
RESEARCH ARTICLE

Identification of alterations in macrophage

activation associated with disease activity in

systemic lupus erythematosus

Adam C. LabonteID
1,2, Brian Kegerreis1,2, Nicholas S. Geraci1,2, Prathyusha Bachali1,

Sushma Madamanchi2, Robert Robl2, Michelle D. Catalina1,2, Peter E. Lipsky1,2, Amrie

C. Grammer1,2*

1 AMPEL BioSolutions LLC, Charlottesville, Virginia, United States of America, 2 RILITE Research Institute,

Charlottesville, Virginia, United States of America

* amrie.grammer@ampelbiosolutions.com

Abstract

Systemic lupus erythematosus (SLE) is characterized by abnormalities in B cell and T cell

function, but the role of disturbances in the activation status of macrophages (Mϕ) has not

been well described in human patients. To address this, gene expression profiles from iso-

lated lymphoid and myeloid populations were analyzed to identify differentially expressed

(DE) genes between healthy controls and patients with either inactive or active SLE. While

hundreds of DE genes were identified in B and T cells of active SLE patients, there were no

DE genes found in B or T cells from patients with inactive SLE compared to healthy controls.

In contrast, large numbers of DE genes were found in myeloid cells (MC) from both active

and inactive SLE patients. Among the DE genes were several known to play roles in Mϕ acti-

vation and polarization, including the M1 genes STAT1 and SOCS3 and the M2 genes

STAT3, STAT6, and CD163. M1-associated genes were far more frequent in data sets from

active versus inactive SLE patients. To characterize the relationship between Mϕ activation

and disease activity in greater detail, weighted gene co-expression network analysis

(WGCNA) was used to identify modules of genes associated with clinical activity in SLE

patients. Among these were disease activity-correlated modules containing activation signa-

tures of predominantly M1-associated genes. No disease activity-correlated modules were

enriched in M2-associated genes. Pathway and upstream regulator analysis of DE genes

from both active and inactive SLE MC were cross-referenced with high-scoring hits from the

drug discovery Library of Integrated Network-based Cellular Signatures (LINCS) to identify

new strategies to treat both stages of SLE. A machine learning approach employing MC

gene modules and a generalized linear model was able to predict the disease activity status

in unrelated gene expression data sets. In summary, altered MC gene expression is charac-

teristic of both active and inactive SLE. However, disease activity is associated with an alter-

ation in the activation of MC, with a bias toward the M1 proinflammatory phenotype. These

data suggest that while hyperactivity of B cells and T cells is associated with active SLE, MC

potentially direct flare-ups and remission by altering their activation status toward the M1

state.
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Introduction

SLE is typically characterized by B cell hyperactivity and autoantibody formation, promoted

by T cell dysregulation.[1] The role of MC in SLE, however, remains poorly understood

despite their considerable influence on adaptive immunity. Mϕ and dendritic cells (DCs) are

phagocytic professional antigen presenting cells (APC) of myeloid lineage that are integral to

the propagation and orchestration of immune responses. Although DCs are the main myeloid

cell (MC) population responsible for antigen presentation, phagocytosed antigens are also pro-

cessed by Mϕ and presented on the Mϕ surface by MHC-I and–II molecules to activate both B

cells [2] and T cells [3–5].

Bone marrow (BM)-derived Mϕ originate from hematopoietic stem cells (HSC) that differ-

entiate into common myeloid progenitor (CMP) cells and subsequently into monocytes.[6]

Upon activation, patrolling monocytes further differentiate into Mϕ to address the injury or

infection they have detected. DCs also originate from myeloid progenitors, specifically from

the common DC progenitor (CDP) which develops from the CMP along with monocytes. The

CDP gives rise to both plasmacytoid DCs (pDC) and pre-DCs, which give rise to classical DCs

(cDC). [7] pDCs, which are identified by expression of B220, Siglec-H, and Bst2, are less

phagocytic and less efficient APC and instead are responsible for producing large amounts of

type I interferon to combat viral infections. [8,9]

Mϕ express a large collection of surface receptors to monitor their local microenvironment

that allows them to act as sentinels for markers of infection or injury.[10] Engagement of these

receptors by cell debris, viral or bacterial byproducts, cytokine and chemokine signals, and

other factors activates Mϕ and allows them to modify their phenotype and function rapidly

and contribute to host defense. [11–13] Mϕ combat infectious disease both through intracellu-

lar destruction of phagocytosed pathogens and via production of various antimicrobial pep-

tides, reactive oxygen intermediates, and nitric oxide. [14,15] Other innate functions of

activated Mϕ include wound repair and tissue remodeling [16], and proinflammatory Mϕ are

thought to eliminate tumor cells in the early stages of cancer. [17] As early responders at sites

of inflammation and infection, Mϕ also shape the early adaptive immune response by reacting

to changes in the microenvironment and secreting various chemokines and cytokines to

recruit other immune cells. [18]

Specific stimulating factors and signals cause Mϕ to undergo extreme changes in transcrip-

tional regulation and assume a specific activation state ranging from highly proinflammatory

to anti-inflammatory in a process called Mϕ polarization. [19–21] Each polarization state or

subset expresses a particular profile of surface receptors, cytokines, chemokines, and secreted

effector molecules that dictates its functional effect on inflammation, immune cell recruitment

and activation (or suppression), and tissue remodeling. [22,23] Named in accordance with the

Th1/Th2 paradigm of immune responses, the M1 and M2 polarization states represent canoni-

cal proinflammatory and anti-inflammatory Mϕ functional states, respectively, and indeed,

produce cytokines and chemokines that correspond to Th1 and Th2 response induction.[24]

The whole of Mϕ polarization, however, represents a spectrum of overlapping phenotypic

states between M1 and M2 Mϕ, and several other subsets between these extremes have been

defined in various disease models.[25–28]

There has been growing appreciation for the contribution of Mϕ polarization to both dis-

ease progression and resolution. Alteration of the M1/M2 Mϕ balance has been shown to have

crucial roles in bacterial and viral infections, and many pathogens have evolved escape mecha-

nisms that manipulate Mϕ polarization to enhance their survival and spread.[29,30] M1 and

M2 Mϕ also influence local inflammation, the dysregulation of which is central to the pathol-

ogy of diseases with inflammatory components, including type 1 diabetes, obesity, non-
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alcoholic steatohepatitis, atherosclerosis, and Crohn’s disease.[29–32] Recent studies have

begun to explore the contribution of Mϕ to SLE-like disease pathogenesis in mice, but a lack of

human studies has hindered the investigation of activated Mϕ as potential contributors to

molecular pathology and as therapeutic targets.[33] To address this, here we employ a bioin-

formatics-based approach to examine the myeloid-derived genomic signatures that define

both active and inactive SLE in human patients and to identify promising candidates empiri-

cally for drug intervention.

