
RESEARCH ARTICLE

A transient DMSO treatment increases the

differentiation potential of human pluripotent

stem cells through the Rb family

Jingling Li1, Cyndhavi NarayananID
1, Jing Bian1, Danielle Sambo1, Thomas Brickler1,

Wancong Zhang1, Sundari ChettyID
1,2*

1 Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford,

California, United States of America, 2 Institute for Stem Cell Biology and Regenerative Medicine, Stanford

University School of Medicine, Stanford, California, United States of America

* chettys@stanford.edu

Abstract

The propensity for differentiation varies substantially across human pluripotent stem cell

(hPSC) lines, greatly restricting the use of hPSCs for cell replacement therapy or disease

modeling. Here, we investigate the underlying mechanisms and demonstrate that activation

of the retinoblastoma (Rb) pathway in a transient manner is important for differentiation. In

prior work, we demonstrated that pre-treating hPSCs with dimethylsulfoxide (DMSO) before

directed differentiation enhanced differentiation potential across all three germ layers. Here,

we show that exposure to DMSO improves the efficiency of hPSC differentiation through Rb

and by repressing downstream E2F-target genes. While transient inactivation of the Rb fam-

ily members (including Rb, p107, and p130) suppresses DMSO’s capacity to enhance differ-

entiation across all germ layers, transient expression of a constitutively active (non-

phosphorylatable) form of Rb increases the differentiation efficiency similar to DMSO. Inhibi-

tion of downstream targets of Rb, such as E2F signaling, also promotes differentiation of

hPSCs. More generally, we demonstrate that the duration of Rb activation plays an impor-

tant role in regulating differentiation capacity.

Introduction

Human pluripotent stem cells self-renew and differentiate into a variety of cell types, which

make them an attractive source for cell replacement therapy and disease modeling [1]. How-

ever, an important issue that has challenged the stem cell field is the variability and bias in dif-

ferentiation capacity observed across different hPSC lines, including both human embryonic

and induced pluripotent stem cell lines [2–4]. Therefore, understanding the mechanisms regu-

lating hPSC differentiation potential is of great value for regenerative medicine.

The retinoblastoma protein (Rb) plays a critical role in cell proliferation, differentiation,

survival, and maintaining genomic stability [5–9]. During embryonic development when

stem and progenitor cells divide and differentiate, Rb and its family members are present at

varying levels and regulated in a transient manner [10,11]. This suggests that the timing and
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duration of Rb regulation may play an important role on stem cell differentiation. Here, we

investigate the role of transient vs long term activation of Rb on hPSC maintenance and

differentiation.

In a prior study, we showed that a simple 24h treatment of hPSCs with 1–2% DMSO prior

to directed differentiation increases the differentiation potential of multiple cell lines across all

germ layers [12]. This technique is now used by other laboratories in a variety of differentia-

tion protocols and has been shown to increase hPSC differentiation towards numerous cell

types, including hepatocytes, pancreatic progenitor cells, insulin-secreting β-cells, cardiomyo-

cytes, neurons, contractile skeletal myotubes, brown adipose cells, intestinal epithelial cells,

enterocytes, endothelial cells, and smooth muscle cells [13–23]. Treatment with DMSO is now

also used in mouse and primate PSCs to increase multilineage differentiation capacity [15,18],

suggesting that the treatment may be targeting a common mechanism across species. More

recently, treatment of hPSCs with DMSO has also been shown to increase the efficiency of

genome editing using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/

CRISPR-associated protein-9 (Cas9) technology [24]. While the use of DMSO is now more

widespread, the mechanism by which it regulates differentiation remain less understood and

DMSO is well known to have pleiotropic effects on cells [25,26]. In conjunction with tran-

siently manipulating Rb activity in hPSCs, we show that the DMSO treatment promotes differ-

entiation through Rb. This study is the first to demonstrate that DMSO requires the activity of

RB and its family members and downstream effectors in order to enhance differentiation.

While knockdown of Rb and its family members can abolish DMSO’s ability to increase differ-

entiation, activating Rb alone in a transient manner can mimic the DMSO treatment to pro-

mote differentiation. More generally, this study highlights the importance of transient rather

than prolonged activation of Rb in promoting differentiation.

