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Abstract

Objective

In a three-wave 6 yrs longitudinal study we investigated if the expansion of lateral ventricle

(LV) volumes (regarded as a proxy for brain tissue loss) predicts third wave performance on

a test of response inhibition (RI).

Participants and methods

Trajectories of left and right lateral ventricle volumes across the three waves were quantified

using the longitudinal stream in Freesurfer. All participants (N = 74;48 females;mean age

66.0 yrs at the third wave) performed the Color-Word Interference Test (CWIT). Response

time on the third condition of CWIT, divided into fast, medium and slow, was used as out-

come measure in a machine learning framework. Initially, we performed a linear mixed-

effect (LME) analysis to describe subject-specific trajectories of the left and right LV volumes

(LVV). These features were input to a multinomial logistic regression classification proce-

dure, predicting individual belongings to one of the three RI classes. To obtain results that

might generalize, we evaluated the significance of a k-fold cross-validated f1-score with a

permutation test, providing a p-value that approximates the probability that the score would

be obtained by chance. We also calculated a corresponding confusion matrix.

Results

The LME-model showed an annual* 3.0% LVV increase. Evaluation of a cross-validated

score using 500 permutations gave an f1-score of 0.462 that was above chance level (p =

0.014). 56% of the fast performers were successfully classified. All these were females, and

typically older than 65 yrs at inclusion. For the true slow performers, those being correctly

classified had higher LVVs than those being misclassified, and their ages at inclusion were

also higher.
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Conclusion

Major contributions were: (i) a longitudinal design, (ii) advanced brain imaging and segmen-

tation procedures with longitudinal data analysis, and (iii) a data driven machine learning

approach including cross-validation and permutation testing to predict behaviour, solely

from the individual’s brain “signatures” (LVV trajectories).

1 Introduction

Normal aging is associated with morphometric changes in several brain regions and changes

affecting cognitive function. The trajectories of age-related changes are, however, character-

ized by a large interindividual heterogeneity [1]. This is observed in studies of structural brain

changes [2], the rate and extent of cognitive changes [3, 4] as well as brain-cognition relations

in older age [5, 6], leaving some individuals with preserved cognitive function into old age,

and others with a decline at a much younger age. In the severe end of the distribution, the

most extensive tissue loss is associated with dementia, a syndrome defined by a severe decline

in cognitive function [7]. On the other end of the scale we find so-called “superagers” [8]. They

show maintained cognitive function into old age [9], with a corresponding preservation of

brain structure over time [6, 10]. This heterogeneity can be explained by several biological and

genetic factors, as well as the many life-events and life-style factors that influence an individual

through his or her life-time [11–13]. It has for example been shown that compensatory strate-

gies developed through the life-time can slow down a cognitive decline in spite of a decline at a

neuronal level [4]. This large number of unknown factors gives arguments for the relevance of

a data driven approach when we investigate the relation between subject-specific structural

brain changes and cognitive function in the present study.

Several previous studies have related changes in cognitive function to changes in specific

regions and structures of the brain (e.g., [14–17]). For example, prefrontal cortex has been

linked to global aspects of cognitive function like fluent intelligence [18] and to specific mea-

sures defined within the concept of executive function (e.g., [19, 20]). Executive function (EF)

is of special interest in studies including older participants, as EF has been described as a hall-

mark of cognitive aging [21, 22]. In the present study we have focused on response inhibition

(RI), which is described as one of the core functional subcomponents of EF [23], susceptible to

impairment as part of normal cognitive aging [24, 25]. The close relation between RI and flu-

ent intelligence [26] and between fluid intelligence and various properties of brain structure

[18] add to the interest of this EF subcomponent in relation to brain changes. The nature and

empirical specificity of such relations between brain regions and RI is, however, still not clear.

Inconsistent results are reported and can at least partly be explained by individual differences

in age-related volume changes across different brain regions [27], but also by what Salthouse

et al. [26] refer to as the “ability impurity” of EF tests. In fact, subfunctions of EF are most likely

dependent on multiple, interconnected brain regions [23]. In the present study, we will there-

fore not use volume changes in specific brain tissue regions or structures as predictors of RI,

but rather use trajectories of change in the lateral ventricle (LV) volumes as a proxy of age-

related brain tissue loss. This because the lateral ventricular volumes (LVV) can be seen as a

“complement volume” of brain parenchyma since the intracranial volume (ICV) is regarded

constant during adulthood and older age.

The choice of LV volumes (LVV) is further supported by studies describing the brain’s

fluid-filled ventricles as a biomarker of the aging brain [28, 29], and studies linking age-related
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ventricular expansion to changes in cognitive function at a subject-specific level [30–32]. A

study by Todd et al. [33] showed a strong linear relationship between LVV expansion and

worsening of cognitive performance over a two-years period. The study assessed cognitive

function by tests primarily designed to reveal symptoms of major neurocognitive disorders.

Less is known about the longitudinal relationship between LVV expansion and more specified

measures of cognitive functions that are prone to normal age-related changes. The eight year

longitudinal study by Leong et al. [27] is an exception. The study assessed the co-evolution of

volumetric brain changes and cognitive function in a large group of healthy older adults

(n = 111, age range 56-83 yrs at baseline) including test measures defined within specified cog-

nitive domains. The results showed volumetric reduction of tissue across several brain regions,

and that faster cerebral atrophy and ventricular expansion (at 3.56%/year) were associated

with rapid decline in performance on tests of verbal memory and executive function.