Methods

Selection, QC, and normalization of raw data files

Raw data files for human peripheral myeloid cells purified from SLE patients and healthy con-

trols (HC) were obtained from the publicly accessible Gene Expression Omnibus (GEO)

repository (CD33+ cells [GSE10325; 10HC, 7 active SLE] and CD14+ cells [GSE38351; 12HC, 8

active SLE, 5 inactive SLE]). [34,35] SLE patients with an SLE Disease Activity Index (SLEDAI)

score less than six were defined as having inactive disease, whereas those with a SLEDAI score

of 6 or greater were defined as having active disease. Raw data files for T and B cells isolated

from SLE patients or HCs were obtained from GEO to be used for later comparative analyses

(GSE10325 [CD4+ T cells, CD19+ B cells], GSE51997 [active CD4+ T cells], and GSE4588

[active CD19+ B cells]). [34,36] Accession numbers, descriptions, and cell types for all datasets

used are summarized in S1 Table.

Processing of raw data files, obtained for each respective study on GEO, was conducted

with Bioconductor packages GEOquery, affy, affycoretools, and simpleaffy in R. Raw array

data were inspected for visual artifacts or poor RNA hybridization using Affymetrix QC plots.

Datasets that passed quality control measures were normalized using the GCRMA method

(guanine cytosine robust multiarray averaging), and transformed to obtain log2 intensity val-

ues, which were formatted into R expression set objects (E-sets). Principal component analysis

(PCA) plots were generated for all cell types in each experiment to inspect for outlier samples,

admixed disease cohorts, and batch effects visually.

Raw microarray data were annotated using chip definition files (CDF) appropriate to the

microarray product from Affymetrix. In order to identify additional genes unrecognized by

Affymetrix CDFs, the same data were subsequently processed and annotated using custom

BrainArray CDF version 19.[37] Probe sets lacking annotations by the Affymetrix CDF were

interrogated for BrainArray definitions. Any probes that were annotated by Affymetrix CDF

but also were incorporated in BrainArray probe sets identifying alternative genes were

excluded. For Affymetrix HGU133A platform microarrays, a total of 12,504 genes were identi-

fied by Affymetrix CDF. Of these, 11,825 were also identified by BrainArray and an additional

354 genes were identified by BrainArray alone, whereas 143 Affymetrix probe sets were

excluded.

Differential gene expression analysis

The annotated E-sets were filtered to remove probes with very low intensity values via visual

operator selection of thresholds set at the trough of low intensity histogram frequencies, post-

normalization. Any probes that lacked gene annotation data were also discarded. GCRMA

normalized expression values were variance corrected using local empirical Bayesian shrinkage

before calculation of DE using the ebayes function in the Bioconductor LIMMA package.

Resulting p-values were adjusted for multiple hypothesis testing using the Benjamini-Hoch-

berg correction which reports a false discovery rate (FDR). Probe sets within each study were

filtered to retain differentially expressed (DE) probes with an a priori FDR< 0.2 which were
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considered statistically significant. This FDR cutoff was employed with the understanding that

additional false positive probes might be included in the analysis but that fewer false negative

probes would be inappropriately excluded. Since additional analyses that did not involve an

estimate of FDR were included to confirm the results and exclude the contributions of false

positives, we were more concerned about excluding apparent false negatives from the analysis.

This list was further filtered to retain only the most significant probe per gene in order to

remove duplicate probes.

Weighted gene co-expression network analysis (WGCNA)

Log2 normalized microarray expression values were used as input to WGCNA (v1.60) to con-

duct an unsupervised clustering analysis, resulting in co-expression modules (groups of

densely interconnected genes) which correspond to comparably regulated biological pathways.

[38] For each experiment, an approximately scale-free topology matrix (TOM) was first calcu-

lated to encode the network strength between probes. Probes were clustered into WGCNA

modules based on TOM distances. Resultant dendrograms of correlation networks were

trimmed to isolate individual modular groups of probes, labeled using semi-random color

assignments, based on a detection cut height of 1 and a merging cut height of 0.2, with the

additional use of a partitioning around medoids function. Final membership of probes repre-

senting the same gene into modules was based on selection of the greatest within-module cor-

relation with module eigengene (ME) values. Expression profiles of genes within modules

were summarized by the ME, the module’s first principal component. MEs act as characteristic

expression values for their respective modules and can be correlated with sample traits such as

cell type, cohort (healthy control or SLE), or serological measurements. This was done by Pear-

son correlation for continuous traits and by point-biserial correlation for dichotomous traits.

The correlation coefficient of each gene in a module with the module eigengene (kME), a met-

ric for module membership, was used to determine the association of individual genes with

the expression of the module as a whole. The mean kME of all genes in a module was taken as

a metric of overall module quality. If the genes in a module have low kMEs, it is indicative that

a few highly variable genes have dominated the eigengene calculation. Modules with mean

kMEs close to 1 were considered to be high-quality, and modules with mean kMEs close to

zero were considered to be low-quality. When analyzing multiple data sets, the grand mean

was the mean of the mean kMEs for each data set.

Functional gene characterization and pathway identification

The Biologically Informed Gene Clustering (BIG-C)[39] tool characterizes genes into func-

tional groups utilizing publicly available information from online tools and databases includ-

ing UniProtKB/Swiss-Prot, GO Terms, KEGG pathways, NCBI PubMed, and the Interactome.

DE genes were assigned into functional groups using BIG-C and signaling molecules and tran-

scription factors upstream of DE genes were identified using IPA Upstream Regulator (UR)

analysis.[40,41] For each regulator, an activation z-score was calculated strictly from experi-

mentally observed information provided for the downstream targets, and an overlap p-value

was calculated through Fischer’s exact test.

Gene set variation analysis (GSVA)

GSVA (V1.25.4) software package for R/Bioconductor was used as a non-parametric, unsuper-

vised method for estimating the variation of pre-defined gene sets in patient and control sam-

ples of microarray expression data sets. The input for the GSVA algorithm was a gene

expression matrix of log2 microarray expression values and a collection of pre-defined gene
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sets or database of pre-exiting gene sets (MSig). Enrichment scores (GSVA scores) were calcu-

lated non-parametrically using a Kolmogorov Smirnoff (KS)-like random walk statistic and a

negative value for a particular sample and gene set. Significance of functional enrichment was

calculated using a chi-squared test and categories with p-values less than 0.05 were considered

significantly enriched.