Results

Transient knockdown of Rb suppresses hPSC differentiation

To investigate whether Rb function is necessary for hPSC differentiation, we used a doxycy-

cline (DOX)-inducible hPSC line expressing short hairpin RNA against the Rb protein (ShRb)

tagged with the green fluorescent protein (GFP) to knock down the Rb protein in hPSCs [27].

Following DOX treatment of hPSCs for 48 hours (Fig 1A), ShRB cells displayed a significant

decrease in RB expression at both the mRNA and protein levels relative to cells without DOX

treatment (Fig 1B and 1C). Oct4 and Nanog were found to be expressed at both the mRNA

(Fig 1B) and protein (Fig 1C) levels as in control cells with colony morphology also resembling

hPSCs (S1A Fig). High levels of Oct4, SSEA4, and TRA-1-60 were also detected by immunos-

taining of ShRB hPSCs (S1C–S1E Fig), and GFP expression provided additional confirmation

of Rb knockdown in DOX-treated ShRB cells (S1B Fig). Together, these results indicate that

ShRB cells retain pluripotency characteristics following transient inactivation of Rb.

Though a 24h treatment of hPSCs with 2% DMSO activates Rb and increases the multiline-

age differentiation capacity of hPSCs [12], it remains unknown whether Rb is required for

these DMSO mediated effects. We transiently knocked down Rb by treating with DOX for 48h

and assessed the differentiation capacity of ShRB cells treated with and without 2% DMSO for

24h prior to directed differentiation into the three germ layers (Fig 1A) following established

protocols [12,28]. The mRNA (Fig 1D) and protein levels (Fig 1E) of several germ layer specific

genes [29] were assessed by qRT-PCR and immunostaining. Treatment with DMSO signifi-

cantly increased differentiation across all germ layers relative to untreated controls. However,

transient knockdown of Rb in ShRB DOX-treated cells significantly reduced the capacity of

the DMSO treatment to improve differentiation (Fig 1D and 1E, S2A and S3A Figs). For some
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germ layers, a moderate degree of differentiation persists in ShRB DOX-treated cells, poten-

tially indicating that knockdown of Rb alone may not be sufficient to completely abolish differ-

entiation. Nonetheless, across all germ layers, transient knockdown of Rb significantly

reduced the effect of DMSO on the differentiation potential of hPSCs. Consistent with a prior

study [27], knockdown of Rb alone did not alter the distribution of hPSCs in the cell cycle. The

enrichment of cells in the G1 phase following DMSO treatment was moderately reduced but

remained high in DMSO- and DOX-treated ShRB cells (S4A Fig).

Fig 1. Knockdown of the Rb protein suppresses DMSO-induced improvements in hPSC differentiation. (a) Directed differentiation of the ShRB cell line into the

three germ layers. (b) Quantitative real-time-PCR analyses of the expression levels of Rb and pluripotency genes in ShRB cells without DOX (ShRB control) and with

DOX treatment (ShRB+Dox); � p� 0.05 under two-tailed t-test. (c) Protein expression of RB and pluripotent markers, Oct4 and Nanog, by western blotting.

GAPDH serves as a loading control. (d) Quantitative RT-PCR for lineage-specific genes and (e) immunostaining for pax6 (ectoderm), brachy (mesoderm), and sox17

(endoderm) following directed differentiation. Error bars, s.d. of 2–4 biological replicates. Scale bars, 100 μm. � p� 0.05, �� p� 0.01 under one-way ANOVA;

Tukey’s test for multiple comparisons.

https://doi.org/10.1371/journal.pone.0208110.g001
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Transient knockdown of all three Rb family members regulates hPSC

differentiation

Loss of Rb expression may stimulate a compensatory response by other Rb family members.