The studies referred to above motivated us to further investigate the ability of predicting RI

from LVV-derived biomarkers. Response inhibition is here defined from performance on the

third condition of the Color-Word interference (CWIT) test, which is part of the Delis and

Kaplan Executive Function Scale (D-KEFS) [34]. Previous studies have controlled for the first

two conditions of CWIT (color naming and word reading) in a linear regression model to

obtain a more “pure” measure of inhibition [25, 35]. In the present study we rather consider

the complexity of the third condition as a strength, because it potentially gives a better match

to the selected “global” measure of tissue loss (i.e. LVV changes) and is also easier to interpret

(RT in seconds). Segmentation of the longitudinal 3D T1-weighted MRI recordings were used

to measure the subject-specific trajectories of LVV change across the three study waves, and

the RI performance at the third wave was included as an outcome variable, assuming that neu-

ronal loss tends to precede cognitive decline in older age [4].

We see the application of (i) a longitudinal design, (ii) advanced brain imaging and seg-

mentation procedures with longitudinal data analysis (LDA), and (iii) a data driven machine

learning approach including cross-validation and permutation testing to predict behavior as

the major contributions of the present study. Our aim was to predict RI performance (slow,

medium, fast) solely from the individual’s brain “signatures” in terms of LVV trajectories, i.e.

expressing and testing subject-specific brain-behavior relationships. By this, we wanted to con-

tribute with methods and results that are likely more generalizable to unseen data than those

obtained using ordinary linear regression or classification models applied to the full cohort

without using hold-out or a train-test-split cross-validation procedure. More specifically, after

image segmentation we used a linear mixed-effect (LME) analysis similar to Leong et al. [27]

to describe and select characteristics of the subject-specific LVV trajectories of the left and

right lateral ventricle. From explorative data analysis, four features derived from the random

effects component in the LME model were included in a multinomial logistic regression classi-

fication procedure, predicting individual belongings to one of three classes of performance

level (slow, medium and fast) on the RI test. A permutation test was used to evaluate

the significance of a cross-validated F1-score to obtain results that may generalize to other

samples (i.e. providing a p-value that approximates the probability that the score would be

obtained by chance). From cross-validation, single subject predictions were obtained, enabling

computation of a confusion matrix for better assessment and interpretation of our classifier

performance.

From this, we expected to confirm the volume expansion profiles of the lateral ventricles

that Leong et al. [27] reported from their statistical mixed effects model, as well as an associa-

tion between LVV expansion and RI performance.

In the explorative data analysis we expected to reveal an age-related expansion of the lateral

ventricle volumes [27], a slower age-related expansion of LVV in females than in males [36,

Lateral ventricle volume trajectories and response inhibition
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37], and that poor response inhibition performance is a more frequent in older age [24, 25]. By

casting our brain and behavior measurements into a comprehensive classification framework,

we hypothesized that model-based features characterizing the LVV trajectories of an individ-

ual could act as predictors of his or her RI performance. According to previous studies (see e.g.

[1]), the success-rate of this prediction was expected to scale with age, with better classification

performance in the oldest segment of our cohort.

2 Methods

2.1 Sample

The study included a cohort of 74 healthy middle-aged and older subjects (48 females and 26

males). They were all part of a three-wave longitudinal study on cognitive aging, where sub-

jects with a history of substance abuse, present neurological or psychiatric disorder, or other

significant medical conditions were excluded from participation (see [38, 39] for more details).

Their mean age was 59.9 yrs (SD 7.3), 63.3 yrs (7.2) and 66.0 yrs (7.2) for study wave 1, 2 and

3, respectively, and their mean education was 13.94 yrs (2.9). All the 74 subjects provided MRI

data across the three study-waves that could be successfully processed during cross-sectional

Freesurfer segmentation without need of (subjective) manual editing, and were then run

through the longitudinal stream of Freesurfer [40] (details in Section 2.3). Results from the

CWIT cognitive test of RI, administered as part of the third study-wave, were available for all

the 74 subjects. With an aim to investigate the opportunity and success of predicting perfor-

mance on a cognitive test from individual trajectories of volumetric brain measures, we

decided to restrict the sample derived from our larger study of cognitive aging to those 74 with

a complete brain-cognition data set across the three waves.

An inspection of the neuropsychological test data from the three waves confirmed that

none of the participants showed results indicating dementia. The test battery included two

subtests from the Wechsler Abbreviated Scale of Intelligence (WASI, [41]) administered in the

first wave to estimate intellectual function, and the Mini Mental Status Examination (MMSE,

[42]) in waves 2 and 3. All participants obtained a MMSE score� 25, and their mean IQ score

was 117.1 (sd = 10.2). None of the participants reported or obtained a score on the second edi-

tion of the Beck Depression scale (BDI-II) [43] that indicated depression.

All participants signed an informed written consent form, and the study was approved by

the Regional Committees for Medical and Health Research Ethics of Southern (study wave 1)

and Western Norway (study wave 2 and 3).

2.2 Response inhibition

The total raw response-time (RT) score (in seconds) for correct responses on the third

condition of the CWIT [34], performed as part of the third study wave, was included as the

measure of RI. In this condition, subjects are requested to name the colors of color-words

printed in incongruent colors (e.g., the the word “red” printed in “green”) as fast and correct

as possible. From this, it is assumed that the participant has to inhibit the more automatic

response to read the word, commonly referred to as the Stroop effect. In the two preceding

conditions of CWIT, the participants named a set of colours and read a set of color words.

The third condition thus includes the effects of these two fundamental abilities [35]. Trained

research assistants administrated the test in a quiet room designed for a neuropsychological

examination.

Lateral ventricle volume trajectories and response inhibition
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2.3 MRI acquisition and brain segmentation

Multi-modal MR imaging was performed on a 1.5 T GE Signa Echospeed scanner (MR labora-

tory, Haraldsplass Deaconess Hospital, Bergen) using a standard 8-channel head coil. Two

consecutive T1-weighted 3D volumes were recorded from each subject (to improve SNR and

brain segmentation) using a fast spoiled gradient echo (FSPGR) sequence (TE = 1.77 ms;

TR = 9.12 ms; TI = 450 ms; FA = 7˚; FoV = 240 × 240 mm2, image matrix = 256 × 256 × 124;

voxel resolution = 0.94 × 0.94 × 1.40 mm3; TA = 6:38 min). The same scanner (no upgrades)

and T1-w 3D imaging protocol were used at each of the three study waves.