Network analysis and visualization

Visualization of protein-protein interactions and relationships between genes within datasets

was done using the Cytoscape (V3.6.0) software [42] and the stringApp (V1.3.2) plugin appli-

cation. The Clustermaker2 App (V1.2.1) plugin was used to create clusters of the most related

genes within a dataset using a network scoring degree cutoff of 2 and setting a node score cut-

off of 0.2, k-Core of 2 and a max depth of 100.

CIRCOS visualization

CIRCOS (V0.69.3) software was used to visualize datasets.

Drug target prediction

Queries of the perturbation database from the Broad Institute Library of Integrated Net-

work-Based Cellular Signatures (LINCS) were utilized to predict potentially useful therapeu-

tic compounds and to confirm the dysregulation of upstream target genes in SLE patient MC

by assessing signatures of significantly up- and down-regulated genes for input to the linc-

scloud API (http://data.lincscloud.org.s3.amazonaws.com/index.html). [43] The LINCS

L1000 platform was developed using Luminex Flexmap 3D bead technology that contained

far greater probe sets than the hgU133 arrays. The LINCS L1000 currently contains repre-

sentative information relating expression of 978 “landmark genes” that was generated

from 25 cell types that were antagonized by drugs and gene over-expression or silencing

interventions.

Prediction of disease activity from WGCNA module enrichment using

machine learning

4 whole blood (WB) and 2 peripheral blood mononuclear cell (PBMC) microarray datasets

containing gene expression data from lupus patients were obtained from the GEO repository

or from collaborators (GSE45291, GSE39088, GSE49454, GSE72747, GSE50772, FDAPBMC3

[S1 File]).[44–49] Raw data was curated and normalized as described previously. In addition,

low-intensity probes were filtered, and duplicate probes mapping to the same gene symbol

were filtered based on interquartile range. Datasets were batch corrected to account for plat-

form differences using the ComBat R package and merged by matching gene symbols.

WGCNA was applied to CD4 T cells (GSE10325), CD19 B cells (GSE10325), CD33 MC

(GSE10325), CD14 MC (GSE38351), and low-density granulocytes (LDG) (GSE26975, [50]) to

acquire gene modules with significant correlations with or against SLEDAI. GSVA was used to

test the merged blood dataset for the presence of these modules as well as lists of genes posi-

tively and negatively associated with lupus plasma cells (PC).[51] GSVA scores were used as

input to a generalized linear model (GLM) from the glmnet R package to predict disease activ-

ity, and receiver operating characteristic (ROC) curves were generated using the pROC R

package. Patient-by-patient enrichment of cell types was assessed based on the expected versus

observed enrichment of each WGCNA module. Odds ratios (OR) for active disease were
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calculated according to the following formula:

ðenriched activeÞ � ðnon � enriched inactiveÞ
ðnon � enriched activeÞ � ðenriched inactiveÞ

Results

Differential expression of MC genes in active and inactive SLE

To assess the contribution of MC to SLE pathogenesis, we analyzed gene expression profiles of

CD14+ MC from SLE patients with varying levels of disease severity. In order to compare the

role of MC in SLE to that of B and T cells, a consensus DE gene signature was generated for

each (GSE10325 and GSE51997 for CD19+ B cells, CD10325 and CD4588 for CD4+ T cells).

Large numbers of DE genes were found in MC from both active (2,135) and inactive (1,260)

SLE patients (Fig 1A). In contrast, hundreds of statistically significant (FDR<0.2) DE genes

were identified in B and CD4 T cells of active SLE patients (760 and 164 genes respectively),

whereas there were no significant DE genes found in B or CD4 T cells from patients with inac-

tive SLE compared to healthy controls (Fig 1A).

Hierarchical clustering of DE genes in CD14+ MC isolated from inactive and active SLE

patients when compared to healthy donors cleanly sorted patient samples by disease cohort (Fig

1B). Although they did not tend to group into discrete clusters, several genes involved in Mϕ
activation were observed among the DE genes in both active and inactive patients (S2 Table).

Cross-referencing with a list of experimentally determined human Mϕ differentiation and acti-

vation genes (Martinez et al., 2006)[52] revealed alterations in the Mϕ activation signature

between active and inactive SLE patients: M1-associated genes tended to be upregulated in both

active and inactive SLE compared to healthy donors (94% and 97%), while M2-associated genes

tended to be more upregulated in inactive SLE patients (86%) than active SLE patients (38%)

compared to healthy donors (Fig 1B and S2 Table). As Mϕ activation is known to encompass a

spectrum of functional phenotypes controlled by finely-tuned molecular rheostats, we com-

pared the fold change of DE genes that were commonly upregulated in CD14+ MC from both

active and inactive SLE patients and found that common M1-associated genes (black wedges)

were more highly upregulated in active patients whereas common M2-associated genes (white

wedges) were more highly upregulated in inactive patients (Fig 1C). A few of these commonly

upregulated genes were not associated with either M1 or M2 pathways (gray wedges).

Functional characterization of DE gene signatures in CD14+ MC isolated

from SLE patients

We next sought to characterize the potential functional changes represented by the divergent

activation signatures in SLE MC. Biologically Informed Gene Clustering (BIG-C) is a func-

tional aggregation tool developed to understand the biological groupings of large lists of genes.

[39] Genes are sorted into 54 categories based on their most likely biological function and/or

cellular localization determined from information from multiple online tools and databases.

The DE genes from active and inactive CD14+ MC were analyzed by Gene Set Variation Anal-

ysis (GSVA) to determine enrichment of BIG-C functional categories. The active and inactive

CD14+ MC samples shared a common BIG-C profile generally related to IFN signaling and

inflammation, including the MHC class I/II, ISG, immune secreted, transcription, endosomal

recycling, immune signaling, and TLR & DAMP categories (Fig 2A). Interestingly, BIG-C cat-

egories unique to each cohort (starred) confirm effector function upregulation in MC derived

from active SLE (biochem, chromatin, anti-apoptosis down; activeRNAs, secreted & extracel-

lular matrix, immune cell surface, vesicles & endosome up) and a preference for catabolic
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pathways in MC derived from inactive SLE (cell surface, DNA repair down; ubiquitylation and

sumoylation up) (Fig 2A). Additionally, unique enrichment of the MT OX PHOS pathway in

MC from inactive SLE mirrors findings that pro-resolving M2 Mϕ predominantly obtain

energy from oxidative metabolism.[53,54] A complete list of genes used to determine BIG-C

category enrichment can be found in S3 Table.