To investigate this further, we next used an inducible hPSC line infected with lentiviral vectors

expressing the dl1137 mutant of SV40 T antigen (T121) that binds and functionally inactivates

all members of the Rb family in hPSCs [27]. Treatment with DOX (Fig 2A) resulted in a down-

regulation of Rb, p107, and p130 expression at the mRNA levels (Fig 2B) and showed clear

Fig 2. Inactivation of the Rb family attenuates DMSO-induced improvements in hPSC differentiation. (a) Directed differentiation of the T121-hPSC line, an

inducible cell line that inactivates all three Rb family members, into the three germ layers. (b) Quantitative RT-PCR analyses of the expression levels of Rb, p107, p130,

and pluripotency genes in T121 cells without DOX (T121 control) and with DOX treatment (T121+Dox); � p� 0.05 under two-tailed t-test. (c) Protein expression of

the SV40 T antigen (T121) and pluripotent markers, Oct4 and Nanog, by western blotting. GAPDH serves as a loading control. (d) Quantitative RT-PCR for lineage-

specific genes and (e) immunostaining for pax6 (ectoderm), brachy (mesoderm), and sox17 (endoderm) following directed differentiation. Error bars, s.d. of 2–4

biological replicates. Scale bars, 100 μm. � p� 0.05, �� p� 0.01 under one-way ANOVA; Tukey’s test for multiple comparisons.

https://doi.org/10.1371/journal.pone.0208110.g002
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protein expression of T121 by western blot (Fig 2C), suggesting successful inactivation of all

three Rb family members. Oct4 and Nanog, were not significantly regulated at the mRNA (Fig

2B) and protein (Fig 2C) levels by qRT-PCR and western blot, respectively, following SV-40

induction, suggesting that transient inactivation of the Rb family members does not alter the

expression of these pluripotency factors. While the DMSO treatment enriches hPSCs in the G1

phase of the cell cycle, inactivation of the Rb family reduced the enrichment of cells in G1 in

DMSO-treated T121-expressing cells (S4B Fig), suggesting that T121-expressing hPSCs may

be insensitive to G1 arrest signals. Nonetheless, transient treatment with DOX and/or DMSO

of T121 hPSCs did not significantly alter proliferative capacity, cell growth, and cell death as

total cell number and Ki67 expression remained consistent across conditions (S5A–S5D Fig).

To test whether inactivation of all three Rb family members affects the enhancement of dif-

ferentiation capacity by DMSO, we directly differentiated control and T121-expressing cells

with or without a 24 hour 2% DMSO pre-treatment towards all three germ layers (Fig 2A).

Treatment with DMSO significantly increased expression of several germ layer specific genes

at the mRNA and protein levels (Fig 2B and 2E, S2B and S3B Figs). However, transient inacti-

vation of the Rb family significantly attenuated the capacity of DMSO-treated T121-expressing

cells to differentiate towards all germ layers. Together, these results demonstrate an important

role for Rb, p107, and p130 function in promoting hPSC differentiation.

Transient activation of Rb promotes hPSC differentiation

Thus far, the data show that knockdown of Rb and its family members abrogates the improve-

ments in hPSC differentiation efficiency induced by a 24h DMSO pre-treatment. We next

investigated whether transiently activating Rb would mimic the DMSO effects and increase

hPSC differentiation potential. To transiently activate Rb, we used a DOX-inducible cell line

which expresses a constitutively active, non-phosphorylatable form of Rb tagged with the GFP

protein (Rb7LP-GFP) [27] (Fig 3A). Following a 24h treatment with DOX, the expression of

Rb significantly increased in Rb7LP cells compared to control cells (Fig 3B), as well as levels of

the truncated Rb-GFP protein (activated Rb) (Fig 3C). Equivalent expression levels of Oct4

and Nanog were observed in control and Rb7LP-induced cells (Fig 3B and 3C), indicating that

transient activation of Rb does not significantly alter the pluripotent state of hPSCs. Similar to

the DMSO treatment, activation of Rb following DOX treatment also increased the proportion

of hPSCs in the G1 phase of the cell cycle (S4C Fig) and showed a reduction in the phosphory-

lation status of Rb (S4D Fig). Transient treatment with DOX and/or DMSO of Rb7LP hPSCs

also did not significantly alter proliferative capacity, cell growth, and cell death as total cell

number and Ki67 expression remained consistent across conditions (S5E–S5H Fig).