Brain segmentation and morphometric analysis across the three waves was conducted

using the Freesurfer image analysis suite, version 5.3 (documented and freely available

online from https://surfer.nmr.mgh.harvard.edu). To extract reliable volume estimates and

their trajectories (e.g. left and right lateral ventricles), the cross-sectionally processed images

from the three study waves were subsequently run through the longitudinal stream [44] in

Freesurfer. Specifically, an unbiased within-subject template space and image is created using

robust, inverse consistent registration [45]. Several processing steps, such as skull stripping,

Talairach transforms, atlas registration as well as spherical surface maps and parcellations are

then initialized with common information from the within-subject template, significantly

increasing reliability and statistical power [44]. As a consequence of the longitudinal process-

ing stream and within-subject registration, the estimated total intracranial volume (eTIV) for a

given subject remains fixed across the three study waves. To illustrate data, processing stream,

and results Fig 1 depicts the longitudinal MRI original recordings (orig.mgz) and the corre-

sponding Freesurfer segmentations (aseg.mgz) from one randomly selected participant at

each of the three study waves. The age at the MRI examinations and corresponding left and

right lateral ventricle volumes are shown along the time-line.

After running Freesurfer to its end on the collection of subjects, cross sectionally and fol-

lowed by the longitudinal stream (several days on a standard Linux workstation), we obtained

for each wave subject-specific Freesufer directories containing segmentation results (e.g.

aseg.mgz for inspection) and aggregated morphometric statistics (e.g. volume of left and

right lateral ventricle and the intracranial volume, eTIV being constant for each subject, all in

Fig 1. The longitudinal MRI recordings (orig.mgz) and the corresponding Freesurfer segmentations (aseg.mgz) from one of the

participants at each of the three study waves. The age at the MRI examinations and corresponding left and right lateral ventricle volumes are

given along the time-line.

https://doi.org/10.1371/journal.pone.0207967.g001
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microliter). It was then easy to extract the volumetric data in tabular form for the whole cohort

using a Python script. The subject’s age at MRI examinations wave 1, 2 and 3 was derived from

the 3D T1-w DICOM headers. We further combined these variables with subject gender and

RI reaction time at wave 3 to a single data frame, that also included the eTIV-normalized lat-

eral ventricle volumes, LVV
eTIV. This Pandas data frame was used in the following analyses.

2.4 Statistical analyses

2.4.1 Identification of individual trajectories of LV volume changes. Mixed effects

modelling was used to characterize individual trajectories of LVV change according to the fol-

lowing LME model equation:

VolHij ¼ b
H
0
þ b

H
1
Ageij þ ðb

H
0i þ bH

1iAgeijÞ þ �
H
ij ;

where H 2 {L, R} denote hemisphere, i is subject (i = 1, . . ., N = 74) and j is wave (j = 1, . . .,

n = 3). The response variable Volij is volume of left (or right) lateral ventricle in subject i at

wave j, and Ageij (predictor) is age [years] of subject i at wave j. The variables β0 and β1 are

fixed effects model parameters, b0i and b1i are random effects model parameters, and �ij is ran-

dom residual errors, with zero mean and constant variance δ = �2.

Two features were derived from the LME model to characterize the individual LVV trajec-

tories. The first (denoted b1i) describes the steepness of individual volume trajectory, defined

as the slope parameter in a two-parameter family of random effects (b0i, b1i). The second fea-

ture (denoted Vdev) describes an LVV deviation measure at baseline, and is defined as the

difference at wave 1 between subject-specific LVV and the age-matched LVV expected from

the cohort fixed effect regression line that is parameterized with (β0, β1). For each of these fea-

tures, one is selected from the right and one from the left hemisphere. This is motivated from

expected similar, but not necessarily identical patterns of LVV trajectories in the left and the

right hemisphere, and also possible hemispheric differences as reported in previous studies

(e.g. [46]). These four model-based features (b1iL, b1iR, VdevL, VdevR) were included as

predictors in the further analyses (see Fig 2 for illustration).

2.4.2 Explorative data analysis. The distributions (i.e. kernel density estimation) and

Pearson correlations between the six parameters: age at wave 3 (Age3), the four LVV mea-

sures (b1iL, b1iR, VdevL, VdevR), and the reaction time from the RI measure at wave 3

(RI3) were calculated and presented separately for females and males as a comprehensive gen-

eralized pairs plot using the ggplot2 and GGally packages in R ver 3.5.

2.4.3 Prediction of response inhibition. A classification approach with three categories

of RI performance was used to investigate the predictive value of the four LVV measures. To

generate such categories, the participants were divided into slow, medium, and fast per-

formers. First, a jittering procedure was used to eliminate RT ties, adding Gaussian N ðm ¼
0;s2Þ noise with σ = 0.05 to the integer valued reaction times, being in the range [35, 102] (in

seconds), such that each jittered RT was typically around ±50 ms from the measured one. A

quantile-based discretization function was then used to compute four reaction time threshold

values and corresponding reaction time intervals to obtain balanced classes, i.e. close to the

same number of participants in each category (cf. Table 1).

For predicting category yi 2 {slow, medium, fast} from explanatory variables Xi =

(b1iLi, b1iRi, VdevLi, VdevRi) where i 2 {1, . . ., 74} denote participant number i, we used

a linear regularized logistic regression classifier as implemented in Logistic Regres-
sion from the linear models in the scikit-learn library for Python. Since we have a

three-class problem, we used a multinomial version with the cross-entropy loss, a limited-

memory Broyden—Fletcher—Goldfarb—Shanno (‘lbfgs’) solver, L2 regularization with primal

Lateral ventricle volume trajectories and response inhibition
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formulation, tolerance for stopping criteria 0.0001, and let 500 be the maximum number of

iterations taken for the solver to converge. We fixed the value of parameter C (the inverse of

regularization strength in the algorithm) to be 0.5 in all our classification experiments without

any hyperparameter tuning.