Fig 1. Differential expression of CD14+ monocyte genes in active and inactive SLE. (A) Number of differentially expressed (DE) genes detected by LIMMA analysis

in MC, CD4+ T cells, and B cells isolated from inactive (SLEDAI<6) and active (SLEDAI�6) SLE patients when compared to healthy donors. n.s.: no genes found to be

significantly differentially expressed (FDR<0.2) when compared to healthy controls. (B) Hierarchical clustering of differentially expressed (DE) genes detected by

LIMMA analysis in CD14+ MC isolated from inactive (SLEDAI<6) and active (SLEDAI�6) SLE patients when compared to healthy donors. Arrows highlight M1

(black) or M2 (white) polarization genes as reported by Martinez et al.[52] (C) Fold change variation of genes found to be upregulated in both active and inactive SLE

MC. Polarization-related genes are shown in bold and M1 genes are represented by a black wedge while M2 genes are represented with a white wedge. Genes not

associated with M1 or M2 pathways are represented with a gray wedge.

https://doi.org/10.1371/journal.pone.0208132.g001
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MC activation signature genes found in disease-correlated WGCNA

modules from active SLE MC

In order to determine the gene signatures that were relevant to SLE pathogenesis in an unbi-

ased manner, we generated gene expression modules via WGCNA with correlation to clinical

traits, then prioritized those with correlation to disease cohort and even eigengene distribution

to exclude modules whose assembly were driven primarily by a single eigengene. As the

CD33+ dataset contained no inactive SLE patients, data from only active SLE patients was used

Fig 2. Clustering and module formation of DE gene signatures in CD14+ and CD33+ MC isolated from SLE Patients. (A) DE genes from active and inactive CD14+

MC were analyzed by GSVA to determine pathway enrichment using functional definitions provided from the BIG-C (Biologically Informed Gene Clustering)

annotation library. Samples were successfully sorted by disease cohort via this method in both active and inactive MC. Starred BIG-C categories only appeared in the

active or inactive analysis, respectively. (B) WGCNA of CD14+ and CD33+ MC isolated from SLE patients. Dendrograms show hierarchy of modules formed by

unsupervised WGCNA clustering of DE genes from CD14+ and CD33+ MC isolated from active and inactive SLE patients.

https://doi.org/10.1371/journal.pone.0208132.g002

Macrophage activation in active SLE

PLOS ONE | https://doi.org/10.1371/journal.pone.0208132 December 18, 2018 8 / 23

https://doi.org/10.1371/journal.pone.0208132.g002
https://doi.org/10.1371/journal.pone.0208132


to construct modules for comparison (CD14+ inactive results are shown in S1 Fig. The

CD14+ dataset produced one module with significantly positive correlation to SLE (yellow:

n = 362, r = 0.837, p = 4.22e-6) and one module with significantly negative correlation to

SLE (sienna3: n = 229, r = -0.852, p = 1.84e-6), and the CD33+ dataset produced two modules

significantly positively correlated to SLE (violet: n = 182, r = 0.718, p = 7.88e-4; sienna3:

n = 133, r = 0.784, p = 1.17e-4) and one module significantly negatively correlated to SLE

(darkolivegreen: n = 227, r = -0.549, p = 0.0182) (Fig 2B). Notably, the CD14+-derived mod-

ules were also significantly correlated to SLEDAI (r = 0.651, p = 1.88e-3 and r = -0.641,

p = 2.31e-3 respectively). The significantly positive disease-correlated modules from the

CD14+ dataset contained several activation-related genes, mostly concentrated in the apo-

ptosis, ISG, and PRR BIG-C categories (visualized in Fig 3). While the yellow module was

heavily enriched for M1-related genes, four M2-related genes were also present. Of the 37

genes in this module that were associated with MC activation, 27 (73%) were M1-related

genes. The CD33+ modules each contained far fewer activation genes and almost no M2 sig-

nature. Despite this, of the 29 MC activation-associated genes in both these modules com-

bined, 21 (72%) were M1 genes. The CD14+ negatively-correlated module (sienna3)

contained no MC activation genes and the CD33+ negatively-correlated module (darkolive-

green) contained only one, GAS7 (S4 Table). These findings support the hypothesis that Mϕ
activation state contributes heavily to the differential MC DE gene signature between active

and inactive SLE. Furthermore, the polarization genes present are nearly exclusively

M1-associated, suggesting that the observed differences in Mϕ polarization may be driving

enhanced inflammation in active SLE.

Protein interaction-based clustering of genes in WGCNA modules

significantly correlated to disease activity

We then carried out a more detailed analysis of the composition of the WGCNA modules sig-

nificantly correlated to disease activity by using Cytoscape with the stringApp and MCODE

plugins to create protein-protein interaction networks and clusters. The resulting networks

were further simplified into metastructures defined by the number of genes in each cluster, the

number of significant intra-cluster connections identified by MCODE, and the strength of

associations connecting members of different clusters to each other. This dual approach

allowed us to compare the overall topology of different WGCNA clusters while also noting

genes of interest and their groupings.

The largest and most internally connected cluster of genes in the CD14+ yellow module

(positively correlated to disease activity, Fig 2B) was dominated by ISG and PRR-related genes

and contained several members of the ubiquitin C pathway, a gene network not present in

either of the positively correlated CD33+ modules (Fig 4A, top). Interestingly, further analysis

of this cluster and the closely related proteasome/mRNA translation/ubiquitylation cluster

revealed several upregulated activation-induced genes, including M1-associated genes (Fig

4Aa, bottom, red arrows). Two of the four M2-associated genes in the module (CTSC and

IL1RN) appeared in smaller PRR and vesicle-associated clusters (Fig 4Aa, blue arrows). Similar

PRR/vesicle clusters were found in the two positively correlated (Fig 2B) CD33+ modules, but

only three M1 genes appeared in these clusters (Fig 4Ab and 4Ac; red arrows). Taken together,

these data suggest that dysregulated activation signals in CD14+ MC drive SLE pathogenesis,

especially in patients with active disease. The two WGCNA modules negatively correlated to

SLEDAI (Fig 2B, sienna3 for CD14+ and darkolivegreen for CD33+) were less informative and

broadly mirrored each other in content, both containing networks related to RNA synthesis

and processing, translation, and DNA maintenance (Fig 4B). Two clusters that arose from the
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CD14+ module represented pathways not present in the CD33+ module: glycolysis/TCA cycle/

gluconeogenesis in cluster 8 and ubiquitylation/sumoylation in cluster 3. The majority of the

genes in these clusters were selectively downregulated in active SLE only (Fig 4Ba).

Fig 3. Activation signature genes found in disease-correlated WGCNA modules from active SLE MC. CIRCOS diagram comparing the composition of SLE

positively-correlated CD14+ and CD33+ WGCNA modules to genes enriched in M1- or M2-polarized human Mϕ or genes associated with general MC activation

(upregulated in both M1 and M2 conditions). Gene lists defining these signatures were adapted from Martinez et. al., 2006.[52] Genes found in the yellow module

(CD14+) are shown in black, genes found in the violet module (CD33+) are shown in red, and genes found in the sienna3 module (CD33+) are shown in orange.