We next investigated whether transiently overexpressing the non-phosphorylatable active

Rb would increase the differentiation potential of hPSCs. We treated the Rb7LP cells with

DOX and/or 2% DMSO for 24 hours prior to directed differentiation into each of the three

germ layers (Fig 3A). Across all germ layers, both the expression and number of differentiated

cells were significantly increased following activation of Rb relative to control cells (Fig 3D

and 3E, S2C and S3C Figs). Fold changes in mRNA expression levels for several lineage-spe-

cific markers and genes were significantly upregulated in DOX-treated Rb7LP cells relative to

control cells and reached levels near DMSO-treated hPSCs. Hence, activating Rb by promoting

its de-phosphorylation mimics the DMSO effects by enriching cells in G1 and increasing sub-

sequent differentiation potential. Treatment with both DOX and DMSO for 24h also improved

differentiation potential relative to control cells (Fig 3D and 3E, S2C and S3C Figs), but expres-

sion levels of many germ layer specific genes were comparable to DMSO treatment alone and

did not induce further improvements. Together, these results parallel those that occur during
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normal development in which the amount of hypophosphorylated, active RB increases at the

onset of differentiation [10].

Activating Rb throughout the differentiation protocol with continued DOX treatment

reduced differentiation relative to transient activation, as shown for the ectodermal lineage

(S6 Fig). Following directed differentiation, we assessed the mRNA expression of two

Fig 3. Activation of the Rb protein mimics the DMSO effects and increases the differentiation capacity of hPSCs. (a) Directed differentiation into the three germ

layers of the dox-inducible Rb7LP cell line, which expresses the active non-phosphorylatable form of Rb, and compared with control and 2% DMSO-treated cells. (b)

Quantitative RT-PCR analyses of the expression levels of Rb and pluripotency genes in Rb7LP cells without DOX (Rb7LP control) and with a 24h DOX treatment

(Rb7LP+Dox). (c) Protein expression of the truncated Rb-GFP protein and pluripotent markers, Oct4 and Nanog, by western blotting. GAPDH serves as a loading

control. (d) Quantitative RT-PCR for lineage-specific genes and (e) immunostaining for pax6 (ectoderm), brachy (mesoderm), and sox17 (endoderm) following

directed differentiation. Error bars, s.d. of 4–6 biological replicates. Scale bars, 100 μm. � p� 0.05, �� p� 0.01 under one-way ANOVA; Tukey’s test for multiple

comparisons.

https://doi.org/10.1371/journal.pone.0208110.g003
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neuroectodermal genes, Sox1 and Pax6 (S6A Fig). Both genes showed reduced expression rela-

tive to DMSO-treatment and a transient DOX treatment (S6B Fig), suggesting an important

role for transient activation of Rb in increasing the differentiation capacity of hPSCs.

Inhibition of the E2F pathway promotes hPSC differentiation

The active hypophosphorylated Rb physically binds to the E2F transactivation domain to

arrest cells in the G1 phase and prevent progression towards S phase [30–34]. As a result, acti-

vation of Rb decreases activity of the E2F pathway by suppressing E2F target genes [27,32,35–

37]. If the DMSO treatment functions through the Rb-E2F pathway, we hypothesized that the

DMSO treatment would downregulate E2F-associated genes and that inhibition of the E2F

pathway would similarly enhance the differentiation capacity of hPSCs. We first assessed

whether a 24h DMSO-treatment regulates the expression of E2F target genes. As a compari-

son, we also directly inhibited the E2F pathway using a small molecule E2F inhibitor

HLM006474 [27,38,39] (30 μM) for 24 hours in the HUES6 hESC line, a cell line with a low

propensity for differentiation[12,40]. In both DMSO-treated and HLM006474-treated HUES6

cells, the expression of E2F target genes [41,42], including sirt1, e2f1, ccne, and ccna, were sig-

nificantly downregulated (Fig 4A). We next treated HUES6 cells with 2% DMSO and/or

30 μM HLM006474 for 24 hours and then directly differentiated the cells into the three germ

layers to assess differentiation potential (Fig 4B). Across all germ layers, the DMSO treatment

significantly improved the differentiation capacity (Fig 4C and 4D, S2D and S3D Figs). Simi-

larly, repressing E2F activity through treatment with HLM006474 significantly increased dif-

ferentiation across all germ layers promoting enhanced expression of several lineage-specific

markers (Fig 4C and 4D, S2D and S3D Figs). For some genes, combining treatment with

DMSO and HLM006474 increased expression levels further (Fig 4C and 4D, S2D and S3D

Figs), potentially indicating a beneficial effect on cell lines with very low propensity. When

E2F inhibition was extended by treating with HLM006474 prior to and during the differentia-

tion protocol, the capacity for differentiation was suppressed compared to a transient treat-

ment (S7 Fig). Similar to long term activation of Rb in the Rb7LP line, both Sox1 and Pax6

showed reduced expression levels relative to DMSO-treatment and a transient treatment with

HLM006474 following differentiation into the ectodermal germ layer (S7A and S7B Fig).

