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Abstract

The development of high-throughput sequencing technologies for 16S rRNA gene profiling

provides higher quality compositional data for microbe communities. Inferring the direct

interaction network under a specific condition and understanding how the network structure

changes between two different environmental or genetic conditions are two important topics

in biological studies. However, the compositional nature and high dimensionality of the data

are challenging in the context of network and differential network recovery. To address this

problem in the present paper, we proposed two new loss functions to incorporate the data

transformations developed for compositional data analysis into D-trace loss for network and

differential network estimation, respectively. The sparse matrix estimators are defined as

the minimizer of the corresponding lasso penalized loss. Our method is characterized by its

straightforward application based on the ADMM algorithm for numerical solution. Simula-

tions show that the proposed method outperforms other state-of-the-art methods in network

and differential network inference under different scenarios. Finally, as an illustration, our

method is applied to a mouse skin microbiome data.

1 Introduction

Microbes play critical roles in Earth’s biogeochemical cycles [1] and impact the health of

humans significantly [2]. Understanding interactions among microbes under a specific condi-

tion is a key research topic in microbial ecology [3]. Bandyopadhyay et al. [4] also showed that

these interactions can change under various environmental or genetic conditions. With the

development of high-throughout sequencing technology, 16s rRNA gene sequences can be

amplified, sequenced, and grouped into common Operational Taxonomic Units (OTUs), and

as a result, microbial abundance information can be obtained for further exploration [5]. One

of the major challenges is to discover associations among microbes and how these associations

change under different conditions, which could in turn help us to unravel the underlying

interaction network and offer an insight into community-wide dynamics.
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Correlation analysis is commonly used to infer the interaction network for absolute abun-

dance data. However, applying traditional correlation analysis to compositional data, as only

representative of relative abundances of microbial species, may yield spurious results [6, 7].

Recent methods, such as SparCC [7], CCREPE [8, 9], REBACCA [10] and CCLasso [11], have

been proposed to address compositional bias and infer the correlation network of microbe

communities. However, pairwise correlations contain both direct and indirect interactions,

and correlations may arise when microbes are connected indirectly [12]. Thus, the conditional

dependence network describing direct interactions is often more intrinsic and fundamental

[13, 14].

For absolute abundance, conditional dependence networks are frequently modeled as

Gaussian graphical models where direct interactions are correspond to the support of preci-

sion matrix [15, 16]. Meinshausen and Bühlmann [17] proposed a neighborhood selection

approach to recover the precision matrix row-by-row by fitting a lasso penalized least square

regression model [18]. Yuan and Lin [19] derived the likelihood for Gaussian graphical models

and suggested using the maxdet algorithm to compute the corresponding lasso penalized esti-

mator. Friedman et al. [20] developed a more efficient algorithm called the graphical lasso.

Zhang and Zou [21] proposed a new loss function called D-trace loss and introduced a sparse

precision matrix estimator as the minimizer of lasso penalized D-trace loss. Several methods

have been proposed to infer the direct interaction network from compositional data. Biswas

et al. [22] suggested learning the direct interactions from compositional data with a Poisson-

multivariate normal hierarchical model called MInt. Kurtz et al. [12] proposed a method called

SPIEC-EASI, which combines centered log-ratio (clr) transformation [6, 23] for compositional

data with the neighborhood selection approach [17] or graphical lasso [20] to estimate the pre-

cision matrix. Similar to the idea of Yuan and Lin [19], Fang et al. [14] first derived likelihood

with compositional data for Gaussian graphical models and then estimated the precision

matrix with a lasso penalized maximum likelihood method called gCoda. Yuan et al. [24]

introduced a compositional D-trace loss (CD-trace) based on D-trace loss to estimate the pre-

cision matrix. In this paper, we proposed a new loss function called CDTr, with more concise

form than CD-trace, to incorporate clr transformation [6, 23] into D-trace loss [21] to estimate

the precision matrix from compositional data.

Biological networks often vary according to different environmental or genetic conditions

[4]. Understanding how networks change and estimating differential networks are important

tasks in biological studies. In recent years, researchers have actively sought methods of estimat-

ing differential networks for absolute abundance data. Chiquet et al. [25], Guo et al. [26] and

Danaher et al. [27] estimated the precision matrices and their differences jointly by penalizing

the joint log-likelihood with different penalties. Zhao et al. [28] developed a ℓ1-minimization

method for direct estimation of differential networks, which does not require sparsity of preci-

sion matrices or their separate estimation. Yuan et al. [29] proposed a new loss function called

DTL based on D-trace loss [21] to estimate the precision matrix difference directly. In this

paper, we also extended our method to incorporate clr transformation [6, 23] into DTL [29] to

estimate the differential network from compositional data.

The remainder of the paper is organized as follows. In Section 2, we introduce our new loss

functions to incorporate clr transformations for compositional data analysis into D-trace loss,

thereby enabling us to estimate both direct interaction network and differential direct interac-

tion networks from compositional data, respectively. In Section 3, the performance of our

method was evaluated and compared with other state-of-the-art methods under various simu-

lation scenarios. In Section 4, the proposed methods are illustrated with an application to a

mouse skin microbiome data.