The best and most detailed description of the classifier being used is found in https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html and the ref-

erences therein.

If a feature has a mean and variance that is orders of magnitude larger than others, it might

dominate the objective function (cross-entropy loss) and make our classifier using L2 regulari-

zation unable to learn from other features correctly, as expected. Such effect could be observed

by assessing feature importance before and after preprocessing with a scaler (mean removal

and variance scaling). To assure that all features were centered around 0 and have variance in

the same order, the input data were preprocessed with scikit-learn’s StandardSca-
ler obtaining zero mean and unit variance for each feature, also in every fold during cross

validation (see below).

2.4.4 Evaluation using k-fold cross validation with permutations. It is well known that

learning the parameters of a prediction function and testing it on the same data is a methodo-

logical mistake. A sufficiently expressive model would just repeat the labels of the samples

Table 1. Definitions and characteristics of fast, medium, and slow performers.

RI label RT interval [sec] F M Total

fast [34.9, 49.9i 19 6 25

medium [49.9, 58.7i 14 10 24

slow [58.7, 102.1i 15 10 25

RI = response inhibition; RT = reaction time; F = number of females; M = number of males.

https://doi.org/10.1371/journal.pone.0207967.t001

Fig 2. Illustration (left hemisphere) of the subject-specific measures (b1iL, b1iR, VdevL, VdevR) of LVV trajectories obtained from

the LME analysis.

https://doi.org/10.1371/journal.pone.0207967.g002
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that it has just seen and could have a perfect score but fail to predict anything useful on yet

unseen data, being a victim of overfitting and lack of generalization abilities. When perform-

ing our supervised machine learning experiments on labeled data (we let our complete data-

set be denoted (X, y) where X is the 74 × 4 matrix of predictors and y is the 74 × 1 vector of

corresponding RI labels), a common practice is therefore to hold out part of the available

data as a training set used for model estimation and the remaining samples as a test set for

performance evaluation. However, by partitioning the available data into two sets (or, three

when including a validation set for hyperparameter tuning), we drastically reduce the num-

ber of samples which can be used for learning the model, and the results can depend on a par-

ticular random choice for the pair of train and test datasets. To ameliorate this problem,

especially in small-sample size studies like ours, we used k-fold cross-validation (CV) to

assess the prediction properties of our multinomial logistic regression classifier, such as per-

formance scores (i.e. accuracy, precision, recall, and f1) and confusion matrices. In this pro-

cedure the dataset was split into k smaller sets (stratified folds were made by preserving the

percentage of samples for each class), and for each of the k folds, a model was trained using

k − 1 of the folds as training data, and the estimated model was then applied on the remaining

fold being used as a test dataset to compute performance scores. The performance measure

reported by k-fold cross-validation was the average of the values computed in the loop. In

our analysis we report on average (‘micro’) f1-score, calculated globally by counting the

total true positives (TP), false negatives (FN) and false positives (FP), and interpreted as a

weighted average of the precision = TP/(TP+ FP) and the recall = TP/(TP + FN), i.e. f1 = 2

(precision × recall)/(precision + recall).

In order to test if a classification score was significant, a technique of repeating several

times the k-fold CV classification procedure after randomizing the labels was used, i.e. evaluat-

ing the significance of a cross-validated score with permutation testing. By this means, a p-

value approximates the probability that the score would be obtained by chance is given by

the percentage of runs for which the score obtained was greater than the classification score

obtained in the first place. In our experiments we used the permutation_test_score
function in scikit-learn with k = 5, and 500 permutations, yielding a p-value = (C + 1)/

(500 + 1), where C is the number of permutations whose score� the true score. The minimum

p-value is 1/(500 + 1)� 0.002 corresponding to the case where the classifier is so good that

none of the classifiers with shuffled labels has a better score, and the worst value is 1.0. The

permutation_test_score computations returned the true score without permuting

labels, an array of scores for each permutation, and the p-value described above. These are

reported in the Results section. To further assess our model, we generated cross-validated esti-

mates for each of the 74 data points in X (with corresponding RI label y) using the same k-fold

cross-validation and standard scaling as described above. Mapping each data point in the

input to the prediction that was obtained for that element when it was in the test set, was done

for diagnostic purposes—illustrating typical confusion matrices and scores obtained from the

model—not for measuring generalization error as was previously done in the permutation

testing. Finally, we computed the 3 × 3 confusion matrix using the true labels versus the classifi-

cation labels returned from the cross validation prediction.

All analyses were implemented as Jupyter notebooks using Python (3.6), Numpy
(1.14), Pandas (0.23), Matplotlib (3.0), Statsmodels (0.9), Scikit-learn (0.20),

and rpy2 (2.9) with R (3.5) and packages lme4, ggplot2 and GGally for producing Figs

3, 4 and 6. These notebooks with corresponding datasets as .csv files were tested to run

under Anaconda on both MacOS 10.14, Windows 10, and Ubuntu 18.04 platforms and will

be available on GitHub [https://github.com/arvidl/lvv-ri].
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3 Results

3.1 Three wave changes in lateral ventricular volumes

From the linear mixed-effect (LME) model used to investigate the age-related evolution of the

ventricular volumes Fig 3 shows the fixed (fat unbroken line) and random effects (thin line

segments) calculated from the LVV modeling for the left (a) and right (b) hemispheres, and

the corresponding data and LME-model fitted to the eTIV-normalized LVV values (left (c)

and right (d) hemispheres). The fixed effects regression line shows expansion of LV volumes