Together, these results provide further support that the DMSO treatment acts through the Rb-

E2F pathway to regulate PSC differentiation (Fig 4E). More generally, these results highlight

that transient, and not prolonged, activation of Rb and inhibition of downstream targets is

important in increasing the differentiation capacity of hPSCs.

Discussion

Differentiating hPSCs into desired lineages has tremendous value for cell replacement therapy

and disease modeling. The Rb protein plays an important role in various cellular processes,

including cell division, differentiation, senescence, apoptosis, and DNA damage and repair

[7,10,43,44]. Using many different techniques to manipulate Rb and its activity in hPSCs, we

demonstrate that a short transient regulation of Rb in hPSCs for 24 hours has a significant

impact on their capacity to differentiate towards all germ layers. This study provides evidence

that treatment with DMSO enhances differentiation through the Rb-E2F pathway. Prior work

has shown that the phase of the cell cycle, particularly G1, plays an important role in enhancing

differentiation [39,45–52]. However, Rb remains in a phosphorylated state throughout the cell

cycle of PSCs and therefore this shortens the G1 phase and limits the window of opportunity

for differentiation [53–57]. Here, we identify chemical and genetic tools for transiently activat-

ing Rb to regulate differentiation.
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Fig 4. Inhibition of the E2F pathway increases the differentiation capacity of hPSCs. (a) The hPSC line HUES6 treated with 2% DMSO or 30 μM of the E2F inhibitor

HLM006474 for 24 hours. Quantitative RT-PCR results of expression levels of E2F-target genes relative to untreated control cells. (b) Directed differentiation into the

Rb activation promotes human pluripotent stem cell differentiation
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Regulating Rb using these agents or other means at subsequent stages of directed differenti-

ation or to suppress tumorigenicity could also have important applications for regenerative

medicine. More importantly, the effects reported here parallel those that occur during normal

embryonic development where a transient surge in activated Rb coincides with differentiation

and lineage specification [10,11]. It would be interesting to investigate whether similar mecha-

nisms related to Rb activity regulate CRISPR/Cas9 genome editing in response to DMSO treat-

ment [24].

Materials and methods

Cell maintenance

All cell lines were cultured and maintained at standard conditions at 37 oC, 5% CO2. hPSCs

were maintained and expanded in mTeSR medium (Stem Cell) on Matrigel-coated plates.

Fresh mTeSR medium was replaced every 24 hours. To passage cell lines, TrypLE (Invitrogen)

was applied to detach cells.

The cell lines analyzed in this study were the ShRB, T121, and Rb7LP inducible cell lines

that were previously generated in the H9 hESC line (Wicell) [27] and the HUES6 hESC line

[12,40]. Prior to pluripotent analyses or differentiation, cells were expanded on maintenance

Matrigel (Corning) with 10 μM Y27632 (Rock Inhibitor; Stemgent) and treated with one of

the following conditions:

Doxycycline treatment. ShRB, T121 and Rb7LP hESCs were plated at a density of 1 mil-

lion per well of a Matrigel-coated six-well plate in mTeSR medium with 10 μM Y27632. Doxy-

cycline (1 μg/ml) was added to ShRB and T121 cells on the day of plating. Fresh mTeSR

containing doxycycline was replaced after 24 hours. For the Rb7LP cells, 1 μg/ml doxycycline

was applied the day after plating. Cells were either harvested for pluripotent analyses or

directly differentiated into the three germ layers after doxycycline treatment.

DMSO treatment. Cells were treated with 2% DMSO in mTeSR medium for 24 hours

before the onset of differentiation.

E2F inhibitor treatment. Cells were treated with 30μM HLM006474 (EMD Millipore),

an E2F inhibitor, in mTeSR medium for 24 hours before the onset of differentiation or

throughout differentiation.