M1-related genes are represented with solid lines, M2-related genes are represented by dashed lines, and general MC activation genes are represented with dotted lines.

https://doi.org/10.1371/journal.pone.0208132.g003
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Fig 4. Protein interaction-based clustering of genes in WGCNA modules significantly correlated to SLEDAI. Protein-protein interaction networks and clusters

generated via CytoScape using the STRING and MCODE plugins. Networks were constructed of the gene lists of WGCNA modules positively (A, above) or negatively

(B, below) correlated to SLEDAI from CD14+ MC (a) or CD33+ MC (b, c). MCODE clusters are determined by the strength of protein-protein interactions, calculated

by pooling information from publicly available literature. Top half of diagrams show the cluster metastructure of each network while bottom half shows the specific

genes that make up each cluster. M1-related genes are indicated by red arrows and M2-related genes are indicated by blue arrows.

https://doi.org/10.1371/journal.pone.0208132.g004
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Predicted compounds targeting CD14+ MC pathways in SLE

With the goal of identifying novel potential therapies for SLE, DE gene data from CD14+ MC

were used as input for LINCS, a drug discovery tool based upon gene expression changes

induced by perturbagens in a variety of reference cell lines. The result is a list of drugs that

counteract the genomic changes that propagate disease, determined in an unbiased manner

and based on empirical data.

Summarized results of the LINCS analysis are presented in Tables 1 and 2 for the CD14+

MC obtained from active SLE patients and inactive SLE patients, respectively. Compounds

directed against a shared target are collapsed into each category, allowing calculation of LINCS

connectivity score statistics for all drugs impacting that target. The drug with the strongest

connectivity score for each target is shown in the “Representative Drug” column. Notably,

49% of targets and 44% of representative drugs were suggested by LINCS for both active and

inactive SLE MC (Tables 1 and 2, bolded). Cross-referencing the results against FDA and clini-

cal trial databases reveals that many of the LINCS-suggested drugs are either already approved

or in trials for non-lupus indications, underscoring their potential for swift and successful

drug repositioning (Tables 1 and 2, indicated by † and ‡).

Projected upstream regulator genes in CD14+ MC isolated from active and

inactive SLE patients

To investigate the intracellular signaling pathways at play, we employed IPA to analyze the

CD14+ MC DE dataset and identify potential biologic upstream regulators (BURs) for MC

from active patients, inactive patients, and the active-inactive overlap (Fig 5A). Genes for

which IPA indicated a z-score of� 2 in at least one of the three sets are shown. Several of the

resulting genes are known to be major regulators of MC polarization, including the M1 regula-

tors MAP4K4 and mir-1 and the M2 regulators IL3, IL4, PPARGC1A, HIF1A, and NFE2L2

(Fig 5A). Notably, the z-scores show a clear delineation of their opposing activities in active

SLE patient MC vs inactive SLE patient MC, with M1 regulators displaying positive z-scores in

active patients and negative z-scores in inactive patients and vice-versa for M2 regulators.

Each of these trends was supported by the corresponding expression of several downstream

genes known to interact with each upstream regulator (Fig 5B). Interestingly, only one gene

known to be involved in Mϕ polarization had a z-score that contradicted this pattern: RIC-

TOR, a relative of mTOR and a subunit of the mTORC2 complex, has been shown to suppress

M1 polarization in mice yet is identified by IPA as an upstream regulator of CD14+ MC from

active SLE patients.[55]

We also sought to utilize the gene connectivity scores from the collection of knockdown

and overexpression experiments present in the LINCS database to identify BURs determined

primarily by empirical results. Genes were identified as BURs for a particular dataset if they

received a knockdown connectivity score between -75 and -100 and an overexpression con-

nectivity score between 50 and 100 for that dataset. This approach produced 17 BURs unique

to the inactive SLE cohort, 31 BURs unique to the active SLE cohort, and 30 BURs common to

both (Fig 6). These regulators were distinct from those identified by IPA, representing addi-

tional potential drug targets.

Machine learning confirms that gene modules from MC predict SLE

activity in unrelated data sets

The relationships between MC gene expression and SLE activity suggested that a machine

learning method might be able to predict disease activity when “trained” with MC gene
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Table 1. Compounds targeting CD14+ monocyte pathways in active SLE.