(or, eTIV-normalized LVVs) with increasing age. From the fixed effect model we found an

Fig 3. Subject-specific longitudinal lateral ventricle volumes versus age in left (a) and right (b) hemisphere shown as color-coded spaghetti plots across the three study

waves. For left and right hemisphere the random effects, estimated from the linear mixed-effect model Volij = β0 + β1 Ageij + (b0i + b1i Ageij) + �ij, are depicted as thin line

segments in black superimposed on the color-coded line plots. The thick regression line in black represents the estimated fixed effect, and the broken line represents

ordinary linear least squares regression (OLS) line. Subject-specific longitudinal eTIV-normalized lateral ventricle volumes versus age in left (c) and right (d) hemisphere,

respectively, are shown as color-coded spaghetti plots across the three study waves. Here, a linear mixed-effect model was applied and fitted to the eTIV-normalized data.

https://doi.org/10.1371/journal.pone.0207967.g003
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overall cohort volume increase of 429 μL/year for the left side LVV, and 426 μL/year for the

right side. With a mean LVV in left hemisphere of 14994 [μL] at inclusion, this represents an

annual� 2.9% increase in left side LVV, and with a mean LVV in right hemisphere of 13777

[μL], this represents an annual� 3.1% right side LVV increase. Visual inspection reveals a

trend towards a steeper slope for the older participants in the cohort. Furthermore, the fixed

effects regression line was less steep than ordinary linear least squares regression line (fat bro-

ken line), demonstrating the effect of the LDA approach that takes into account the dependen-
cies between the subject-specific measures across the three study waves.

3.2 Explorative data analysis

Fig 4 shows the kernel density estimated distributions of age, the four volume measures, and

the response inhibition performance (RI), and their pair-wise Pearson correlations, with sepa-

rate panels for the use of non-normalized LVVs with respect to the subject’s ICV (a), and the

eTIV-normalized LVVs (b).

The gender effects are shown by presenting the results separately for females (n = 48) and

males (n = 26). The LVV-derived measures for females were shifted towards the lower end of

the distribution compared to males, while the gender-specific distributions were less different

for age and RI in both when using native LVVs and eTIV-normalized LVVs. The Pearson cor-

relations were strong between the left (b1iL) and right (b1iR) slope measures in (a) r = 0.94

(and also for the eTIV-normalized LVVs r = 0.93 in (b)), and between the two deviance mea-

sures VdevL and VdevR: r = 0.89 in (a), r = 0.87 in (b). Statistically significant correlation

was found, for females only, between RI3 and b1iL (r = 0.48) and between RI3 and b1iR
(r = 0.53). For the eTIV-normalized LVVs similar correlations were found (in females only).

Age at wave 3 was moderately correlated with the four lateral ventricular features in females.

In males these correlations were generally lower and non-significant. This was the case for

both native LVVs and for eTIV-normalized LVVs. Due to the small qualitative difference

between the use of native LV volumes and eTIV-normalized volumes observed in the explor-

atory data analyses (cf. Figs 4 and 5), we performed our machine learning classification experi-

ments using features derived from the native LV volumes, only.

3.3 Predicting response-inhibition from LVV trajectories

The four LME-based features selected to characterize the non-normalized LVV trajectories,

i.e. slope of LVV change (b1i) and the LVV deviation at the time of inclusion (Vdev), from

both the right and from the left hemispheres, were used to compute our cross-validated score

to predict level of RI. Fig 5 shows the results from our simulation experiments using iteratively

fitted multinominal logistics regression models (n = 500 permutations) to assess the signifi-

cance of the f1-score. The vertical green dotted line represent our cross-validation classifica-

tion score of 0.462 and shows that the score is significantly better (p = 0.014) than the 0.333

chance level (black dotted line).

The results from the k-fold cross-validation procedure is presented in Table 2. The preci-

sion (positive predictive value) is higher than the recall (sensitivity) for the slow and medium
RI classes, but lower than the recall score for fast performers. The overall slightly best

f1-score was obtained for the fast performers. The fast performers also had a recall score

that was higher than any other score metric, regardless level of performance.

Fig 6 illustrates the 74 subject-specific trajectories color-coded with the observed (true) RI

label for left hemisphere (a) and the right hemisphere (c). The same 74 subject-specific trajec-

tories are then color-coded with the predicted RI label for left hemisphere (b) and the right

hemisphere (d). The most successful classification, in both hemispheres, is for the fast

Lateral ventricle volume trajectories and response inhibition
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Fig 4. Generalized pairs plot depicting the kernel density estimated empirical distributions of each of the six

variables and Pearson correlations between age, the four LVV trajectory measures and response inhibition. (a)

Non-normalized LVVs. (b) eTIV-normalized LVVs. The graphs and correlations are given separately for females (in

red) and males (in green). Age3 = age of participant at study wave 3; b1iL = LVV steepness measure, left hemisphere;

b1iR = LVV steepness measure, right hemisphere; VdevL = LVV deviance measure, left hemisphere; VdevR = LVV

deviance measure, right hemisphere; RI3 = response inhibition reaction time at study wave 3.

https://doi.org/10.1371/journal.pone.0207967.g004
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performers as illustrated by the red line-segments. The slow performers, shown by the blue

line-segments, seem to be most successfully classified if their age was above 65 years at

inclusion.