Differentiation assays

To induce differentiation into the ectodermal, mesodermal and endodermal germ layers, cells

were directly differentiated as follows:

Ectoderm. Cells were cultured in Knockout-DMEM (Invitrogen) containing 10% Knock-

out Serum Replacement (Invitrogen), Noggin (500 ng/ml; R&D Systems), SB431542 (10 μM;

Tocris) for 3 days. The medium was removed and replaced with fresh medium every 24 hours.

Endoderm. Cells were cultured in RPMI medium (Invitrogen), supplemented with

Wnt3a (20 ng/ml; R&D Systems) and Activin A (100 ng/ml; R&D Systems) for 24 hours and

subsequently in RPMI medium containing Activin A (100 ng/ml) for 2 days.

Mesoderm. Cells were cultured in advanced RPMI medium (Invitrogen) supplemented

with Wnt3a (20 ng/ml; R&D Systems) and Activin A (100 ng/ml; R&D Systems) for 1 day.

three germ layers of HUES6 cells pre-treated with 2% DMSO and/or 30μM E2F inhibitor HLM006474 for 24 hours. (c) Quantitative RT-PCR for lineage-specific genes

and (e) immunostaining for pax6 (ectoderm), brachy (mesoderm), and sox17 (endoderm) following directed differentiation. (e) Schematic model showing that the

transient DMSO treatment promotes hypophosphorylation of Rb and subsequent binding to E2F to increase differentiation potential (left) as opposed to increasing

hyperphosphorylation of Rb and activating E2F and its downstream target genes to promote cell cycle progression (right). Error bars, s.d. of 4–6 biological replicates.

Scale bars, 100 μm. � p� 0.05, �� p� 0.01 under one-way ANOVA; Tukey’s test for multiple comparisons.

https://doi.org/10.1371/journal.pone.0208110.g004
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RNA isolation and quantitative real-time PCR

Cell pellets were collected and the total RNA were isolated using RNeasy Mini Kit (QIAGEN)

according to the protocol provided by the manufacturer. After determining the concentration

and purity of RNA by the NanoDrop spectrophotometer, reverse transcription was conducted

using SuperScript IV VILO Master Mix with ezDNase (Thermo Fisher) to synthesize cDNA.

Quantitative RT-PCR was performed using the SYBR green system. One reaction included

SYBR green mix (Applied Biosystems), the forward and reverse target gene primers, and 100–

120 ng cDNA. The ABI 7500 Real-Time PCR machine was used to run the qRT-PCR experi-

ment. The level of RNA transcripts was analyzed using the ΔΔCT method. Gene expression

was subsequently normalized based on the housekeeping GAPDH expression. The primers

used in this study are listed in S1 Table.

Immunoblotting. Cells were lysed in the RIPA lysis Buffer (Thermo Scientific) supple-

mented with 1X Phosphatase Inhibitor (Thermo Scientific) and Protease Inhibitor (Thermo

Scientific). The protein lysates were collected following the centrifugation.

The proteins were mixed with Novex Tris-Glycine SDS sample buffer (Invitrogen) and sep-

arated on the 8% Tris-glycine gels (Invitrogen). The iBlot Gel Transfer system (Invitrogen)

was used to transfer protein onto the nitrocellulose membrane (Invitrogen). Subsequently, the

membranes were blocked in 5% nonfat dry milk in Tris-buffered saline (TBS)/0.1% Tween-20

(Cell signaling Technology) for one hour. Primary antibodies were then diluted in the blocking

solution and applied overnight at 4 oC. The antibodies used in this study were: GAPDH (the

loading control; 1:1000; Millipore); Oct3/4 (1:200; Santa Cruz); Nanog (1:1000; Cell signaling

Technology); Rb (1:1000; Cell signaling Technology); SV-40 T121 (1:1000; Abcam); and GFP

(1:200; Santa Cruz). After the membranes were washed in TBS/0.1% Tween-20 at room tem-

perature on the second day, HRP-conjugated secondary antibodies were diluted in blocking

solution (1:1000, Cell Signaling) and added to the membranes for one hour. ECL-Prime West-

ern Blotting Detection Reagent (GE Healthcare) was used for signal detection.