Target Count Range Mean ± SEM Representative Drug

Farnesyl transferase 2 (-95.98)—(-99.61) -97.79 ± 1.81 Tipifarnib‡

Acetylcholinesterase 2 (-93.16)—(-98.09) -95.63 ± 2.47 Mestinon†

PKC (pan) 2 (-93.81)—(-97.19) -95.50 ± 1.69 bisindolylmaleimide-ix

mTORC1/2 (Tacrolimus5†) 6 (-89.05)—(-99.66) -94.70 ± 1.5 KU-0063794

Sigma receptor 2 (-86.80)—(-94.33) -90.56 ± 3.76 BD-1063

PI3K (pan) (Idelalisib1†) 2 (-86.90)—(-93.15) -90.02 ± 3.12 GSK-1059615

ROCK-1/2 (KD0257‡) 3 (-79.19)—(-95.90) -89.96 ± 5.39 GSK-429286A

PLK1 2 (-87.31)—(-92.57) -89.94 ± 2.63 ON-01910

IGF-1R 5 (-76.11)—(-99.20) -89.87 ± 4.24 GSK-1904529A

mTORC1 (Tacrolimus5†) 3 (-85.83)—(-97.22) -89.83 ± 3.7 AZD-8055

HDM2 3 (-81.37)—(-96.81) -89.73 ± 4.5 HLI-373

Ca channel 9 (-82.26)—(-99.98) -89.70 ± 2.45 Nifedipine†

GR agonist 12 (-74.94)—(-99.03) -89.61 ± 2.18 Dexamethasone† T

CDK1, 2, 5 (Palbociclib4†) 2 (-88.47)—(-89.62) -89.05 ± 0.58 Aloisine

PI3Kg 2 (-81.84)—(-96.21) -89.03 ± 7.19 AS-605240

DNA-PK 2 (-88.33)—(-88.67) -88.50 ± 0.17 NU-7026

MAP2K1/2 6 (-78.58)—(-97.06) -88.42 ± 2.9 U0126

MAPK 5 (-81.41)—(-92.96) -88.39 ± 2.18 EO-1428

Tyrosine Kinase (broad) 4 (-82.14)—(-98.80) -88.30 ± 3.83 Lestaurtinib‡

PARP-1 (Niraparib3†) 5 (-79.37)—(-91.68) -87.95 ± 2.38 Rucaparib‡

PDGFR 2 (-87.63)—(-88.20) -87.91 ± 0.28 tyrphostin-AG-1295

JNK (pan) 2 (-82.84)—(-92.78) -87.81 ± 4.97 AS-601245

EGFR (Gefitinib1†) 10 (-74.73)—(-99.36) -87.27 ± 2.99 Lapatinib0†

b2 adrenergic receptor agonist 6 (-80.38)—(-93.93) -87.27 ± 2.23 Formoterol†

5-HT 1B agonist 3 (-83.27)—(-89.31) -86.94 ± 1.86 Anpirtoline

topoisomerase I (Irinotecan-1†) 2 (-82.61)—(-90.87) -86.74 ± 4.13 Topotecan†

topoisomerase II 3 (-81.58)—(-90.76) -86.55 ± 2.68 Razoxane†

Proton pump 2 (-85.41)—(-87.66) -86.53 ± 1.13 Rabeprazole†

NMPRTase 3 (-77.90)—(-94.32) -85.94 ± 4.74 APO-866

Enkephalinase 2 (-84.66)—(-86.33) -85.49 ± 0.83 Thiorphan‡

Angiotensin II receptor 2 (-84.60)—(-85.32) -84.96 ± 0.36 Telmisartan†

Aurora kinase A 2 (-84.83)—(-84.87) -84.85 ± 0.02 MLN-8054‡

PI3Kb 3 (-80.29)—(-88.89) -84.77 ± 2.49 TGX-221

K channel 3 (-78.57)—(-87.81) -84.42 ± 2.94 Paxilline

b3 adrenergic receptor agonist 3 (-77.43)—(-91.37) -83.95 ± 4.05 L-755507

PDE4 (Roflumilast6†) 2 (-79.38)—(-87.35) -83.36 ± 3.98 Ibudilast‡

HMG-CoA reductase (Statins3†) 6 (-76.34)—(-95.08) -83.19 ± 3.05 Atorvastatin† T

ER (pan) (Tamoxifen2†) 3 (-75.46)—(-87.80) -82.61 ± 3.70 Clomifene‡

VEGFR2 (Sorafenib-3‡) 2 (-75.75)—(-86.67) -81.21 ± 5.46 Orantinib‡

Na channel 2 (-75.75)—(-85.04) -80.39 ± 4.64 Benzamil

ATM Kinase 2 (-78.69)—(-80.42) -79.55 ± 0.87 CP466722

AMPA receptor 2 (-77.82)—(-80.21) -79.02 ± 1.20 GYKI-52466

Wnt (pan) 2 (-76.35)—(-80.74) -78.55 ± 2.20 PNU-74654

HSP90 2 (-76.64)—(-79.99) -78.32 ± 1.68 Gedunin

(Continued)

Macrophage activation in active SLE

PLOS ONE | https://doi.org/10.1371/journal.pone.0208132 December 18, 2018 13 / 23

https://doi.org/10.1371/journal.pone.0208132


signatures. To this end, unrelated WB and PBMC datasets were merged into a test set and ana-

lyzed for MC WGCNA module enrichment via GSVA. In order to compare the predictive

power of MC gene signatures, WGCNA modules were also generated for CD4 T cells, CD19 B

cells, plasma cells (PC) and low-density granulocytes (LDG) and employed in a similar manner

to predict disease activity.

Hierarchical clustering of GSVA scores indicated that enrichment of some modules (PC,

CD14+ MC) was more frequently observed in active compared to inactive SLE, although com-

plete separation of active versus inactive samples was not achieved. To explore this in greater

detail, odds ratios (OR) for the likelihood of the enrichment of various WGCNA modules

from different cell types in active SLE were calculated by comparing the expected versus

observed enrichment of each module. As expected (since increased PC are associated with dis-

ease activity [51]), PC modules manifested the highest OR for active disease at 4.41, whereas

LDG modules exhibited the lowest OR (1.32), consistent with the previous observation that

increases in LDG activity do not correlate with disease activity in SLE [50] (Fig 7A and 7B).

Notably, MC modules outperformed either CD4 T cells (OR: 1.42) and CD19 B cells (1.51),

with CD14+ MC exhibiting a higher OR (3.42 vs 2.45). GSVA scores were then used as input

for a Generalized Linear Model-based machine learning algorithm which attempted to identify

whether samples from the WB and PBMC test set were obtained from active or inactive SLE

patients. CD33 and CD14 MC signatures surpassed LDG signatures and performed at least

as well as PC signatures in accuracy as measured by the area under the resulting ROC curves

(Fig 7C).

Discussion

Here we describe a comprehensive, bioinformatic approach to identify cell type-specific pat-

terns of genetic variation among active and inactive SLE patients and to identify high-priority

candidate compounds for drug repositioning efforts. Whereas bioinformatic analysis is often

used to supplement studies of SLE pathogenesis in murine models or in vitro, our work repre-

sents a novel “big data” strategy of applying these techniques to patient-derived data in order

to identify constellations of genes that might determine clinical outcomes in specific patients.

Our initial findings that MC expressed a considerable number of DE genes in both active

and inactive patients compared to healthy controls whereas B and T cells only expressed a sig-

nificant DE gene signature in active patients compared to healthy controls led us to hypothe-

size a critical role for MC in human SLE in agreement with previous studies in lupus-prone

mice. B and T cell activity along with that of MC contribute to disease activity in SLE, whereas

the altered genomic signatures of MC might preserve the disease state of inactive SLE between

flares and could even affect the transition between active and inactive SLE.

Our analyses of M1 and M2 signatures indicate that although there is overlap, M2 gene

expression is more prominent in inactive SLE patients whereas M1 gene expression is highly

Table 1. (Continued)

Target Count Range Mean ± SEM Representative Drug

SERT 2 (-75.00)—(-75.31) -75.16 ± 0.15 Duloxetine†

†: FDA-approved compounds

‡: drugs in clinical trials or drugs in development

T: known utility in lupus therapy

Where applicable, CoLTS scores (range -16 to +11) are displayed as integers in superscript.[39]

https://doi.org/10.1371/journal.pone.0208132.t001
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Table 2. Compounds targeting CD14+ monocyte pathways in inactive SLE.

