers, respectively.

https://doi.org/10.1371/journal.pone.0208234.g003
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range of LKW data). Optimum value of the tuning parameter β was larger than before (opt β =

0.041), indicated there had some contaminated observations in the data set. For LKW, IM and

CIM approaches identified none of the QTL positions at 5% level of significance (Fig 4F). How-

ever, BetaCIM approach identified 2 QTL positions, which are 12.43~21.43 cM of chromosome

5 and 20.30~29.30 cM of chromosome 13. LOD scores for CIM and IM approaches at the QTL

positions were high but not significant at 5% level of significance (Fig 4F). These two QTLs hold

the markers rs3023765 (position = 16.550 cM, LODβ = 3.78) and rs3676930 (position = 24.6737

cM, LODβ = 4.54), which are the variant of the genes Otof and A330033J07Rik. Mutations in

human orthologous of miceOtof gene are a cause of neurosensory nonsyndromic recessive

deafness, hearing loss [25]. Individual with moderate chronic kidney disease (CKD) have a

higher prevalence of hearing loss than those of the same age without CKD (https://www.kidney.

org/news/ekidney/november10/HearingLoss_November10). Mice lacking Otof display hearing

loss. It expressed in the cochlear IHC, vestibular type I sensory hair cells, eye, heart, skeletal

muscle, liver, kidney, lung and testis (http://www.uniprot.org/uniprot/Q9ESF1). Another novel

gene A330033J07Rik also expressed in kidney (https://www.ncbi.nlm.nih.gov/geoprofiles/

7902881). Therefore, the candidate genes may have relevant function for kidney weight.

Discussions

This paper discusses the robustification of CIM algorithm for identification of both linked and

unlinked QTLs by maximizing β-likelihood function using the EM like algorithm. The value

of the tuning parameter β plays a key role on the performance of the BetaCIM method. An

Fig 4. Analysis of kidney weight data of mouse intercross population (129 S1/SvlmJ× A/J). (A, D) Plots of phenotypic distributions for right and left kidney

weights, respectively; (B, E) Plots for β selection by cross-validation from left and right kidney weights, respectively. (C, F) LOD score profiles for left and right kidney

weights, respectively. Threshold for each method were calculated using permutation test with 1000 replicates.

https://doi.org/10.1371/journal.pone.0208234.g004
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optimum value for the tuning parameter β can be selected by using k-fold cross validation.

Simulation studies showed that the value of tuning parameter β increase with respect of

increasing proportion of outlying observations (Fig 3). Therefore, optimum value of the tuning

parameter depends on data contamination rate, could vary across real data sets. We imple-

mented the cross-validation procedure of selecting trait specific optimum β in BetaCIM R-

package that could help to select trait specific value of the tuning parameter. In simulations, we

observed that the BetaCIM approach significantly improved the performance over IM and

CIM approaches in presence of outliers; otherwise, it keeps equal performance with CIM. This

approach can identify all the QTL positions that can be detected by using CIM in absence of

phenotypic outliers. And in presence of phenotypic outliers only BetaCIM approach can pro-

vide consistent results (Figs 1 and 2). CIM and IM approaches could fail to detect true QTL

positions in presence of phenotypic outliers.

Again, simulation with 100 replicates, we observe that BetaCIM approach can provide reli-

able estimates of genetic parameters in presence and absence of phenotypic outliers (Table 1).

The CIM and BetaCIM can provide smaller mean sum square error (MSE) compared to the

IM approach in absence of phenotypic contamination (Table 2). Interestingly, in presence of

phenotypic contamination MSE of CIM approach can be larger than IM approach, might due

to biased estimations of the effects of background genetic makers that use as cofactor. IM

approach does not use the background markers as cofactor. Therefore, genetic parameter esti-

mation by using CIM approach is more sensitive to outliers compared to IM approach. How-

ever, in presence of phenotypic outliers BetaCIM provided smaller MSE compared to IM and

CIM approaches, thus this approach overcomes the deficiency of CIM approach. Again, QTL

detection powers of the BetaCIM approach are similar in absence and presence of phenotypic

outliers, whereas detection power was very small for CIM and IM approaches in presence of

phenotypic outliers (Table 1). In real situations, phenotypic data might be contaminated by

different environmental exposures [11], as well as may contain some measurement errors. A

robust approach can provide reliable results in real situations.

We analyzed two real data sets: right kidney weight (RKW) and left kidney weight (LKW)

of mouse intercross population [23]. In real data analysis, trait specific optimum β were equal

to 0.001 and 0.041 for two different datasets, indicating the presence of some unusual observa-

tions in the LKW data set (Fig 4B and 4E). After checking the phenotypic observations, we

observed that there was evidence of outlying observation in LKW, but not in RKW. CIM and

BetaCIM approaches provided similar LOD score profile for RKW, but different for LKW.

The CIM and IM approach failed to detect the QTL positions for LKW, might due to presence

of phenotypic contamination, whereas BetaCIM approach identified two QTL positions at 5%

level of significance. Identified candidate genes of these QTL regions were expressed in Kid-

ney. Simulation and real data analysis showed that BetaCIM approach could be useful to

robustly identify the QTL positions and unbiased estimate of genetic parameters of experimen-

tal populations.

Supporting information

S1 File. Includes Text A, Table A, Fig A, and Fig 2.

Text A in S1 File. Simulations with Intercross Population.

Table A in S1 File. Detection power of different approaches for multiple linked QTLs in

the case of F2 population. Results were calculated from 500 simulations. IM: Interval Map-

ping approach; CIM: Composite Interval Mapping approach; BetaCIM: Beta likelihood

based composite interval mapping approach.
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Fig A in S1 File. Results from 100 simulations for F2 population in the case of unlinked

QTLs. (A) without phenotypic outliers, and (B) with 5% phenotypic outliers. Threshold for

each method were calculated using permutation test with 1000 replicates.

Fig B in S1 File. Results from 100 simulations for F2 population in the case of multiple linked

QTLs. (A) without phenotypic outliers, and (B) with 5% phenotypic outliers. Threshold for

each method were calculated using permutation test with 1000 replicates.
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