Immunocytochemistry. Cells were fixed in 4% paraformaldehyde (Electron Microscopy

Sciences) for 20 minutes at room temperature. Subsequently, the cells were rinsed in PBS and

blocked in 5% normal donkey serum (Jackson ImmunoResearch) /0.3% TrionX-100 in PBS

for one hour. Primary antibodies were prepared at a 1:500 dilution in the block solution and

applied to cells overnight at 4˚C. All primary antibodies used in this study were: GFP (Santa

Cruz); Ki67 (Abcam); Oct3/4 (Santa Cruz); SSEA4 (Invitrogen); TRA-1-60 (Invitrogen); Bra-

chy (R&D Systems); Pax6 (Santa Cruz); Sox1 (R&D Systems); and Sox17 (R&D Systems).

After overnight incubation in primary antibodies, the cells were washed in PBS/0.3% TrionX-

100 and incubated in fluorescently tagged secondary antibodies, Alexa-Fluor goat/donkey-

anti-primary antibody species IgG 488 or 594 (Life Technologies), for 1h at room temperature

and diluted at 1:500 in PBS/0.3% TrionX-100. DAPI (4,6-diamidino-2-phenylindol, Life Tech-

nologies) was used as a nuclear dye to stain all cells.

Image acquisition and quantification. Following directed differentiation into the three

germ layers, 10x fields per well were acquired and quantified. Cells labeled by Pax6, Brachyury,

or Sox17 antibody staining and total cell number (based on DAPI nuclei staining) were quanti-

fied using automated software in ImageJ to obtain percentages of target cell types.

Assessment of cell death and growth. To assess the degree of cell death, cells were har-

vested following treatment with and without DOX and resuspended in 1 ml PBS. 10 μl of Try-

pan Blue (Invitrogen) was mixed with 10 μl of cells. Subsequently, 10 μl of the mixed solution

was loaded onto the Countess cell counting chamber slide (Invitrogen) and inserted into the

Countess II FL Automated Cell Counter (Invitrogen). The percentage of dead or nonviable

cells was quantified by the automated system using the trypan blue exclusion assay. To assess
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cell growth, the initial cell plating density was recorded for each cell line using the Countess II

FL Automated Cell Counter. Following the Doxycycline (DOX) treatment, control and DOX-

treated cells were collected and recorded for total cell number using the Countess II FL Auto-

mated Cell Counter. The percentage increase in cell number was calculated as: ((final cell

number–initial cell number at plating)/initial cell number at plating) � 100%.

Cell cycle analysis. The cells were collected and fixed in 70% ethanol for 2 hours at 4˚C.

Cells were then centrifuged and pelleted and subsequently washed twice with PBS. The cells

were resuspended in DAPI/PBS/0.1% TritonX-100 staining solution for 30 min. Stained sam-

ples were run on a flow cytometer adjusted for UV excitation to measure DAPI fluorescence at

blue wavelengths.

Statistical analysis. For all the variables in this study, means and standard deviations

were calculated. A one-way ANOVA followed by a Tukey’s post hoc test was used to determine

statistical significance. For comparisons between two groups, the unpaired two-tailed Stu-

dent’s t-test was used to determine statistical significance. P value� 0.05 was considered statis-

tically significant.

Regulatory and institutional review. All human pluripotent stem cell experiments were

conducted in accord with experimental protocols approved by the Stanford Stem Cell Research

Oversight (SCRO) committee.

Supporting information

S1 Fig. Knockdown of the Rb protein in hPSCs. Representative images of (a) phase-contrast

hPSC colonies and (b) GFP expression following DOX induction of the ShRB cell line. Immu-

nostaining for (c) Oct4, (d) SSEA-4, and (e) TRA-1-60 in control (-DOX) and ShRB (+DOX)

cells. Scale bars, 100 μm.

(TIF)

S2 Fig. Regulation of the Rb pathway alters directed differentiation potential of hPSCs.

Percentage of hPSCs differentiating into Pax6+ ectodermal, Brachyury (Brachy)+ mesodermal,

or Sox17+ endodermal cells following directed differentiation into each germ layer in the (a)

ShRB, (b) T121, and (c) Rb7LP cell lines with and without DOX treatment and a 24h 2%

DMSO treatment and the (d) HUES6 cell line pre-treated with and without 30μM E2F inhibi-

tor HLM006474 and a 24h 2% DMSO treatment. Error bars, s.d. of 3–6 biological replicates. �

p� 0.05, �� p� 0.01 under one-way ANOVA; Tukey’s test for multiple comparisons.