Target Count Range Mean ± SEM Top Drug

PKC (pan) 2 (-98.19)—(-99.03) -98.61 ± 0.42 bisindolylmaleimide-ix

IGF-1R 4 (-93.01)—(-98.13) -96.56 ± 1.21 BMS-536924

mTORC1/2 (Tacrolimus5†) 6 (-90.39)—(-99.97) -96.00 ± 1.72 KU-0063794

Farnesyl transferase 2 (-94.89)—(-96.95) -95.92 ± 1.03 Tipifarnib‡

PI3K (pan) (Idelalisib1†) 2 (-90.28)—(-99.74) -95.01 ± 4.73 GSK-1059615

topoisomerase I (Irinotecan-1†) 3 (-90.33)—(-97.63) -94.70 ± 2.23 Topotecan†

mTORC1 (Tacrolimus5†) 4 (-86.57)—(-98.97) -94.29 ± 2.87 AZD-8055

HDM2 3 (-87.19)—(-96.91) -93.25 ± 3.05 JNJ-26854165

B-Raf 2 (-89.18)—(-97.19) -93.19 ± 4.01 Vemurafenib-6†

FAAH 2 (-90.89)—(-95.32) -93.10 ± 2.22 PF-3845

ROCK-1/2 (KD0257‡) 2 (-91.66)—(-93.36) -92.51 ± 0.85 Y-27632

PI3Kb (Idelalisib1†) 3 (-82.45)—(-98.27) -92.34 ± 4.98 PI-828

MAP2K1/2 6 (-87.89)—(-98.76) -92.17 ± 1.57 U0126

DNA-PK 2 (-85.41)—(-97.43) -91.42 ± 6.01 NU-7026

PI3Kg 2 (-87.49)—(-94.95) -91.22 ± 3.73 AS-605240

TRPV1 2 (-88.65)—(-92.83) -90.74 ± 2.09 Eriodictyol‡

COX-1 2 (-88.36)—(-92.43) -90.40 ± 2.03 eicosatetraynoic-acid

PARP-1 (Niraparib3†) 2 (-89.49)—(-91.14) -90.31 ± 0.83 Olaparib0†

HMG-CoA reductase (Statins3†) 7 (-79.06)—(-97.06) -89.27 ± 2.37 Atorvastatin† T

NK1 2 (-79.34)—(-97.98) -88.66 ± 9.32 FK-888

Syk 2 (-81.58)—(-94.43) -88.01 ± 6.43 Fostamatinib7‡

5-HT 1B agonist 2 (-85.72)—(-90.07) -87.90 ± 2.18 5-nonyloxytryptamine

NMPRTase 2 (-82.20)—(-92.79) -87.50 ± 5.30 CAY-10618

Sigma receptor 2 (-86.24)—(-88.50) -87.37 ± 1.13 BD-1063

Ca channel 11 (-76.85)—(-99.83) -87.01 ± 2.48 Nifedipine†

Adrenergic receptor (pan) agonist 2 (-76.15)—(-97.26) -86.71 ± 10.56 Dopamine†

CB2 agonist 3 (-82.69)—(-92.44) -86.51 ± 3.01 GW-405833

SERT 4 (-76.46)—(-93.45) -85.91 ± 4.03 Paroxetine†

topoisomerase II 5 (-77.70)—(-94.56) -85.78 ± 2.90 Razoxane†

EGFR (Gefitinib1†) 16 (-74.54)—(-99.27) -85.32 ± 2.00 Lapatinib0†

Tyrosine kinase (broad) 4 (-79.11)—(-99.44) -85.16 ± 4.79 lestaurtinib‡

MAPK 2 (-74.80)—(-95.28) -85.04 ± 10.24 JX-401

5-HT 4 2 (-81.68)—(-87.92) -84.80 ± 3.12 RS-23597-190

ER (pan) 6 (-75.38)—(-96.20) -84.18 ± 2.99 Clomifene‡

VEGFR (pan) (Sorafenib-3‡) 3 (-77.91)—(-87.26) -83.40 ± 2.82 Tivozanib‡

BCL-2 (Venetoclax0†) 2 (-77.03)—(-89.71) -83.37 ± 6.34 ABT-737‡

ATM Kinase 2 (-75.51)—(-89.82) -82.67 ± 7.15 KU-55933

c-Met 2 (-77.20)—(-88.11) -82.65 ± 5.46 SU-11274

Proton pump 2 (-78.63)—(-84.47) -81.55 ± 2.92 Rabeprazole†

GR agonist 3 (-75.23)—(-89.53) -81.19 ± 4.30 Dexamethasone† T

H3 receptor 2 (-76.33)—(-85.49) -80.91 ± 4.58 iodophenpropit

Aurora kinase A 2 (-78.64)—(-81.87) -80.26 ± 1.61 MLN-8054‡

b3 adrenergic receptor agonist 2 (-77.27)—(-82.22) -79.74 ± 2.47 SR-59230A

VEGFR2 (Sorafenib-3‡) 2 (-76.31)—(-81.30) -78.81 ± 2.49 SU-4312

b2 adrenergic receptor agonist 3 (-77.03)—(-78.85) -78.00 ± 0.53 Fenoterol‡

(Continued)
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enhanced in active SLE patients. This confirms several recent studies that have investigated the

roles of Mϕ polarization and DC activation in SLE-like conditions: overabundance of proin-

flammatory M1 Mϕ and decreased expression of the M2 marker CD206 were detected in both

lupus-prone mice and SLE patients [56,57], and therapeutic stimulation of M2 polarization

significantly decreased disease severity in an induced murine SLE model.[33] However, experi-

mental intervention in M2b polarization as well as microRNA array profiling suggest that M2b

Mϕ may contribute to SLE severity, indicating that the relationship between Mϕ polarization

and lupus progression is more nuanced than it appears at first glance.[57,58]

Use of GSVA to compare expression patterns against our BIG-C database revealed differ-

ences in upregulated pathways in MC derived from active and inactive SLE patients that mir-

ror and reinforce the M1/M2 signatures observed in the DE genes. As expected in SLE, MC

from both active and inactive patients are enriched for categories related to IFN signaling and

Table 2. (Continued)

Target Count Range Mean ± SEM Top Drug

Na channel 2 (-76.38)—(-79.17) -77.78 ± 1.40 benzamil

†: FDA-approved compounds

‡: drugs in clinical trials or drugs in development

T: known utility in lupus therapy.

Where applicable, CoLTS scores (range -16 to +11) are displayed as integers in superscript.[39]

https://doi.org/10.1371/journal.pone.0208132.t002

Fig 5. Projected upstream regulator genes in CD14+ monocytes isolated from active and inactive SLE patients. (A) IPA was used to analyze the CD14+ MC dataset

and identify putative upstream regulators for active patient monocytes, inactive patient monocytes, and the active-inactive overlap using a p-value cutoff of 0.05. Only

genes for which IPA assigned a z-score of�|2| in at least one of the three sets are shown. (B) Representative diagrams showing downstream gene expression changes

(outer circles) used to calculate upstream regulators (center).

https://doi.org/10.1371/journal.pone.0208132.g005
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inflammation compared to healthy controls. In contrast, MC from active patients uniquely

downregulate pathways related to mitochondrial function and glycolysis in favor of immune

cell surface markers and secreted factors while MC from inactive patients downregulate genes

in the cell surface category and are enriched for ubiquitination and sumoylation pathways.