The 3 × 3 confusion matrix (CM) compares the true labels (Observed RI in Fig 7) versus the

classification labels returned from the cross validation prediction (Predicted RI in Fig 7). We

have also computed CM cell-specific information about gender ratio (F/M), number of partici-

pants older than 65 years at baseline (Age1> 65), and volume means in microliters of left and

right lateral ventricle (Vol1L and Vol1R), respectively, at baseline. The confusion matrix in

Fig 7 shows that 14

25
¼ 56% of the fast performers were correctly classified, all were females, and

Fig 5. Result from the simulation experiments assessing the significance of a 5-fold cross-validated score (f1) with

500 permutations using multinomial logistic regression. The predictors are X = {b1iL, b1iR, VdevL, VdevR}

and the classes are the three levels of RI reaction times, y = {slow, medium, fast}.

https://doi.org/10.1371/journal.pone.0207967.g005

Table 2. Predictions from each split of cross-validation, generating cross-validated estimates for each input data point using multinomial logistic regression.

f1-score precision recall support

slow 0.4255 0.4545 0.4000 25

medium 0.4545 0.5000 0.4167 24

fast 0.4912 0.4375 0.5600 25

micro avg 0.4595 0.4595 0.4595 74

macro avg 0.4571 0.4640 0.4589 74

weighted avg 0.4571 0.4635 0.4595 74

f1-measure, precision, recall, and support for each class are computed. The predictors are X = {b1iL, b1iR, VdevL, VdevR} and the classes are the three levels of RI

reaction times, y = {slow, medium, fast}. The reported averages include micro average (averaging the total true positives, false negatives and false positives), macro
average (averaging the unweighted mean per label), and weighted average (averaging the support-weighted mean per label). The support is the number of occurrences of

each class in ytrue.

https://doi.org/10.1371/journal.pone.0207967.t002
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five of these were older than 65 years at inclusion. Only one participant older than 65 at inclu-

sion who was a fast performer was misclassified. We also found that the correctly classified

fast performers were among those who had the smallest LVVs at baseline. The fast per-

formers who were misclassified also had larger LVVs at inclusion. For the true slow perform-

ers, those being correctly classified had higher LVVs than those being misclassified, and their

age at inclusion were also higher. A relatively high proportion (40%) of the slow performers

were misclassified as fast. In this group there were more females than males, few were older

than 65 years at inclusion, and their LVVs were substantially lower (< 50%) than those being

correctly classified.

Fig 6. Plots showing the observed RI labels (leftmost two panels, for left (a) and right hemisphere (c), respectively) and the predicted RI labels (rightmost two panels, for

left (b) and right hemisphere (d), respectively) for each of the 74 subjects in the cohort. When a given trajectory in (a) or (c) changes its color as it occur in (b) or (d), that

subject is misclassified; otherwise he or she is correctly classified with respect to RI performance.

https://doi.org/10.1371/journal.pone.0207967.g006
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4 Discussion

The present study used an LME model to describe, visualize, and design four features charac-

terizing subject-specific LVV trajectories: slope of his or her volume change across the three

study waves and a measure of age-related deviance between cohort LVV and subject LVV at

inclusion in the study. These LME-based features where then input as predictors of level of RI

performance using a linear regularized multinomial logistic regression classifier within a

machine learning framework incorporating k-fold cross validation and permutation testing.

Visual inspection of the LME results revealed an approximately linear age-related expansion of

the lateral ventricle volumes over the six years period of observations. The exploratory data

analysis showed that distributions of all four LVV features were characterized by gender differ-

ences, and that significant correlations between response inhibition performance, age and the

LVV slope measure were mostly restricted to the female part of the sample. A cross-validated

score predicted performance defined within the three RI classes with a mean classification

f1-score that was moderately good (0.462), and clearly better than chance level (p< 0.02). A

confusion matrix revealed that fast performers were most successfully predicted. Further-

more, the group of successfully classified fast performers included only females, participants

with the smallest LVVs at baseline, and all but one fast performer older than 65 at inclusion.

Fig 7. The 3 × 3 confusion matrix computed for the slow, medium and fast RI labels returned from the cross

validation prediction with our multinomial logistic regression model compared with the co-occurrences of

the true (observed) RI labels. The diagonal cells are those representing correctly classified subjects (number of

occurrences in each cells are given as N), and these cells are shaded in blue. Off-diagonal cells represents various events

of misclassification. Observed/predicted co-occurrences are also accompanied, for each cell, with corresponding

information about gender ratio (F/M), confirmed age at inclusion larger than 65 years (Age1> 65), and volume

means in microliters of left and right lateral ventricle (Vol1L and Vol1R), respectively, at time of subject inclusion in

the study.

https://doi.org/10.1371/journal.pone.0207967.g007
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For those being successfully classified as slow performers, 67% were older than 65 years at

inclusion and their LVVs were higher that those being misclassified within this slow RI class.

The results confirmed that healthy aging is associated with a slight expansion of the lateral

ventricular system. This finding further supports arguments for using information about vol-

ume of brain’s fluid-filled ventricles as an imaging-derived biomarker in studies of the aging

brain [27–33]. Interestingly, the present study estimated an annual fixed-effect increase in

LVVs at� 3% in the cohort (slightly larger in right hemisphere compared to the left), close to

the ventricular expansion (3.56%/year) reported in the study by Leong et al. [27]. In addition

to the LME-modelling approach, our contribution relates to data from three study waves being

analyzed (Leong et al. reported results from 111 subjects in a two-waves-study), and that we

were taking the analysis one step further, bringing the data into a predictive machine learning

(ML) framework. By this, we obtained results that could be applied at a single case level, being

obtained with a method (k-fold cross validation) that are aimed to have generalization abilities

and thus being applicable to yet-unseen data. In this ML context we could show that different

classes of RI performance (slow, medium and fast) could be predicted from the LVV tra-

jectories with an accuracy and f1-score that was moderate but clearly above chance level, and

further emphasize the importance of gender and age illustrated by the explorative data analysis

and the extended confusion matrix.

The confusion matrix showed that all fast performers who were correctly classified were

females, and that the overall percentage of correctly classified females (54%) was higher than

for males (31%). These results demonstrate the importance of gender, which was also shown

in the explorative data analysis. Here, the Pearson correlations between level of RI perfor-

mance and the two LVV slope measures were much stronger in the female part of the sample.