(TIF)

S3 Fig. Transient activation of Rb or E2F inhibition increases expression of ectodermal

genes. Immunostaining for Sox1 following directed differentiation of the (a) ShRb, (b) T121,

and (c) Rb7LP cell lines into the ectodermal germ layer. (d) Immunostaining for Sox1 follow-

ing directed differentiation into the ectodermal germ layer of the HUES6 cell line pre-treated

with and without 30μM E2F inhibitor HLM006474 and a 24h 2% DMSO treatment.

(TIF)

S4 Fig. Regulation of Rb alters the distribution of hPSCs in the cell cycle. Distribution of

hPSCs in the G1, S, and G2/M phases of the cell cycle in the (a) ShRB, (b) T121, and (c) Rb7LP

cell lines with and without DOX treatment and a 24h 2% DMSO treatment. (d) Western blot

showing the levels of hyperphosphorylated Rb in Rb7LP cells with and without DOX treat-

ment compared to DMSO-treated cells. ppRB, hyperphosphorylated Rb. GAPDH serves as a

loading control.

(TIF)
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S5 Fig. Transient regulation of Rb does not alter proliferative capacity or viability of

hPSCs. (a) Immunostaining for the proliferation marker Ki67 in T121 cells with and without

DOX treatment and a 24h 2% DMSO treatment. (b) Percentage of dead cells of T121 cells fol-

lowing treatment with and without DOX and a 24h 2% DMSO treatment using the trypan

blue exclusion assay. (c) Total cell numbers of T121 cells following treatment with and without

DOX and a 24h 2% DMSO treatment. (d) Percentage increase in total cell number following

treatment with and without DOX and a 24h 2% DMSO treatment relative to initial plating

density in the T121 cell line. (e) Immunostaining for Ki67 in Rb7LP cells with and without

DOX treatment and a 24h 2% DMSO treatment. (f) Percentage of dead cells of Rb7LP cells fol-

lowing treatment with and without DOX and a 24h 2% DMSO treatment using the trypan

blue exclusion assay. (g) Total cell numbers of Rb7LP cells following treatment with and with-

out DOX and a 24h 2% DMSO treatment. (h) Percentage increase in total cell number follow-

ing treatment with and without DOX and a 24h 2% DMSO treatment relative to initial plating

density in the Rb7LP cell line. Error bars, s.d. of 3–6 biological replicates.

(TIF)

S6 Fig. Transient activation of Rb increases the differentiation capacity of hPSCs. (a)

Directed differentiation into the ectodermal germ layer of the dox-inducible Rb7LP cell line,

which expresses the active non-phosphorylatable form of Rb, and compared with control and

2% DMSO-treated cells. Treatment with DOX was for 24h prior to directed differentiation

(Transient DOX-treated) or for 24h prior to directed differentiation and throughout the ecto-

dermal differentiation (Long-term DOX-treated). (b) Quantitative RT-PCR analyses of sox1

and pax6 expression following differentiation into the ectodermal germ layer. Error bars, s.d.

of 3–5 biological replicates. � p� 0.05, �� p� 0.01 under one-way ANOVA; Tukey’s test for

multiple comparisons.

(TIF)

S7 Fig. Transient E2F inhibition increases the differentiation capacity of hPSCs. (a) Di-

rected differentiation into the ectodermal germ layer of HUES6 cells treated with HLM006474

compared with control and 2% DMSO-treated cells. Treatment with HLM006474 was for 24h

prior to directed differentiation (Transient HLM006474-treated) or for 24h prior to directed

differentiation and throughout the ectodermal differentiation (Long-term HLM006474-

treated). (b) Quantitative RT-PCR analyses of sox1 and pax6 expression following differentia-

tion into the ectodermal germ layer. Error bars, s.d. of 2–5 biological replicates. � p� 0.05, ��

p� 0.01 under one-way ANOVA; Tukey’s test for multiple comparisons.

(TIF)

S1 Table. Complementary DNA PCR primer sequences. All primer sequences used in the

study are listed.

(TIF)
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