These data suggest that MC from active SLE patients favor pro-inflammatory M1-related path-

ways while MC from inactive patients favor M2-related pathways involved in resolution of the

immune response.

Upstream regulator analysis using IPA further confirmed this conclusion, identifying sev-

eral M2-associated factors as positive regulators in MC from inactive SLE patients but not

active patients, including IL-3, IL-4, and HIF1A (Fig 5). Interestingly, the upstream regulator

with the strongest differential z-score preference for active MC versus inactive MC was also

the only M2 gene identified as an exclusive regulator for active patient MC: RICTOR, an

mTORC2 component RICTOR previously shown to inhibit M1 polarization. This result may

simply reflect an expected component of the elevated inflammatory profile of an SLE patient

compared to a healthy patient or it may suggest a specific role for RICTOR and the mTORC2

complex in the transition between inactive and active SLE. Further study is necessary to make

this distinction.

Attempting to identify biological upstream regulators empirically by matching gene knock-

down and overexpression results from the LINCS analysis platform, on the other hand,

revealed practically no polarization-related genes despite identifying several regulators unique

Fig 6. LINCS biological upstream regulators. Gene sets from CD14+ MC isolated from active or inactive SLE patients were used as input for the LINCS analysis

platform, which reports connectivity scores for individual genes that describe how well the genomic change between the baseline and experimental input sets matches

the change observed following the knockdown or overexpression of the individual gene in question. Knockdown and overexpression data were filtered by genes for

which LINCS reported connectivity scores for both categories, and genes were identified as BURs for a particular dataset if they received a knockdown connectivity

score between -75 and -100 and an overexpression connectivity score between 50 and 100 for that dataset.

https://doi.org/10.1371/journal.pone.0208132.g006
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to the inactive or active cohorts (Fig 6). Despite this, these results greatly expanded the poten-

tial list of upstream regulators and may suggest pathways with a unique and yet undocumented

role in macrophage polarization. Furthermore, these findings extend to the targets and com-

pounds predicted to be useful by LINCS in reverting the gene signatures of active or inactive

SLE patients back to the baseline of healthy controls (Tables 1 and 2). Although unique targets

and compounds were identified for active and inactive SLE patients, these did not follow a

clear pattern of M1- or M2-related inhibitors. This, along with the lack of polarization genes

among LINCS BURs, may in part be related to the inception of the LINCS project as a search

for cancer treatments, resulting in a preference for antiproliferative drugs and a higher sensi-

tivity to genes that control proinflammatory signaling pathways. Nonetheless, the presence of

both shared and unique targets suggests that this approach can be used either to identify drugs

with the potential to treat the SLE signature as a whole or to find therapies tailored toward the

presentation of an individual patient’s disease. The novel drugs and targets resulting from this

analysis will need to be individually evaluated, screened, and tested to confirm efficacy in SLE

treatment.

One limitation of these analyses, however, was that they were all performed within the same

two GEO datasets (GSE10325 and GSE38351). As a result, overlapping findings had somewhat

limited value for the purposes of validation. The results obtained from ML analysis, therefore,

Fig 7. Cellular gene signature modules provide basis for machine learning predictions of SLE activity. (A) GSVA was utilized to generate scores to assess

enrichment of WGCNA lymphocyte subset gene modules correlated with disease activity in WB or PBMC samples separated into inactive or active SLE patients. Results

are shown following unsupervised hierarchical clustering. The expected and observed correlations to disease states of each module and the cell type of their origin are

shown on the right (black: positive correlation; gray: negative correlation; white: unknown correlation; x: no significant correlation). (B) Odds ratios (OR) with 95%

confidence intervals (CI) were calculated from the GSVA data to determine the strength of association of each cellular module with active disease. (C) ROC curves

displaying representative results of disease activity prediction by the generalized linear model algorithm for modules from an individual cell type. Area under the curve is

shown on each panel.

https://doi.org/10.1371/journal.pone.0208132.g007
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presented two critical insights. First, ML findings confirm those in the literature that while PC

genomic signatures correlate with disease activity, LDG genetic signatures do not (Fig 7B).

[50,51] Second, the construction of a test set from GEO datasets unrelated to our initial analy-

ses allowed for our ML approach to act as an impartial, external validation of our previous

findings and conclusions regarding the impact of MC populations on SLE initiation and path-

ogenesis. Together, these confirmatory results validate the use of ML as a predictive (and

potentially diagnostic) tool in SLE research and treatment.

Despite the prevalence of SLE and the considerable amount of research studying the link

between gene expression and SLE activity [46,59,60], there is no definitive diagnostic tool

available to determine either whether a patient has SLE or whether/when a patient will experi-

ence a flare. Extreme variation among SLE patients further complicates the issue: unsupervised

hierarchical clustering of GSVA enrichment scores for disease-associated WGCNA modules

produced no uniform pattern of association with SLE activity, and when performed again on

pre-sorted datasets, each produced a small subgroup of patients whose enrichment highly

resembled that of the other (Fig 7A). These overlapping groups were initially hypothesized to

represent patients with intermediate SLEDAI scores in the process of transitioning between

active and inactive disease, but this did not turn out to be the case, highlighting the degree of

patient heterogeneity present in the test set and the need for further development of computa-

tionally intensive, multivariate analysis methods. Data presented here from our initial attempt

to integrate our datasets into a predictive ML algorithm suggest that MC-derived gene signa-

tures could predict disease activity as reliably as PC signatures which, unlike LDGs, have been

shown to correlate with disease activity (Fig 7B and 7C).[50,51] These early MC signatures

may provide the basis of a tool to diagnose SLE in its early stages (before PC expansion) or to

detect alterations in MC that precede a flare. However, it is important to note that these signa-

tures were derived from a relatively small number of SLE patients. Subsequent experiments,

therefore, should refine and expand the ML approach to include MC samples from a larger

cohort of patients.

Conclusion

MC genomic signatures correlate with and successfully predict SLE disease activity. Whereas B

and T cells only manifested DE genes in active SLE patients, DE genes could be detected in

MCs from patients with both active and inactive SLE when compared to healthy controls.

Examination of these signatures by multiple approaches confirmed the involvement of previ-

ously reported pathways (IFN signaling, inflammation, TLR/DAMP signaling) and also identi-

fied MC polarization-related pathways and genes as correlated with SLE activity. When used

as input for an ML-based prediction algorithm, these MC-derived signatures were able to suc-

cessfully predict active versus inactive SLE patient samples and did so more effectively than

signatures from CD19 B cells and CD4 T cells. The predictive power of these MC signatures

makes them compelling input data for perturbagen databases, enabling identification of prom-

ising novel and personalized treatment options for SLE.
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