By this, our results were similar to the results reported by Aljondi et al. [15] in a female-only

sample, using the same Freeurfer longitudinal stream image analysis to obtain atrophy esti-

mates, and a similar linear regression analysis to model brain-cognition changes as in our

study. Gender differences in rate of LVV expansion reported in previous studies have indi-

cated a slower expansion in females than males [36, 37]. Results from our explorative data

analysis suggested that the rate of expansion is age-related. The slope of the LVV trajectories

were lower in females than males in the younger age groups but shifted to a higher value in

females in the oldest age groups. The lack of consistent results across studies may thus be

related to age differences in the samples. For example, the slower progression of volume

expansion in females than males reported by Chung et al. [36] and Hasan and collaborators

[37] were based on data from a younger sample than in the present study (i.e. subjects in their

40s and between 18 and 59 years, respectively).

The importance of including participants with age> 65 years was illustrated by the

extended confusion matrix being computed in our study. This matrix showed that all but one

fast performer who were> 65 at baseline were correctly classified. We may speculate if

these fast performers of age> 65, with relatively small LVVs (about 1/3 of LVV for those

with slow RI performance), represent what Rogalski and collaborators referred to as “supera-

gers” [8], and that their LVV trajectories can serve (or contribute) as predictors of preserved

brain function into old age—at least in females. Future longitudinal studies including a larger

sample size, a longer follow-up period and wider age span, are therefore indeed warranted.

We will also emphasize the results obtained from the slow RI performers. Our measures

of LVV trajectories correctly classified eight of twelve (67%) slow performers aged> 65 years.

If we assume that their slow performance on the RI test reflects a preclinical sign of a Mild

Cognitive Impairment (MCI), the results would have important clinical implications. Previous

studies have shown that more than 50% of MCI patients are expected to progress and convert

to dementia within five years (e.g. [47]). Although speculative, our methods and results may be
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relevant to efforts in obtaining better and more accurate diagnostic and monitoring tools for

brain health in older adults: individual change in the rate of ventricular expansion such as

LVVs could act as a sensitive measure of an early stage of a neurodegenerative disease [48].

The somewhat low number of participants (N = 74) make us unable to state firm and gen-

eral conclusions. A larger sample could improve our classifications scheme by incorporating

the LME-model estimation within the cross-validation loop, and by this further reduce the risk

of “data leakage” (i.e. the training set and the test set sharing information). The value of includ-

ing of a larger number and diverse set of predictors have been well demonstrated in studies

based on theoretical models considering brain maintenance and cognitive reserves (e.g.,[4, 6].

These models emphasize the importance of life-events [4, 49], a richer set of imaging informa-

tion using multimodal MRI [12, 50] and PET [51, 52]. Together, this provides strong argu-

ments for sharing data (and code) across research groups [53] and use of predictive models

and methods within modern machine learning frameworks [50].

4.1 Conclusion

We showed that a set of four LME-derived measures of LVV trajectories across three study

waves gave a fairly good prediction of RI performance, confirming the role of lateral ventricle

volumes as an imaging-based biomarker of cognitive function in older adults. Our major

contributions are the application of (i) a three wave longitudinal design, (ii) advanced brain

imaging and segmentation procedures with longitudinal data analysis, and (iii) a data driven

machine learning approach including cross-validation and permutation testing to predict RI

performance solely from the individual’s brain “signatures” (LVV trajectories). Future studies

should further investigate this avenue regarding brain-behavior relationships in older age.
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39. Lundervold AJ, Wollschläger D, Wehling E. Age- and sex-related changes in episodic memory function

in middle-aged and older individuals. Scandinavian Journal of Psychology. 2014 Jun; 55, 225–232.

40. Dale AM, Fischl B, Sereno MI. Cortical Surface-Based Analysis I: Segmentation and Surface Recon-

struction. NeuroImage. 1999 9(2):179–194. https://doi.org/10.1006/nimg.1998.0395 PMID: 9931268

Lateral ventricle volume trajectories and response inhibition

PLOS ONE | https://doi.org/10.1371/journal.pone.0207967 April 2, 2019 18 / 19

https://doi.org/10.1016/j.neuron.2004.09.006
http://www.ncbi.nlm.nih.gov/pubmed/15450170
https://doi.org/10.1016/j.neurobiolaging.2011.06.005
https://doi.org/10.1016/j.neurobiolaging.2011.06.005
https://doi.org/10.1016/j.cortex.2016.04.023
http://www.ncbi.nlm.nih.gov/pubmed/27251123
https://doi.org/10.1007/s004269900007
http://www.ncbi.nlm.nih.gov/pubmed/11004882
https://doi.org/10.1017/S1355617716000898
https://doi.org/10.1037/0096-3445.132.4.566
https://doi.org/10.1016/j.neuroimage.2016.10.016
https://doi.org/10.1016/j.neuroimage.2016.10.016
http://www.ncbi.nlm.nih.gov/pubmed/27742600
https://doi.org/10.1002/jmri.20665
http://www.ncbi.nlm.nih.gov/pubmed/16878302
https://doi.org/10.1001/archneur.60.7.989
http://www.ncbi.nlm.nih.gov/pubmed/12873856
https://doi.org/10.1097/WAD.0b013e318032d2b1
https://doi.org/10.1097/WAD.0b013e318032d2b1
http://www.ncbi.nlm.nih.gov/pubmed/17334268
https://doi.org/10.1016/j.neurobiolaging.2006.01.006
http://www.ncbi.nlm.nih.gov/pubmed/16504345
https://doi.org/10.1016/j.neurobiolaging.2014.03.044
http://www.ncbi.nlm.nih.gov/pubmed/25311280
https://doi.org/10.3389/fnagi.2017.00445
http://www.ncbi.nlm.nih.gov/pubmed/29379433
https://doi.org/10.1037/neu0000082
http://www.ncbi.nlm.nih.gov/pubmed/24819063
https://doi.org/10.1016/j.neulet.2005.10.066
https://doi.org/10.1016/j.neulet.2005.10.066
http://www.ncbi.nlm.nih.gov/pubmed/16300889
https://doi.org/10.1016/j.mri.2014.01.014
https://doi.org/10.1016/j.mri.2014.01.014
http://www.ncbi.nlm.nih.gov/pubmed/24582546
https://doi.org/10.1017/thg.2012.8
http://www.ncbi.nlm.nih.gov/pubmed/22856377
https://doi.org/10.1006/nimg.1998.0395
http://www.ncbi.nlm.nih.gov/pubmed/9931268
https://doi.org/10.1371/journal.pone.0207967


41. Wechsler D. Wechsler Abbreviated Scale of intelligence. WASI. Manual. The Psychological Corpora-

tion; 1999.

42. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive

state of patients for the clinician. Journal of Psychiatric Research. 1975 Nov; 12(3):189–198. https://doi.

org/10.1016/0022-3956(75)90026-6 PMID: 1202204

43. Beck A. T., Steer R. A., Brown G. K. Beck Depression Inventory (2nd ed.). San Antonio, TX: Psycho-

logical Corporation; 1987.

44. Reuter M., Schmansky N.J., Rosas H.D., Fischl B. Within-Subject Template Estimation for Unbiased

Longitudinal Image Analysis. Neuroimage 2012 Jul 16; 61(4):1402–18. https://doi.org/10.1016/j.

neuroimage.2012.02.084 PMID: 22430496

45. Reuter M., Rosas H.D., Fischl B. Highly Accurate Inverse Consistent Registration: A Robust Approach.

Neuroimage. 2010 Dec; 53(4):1181–96. https://doi.org/10.1016/j.neuroimage.2010.07.020 PMID:

20637289

46. Trimarchi F, Bramanti P, Marino S, Milardi D, Di Mauro D, Ielitro G, Valenti B, Vaccarino G, Milazzo C,

Cutroneo G. MRI 3D lateral cerebral ventricles in living humans: morphological and morphometrical

age-, gender-related preliminary study. Anatomical Science International. 2013 88:61–69. https://doi.

org/10.1007/s12565-012-0162-x PMID: 23179909

47. Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, et al. Mild cognitive impairment.

Lancet (London, England). 2006 Apr; 367:1262–1270. https://doi.org/10.1016/S0140-6736(06)68542-5

48. Jack CR, Shiung MM, Gunter JL, O’Brien PC, Weigand SD, Knopman DS, et al. Comparison of different

MRI brain atrophy rate measures with clinical disease progression in AD. Neurology. 2004 Feb;

62:591–600. https://doi.org/10.1212/01.WNL.0000110315.26026.EF PMID: 14981176

49. Stern Y, Gazes Y, Razlighi Q, Steffener J, Habeck C. A task-invariant cognitive reserve network. Neuro-

Image. 2018 Sep; 178:36–45. https://doi.org/10.1016/j.neuroimage.2018.05.033 PMID: 29772378

50. Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimag-

ing: Promises and pitfalls. NeuroImage. 2017 Jan 15; 145(Pt B):137–165. https://doi.org/10.1016/j.

neuroimage.2016.02.079 PMID: 27012503

51. Nyberg L, Karalija N, Salami A, et al. Dopamine D2 receptor availability is linked to hippocampal-cau-

date functional connectivity and episodic memory. Proceedings of the National Academy of Sciences of

the United States of America. 2016; 113(28):7918–23. https://doi.org/10.1073/pnas.1606309113

PMID: 27339132

52. Nevalainen N, Riklund K, Andersson M, et al. COBRA: A prospective multimodal imaging study of dopa-

mine, brain structure and function, and cognition. Brain Research. 2015; 1612:83–103. https://doi.org/

10.1016/j.brainres.2014.09.010 PMID: 25239478

53. Calhoun VD, Sui J. Multimodal Fusion of Brain Imaging Data: A Key to Finding the Missing Link(s) in

Complex Mental Illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2016 May;

1(3):230–244.

Lateral ventricle volume trajectories and response inhibition

PLOS ONE | https://doi.org/10.1371/journal.pone.0207967 April 2, 2019 19 / 19

https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1016/0022-3956(75)90026-6
http://www.ncbi.nlm.nih.gov/pubmed/1202204
https://doi.org/10.1016/j.neuroimage.2012.02.084
https://doi.org/10.1016/j.neuroimage.2012.02.084
http://www.ncbi.nlm.nih.gov/pubmed/22430496
https://doi.org/10.1016/j.neuroimage.2010.07.020
http://www.ncbi.nlm.nih.gov/pubmed/20637289
https://doi.org/10.1007/s12565-012-0162-x
https://doi.org/10.1007/s12565-012-0162-x
http://www.ncbi.nlm.nih.gov/pubmed/23179909
https://doi.org/10.1016/S0140-6736(06)68542-5
https://doi.org/10.1212/01.WNL.0000110315.26026.EF
http://www.ncbi.nlm.nih.gov/pubmed/14981176
https://doi.org/10.1016/j.neuroimage.2018.05.033
http://www.ncbi.nlm.nih.gov/pubmed/29772378
https://doi.org/10.1016/j.neuroimage.2016.02.079
https://doi.org/10.1016/j.neuroimage.2016.02.079
http://www.ncbi.nlm.nih.gov/pubmed/27012503
https://doi.org/10.1073/pnas.1606309113
http://www.ncbi.nlm.nih.gov/pubmed/27339132
https://doi.org/10.1016/j.brainres.2014.09.010
https://doi.org/10.1016/j.brainres.2014.09.010
http://www.ncbi.nlm.nih.gov/pubmed/25239478
https://doi.org/10.1371/journal.pone.0207967