Network inference from compositional data via lasso penalized D-trace loss
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2 Materials and methods

2.1 Compositional data and clr transformation

We begin with some notations and definitions for convenience. For a p × p matrix

X ¼ ðXijÞ 2 Rp�p, its transposition, trace and determinant are denoted as XT, tr(X) and det X,

respectively. Let kXkF ¼ ð
P

i;jX
2
ijÞ

1=2
, kXk1 = maxi ∑j |Xij|, kXk1 = maxj ∑i|Xij|, |X|1 = ∑i,j |Xij|,

and |X|1,off = ∑i6¼j |Xij| be the Frobenius norm,1-norm, 1-norm, ℓ1-norm and off-diagonal ℓ1-

norm of X. Denote by vec(X) the p2-vector from stacking the columns of X, and X� 0 means

that X is positive definite. For two matrices X;Y 2 Rp�p
, let X� Y be the Kronecker product

of X and Y. We use hX, Yi to denote tr(XYT) throughout this paper.

Suppose that there are p microbe species and that their absolute abundances are z = (z1,

z2, . . ., zp) respectively. However, instead of absolute abundances, it is often the case that only

the relative abundances (or closed compositions) x = (x1, x2, . . ., xp), where

xj ¼
zj

Pp
k¼1

zk
; j ¼ 1; 2; . . . ; p; ð1Þ

can be observed in real experiments. If the log-transformed absolute abundances ln z follow a

multivariate Gaussian distribution with mean μ and nonsingular covariance matrix S, the pre-

cision matrix Θ = S−1 depicts the direct interaction network among microbial species since ln

zi and ln zj are conditionally independent given other components of z if and only if Θij = 0

[13]. Moreover, we can describe this direct interaction network with an undirected graph if we

represent the p microbe species with p vertices and connect the conditionally dependent spe-

cies pairs.

Log-ratios ln xi
xj

� �
[6, 23] are commonly used in compositional data analysis, since ratios are

preserved when the absolute abundances are expressed as relative abundances [12]. Aitchison

[6, 23] also proposed a statistically equivalent centered log-ratio (clr) transformation. The cen-

tering matrix is G ¼ I � 1

p 1p1
T
p , where 1p is a p-dimensional all-ones vector and I is identity

matrix. Applying the clr transformation and using ln x = ln z − 1p ln s and G1p = 0p, it follows

that

G ln x ¼ G ln z: ð2Þ

Denoted by Sln x the covariance matrix of the log-transformed relative abundances, we have

GSln xG ¼ GSG: ð3Þ

Similarly, Eqs (2) and (3) establish a bridge between the observed relative abundances and the

unobserved absolute abundances. SPIEC-EASI [12] assumes that GSln xG serves as a good

approximation of S since G − I� 0 when p� 0, and apply the neighborhood selection

approach [17] or graphical lasso [20] to the clr-transformed relative abundances for precision

matrix estimation.

2.2 CDTr: Compositional network analysis with D-trace loss

From the empirical loss minimization perspective, SPIEC-EASI is not the most natural and

concise because of the approximation and the log-determinant term in graphical lasso [20]. In

this section, we introduce an innovative loss function to estimate the direct interaction net-

work from compositional data with D-trace loss. The new D-trace loss for compositional data

Network inference from compositional data via lasso penalized D-trace loss
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(CDTr loss) is proposed as

LCDðY;SÞ ¼
1

2
hY

2
;GSGi � hY;Gi ¼

1

2
hY

2
;GSln xGi � hY;Gi: ð4Þ

We can view the CDTr loss as an analogue of the D-trace [21] loss LDðY;SÞ ¼ 1

2
hY

2
;Si

� hY; Ii. The meaning of incorporating clr transformation into the original D-trace loss is to

avoid the unobserved absolute abundance and account for the compositionality. If we know

the absolute abundance data, we can simply substitute the finite sample estimator of S

(denoted by Ŝ) into D-trace loss and estimate the precision matrix Θ with the corresponding

lasso penalized estimator. However, for relative abundances or compositional data, only the

finite sample estimator of Sln x (denoted by Ŝ ln x) is available, instead of the finite sample esti-

mator of S. Thanks to the clr transformation and the bridge Eq (3), we can estimate GSG with

GŜ ln xG, even though Ŝ is not available.

It is easy to check that CDTr loss can be written as

LCDðY;SÞ ¼
1

2
kS1=2GY � S� 1=2Gk2

F �
1

2
hS� 1;Gi: ð5Þ

To ensure that S−1 minimizes LCD, namely S1/2GΘ − S−1/2G = 0 when Θ = S−1, we need the

following exchangeable condition:

GY ¼ YG, GS ¼ SG, 1D1T
DS ¼ S1D1T

D: ð6Þ

Denote by σij and ρij the covariance and correlation between ln zi and ln zj, respectively. Then,

the exchangeable condition is equivalent to ∑l σil = ∑l σjl for all i, j = 1, 2, . . ., p, which is similar

to the assumption ∑l6¼i σil = 0, i = 1, 2, . . ., p in SparCC [7]. If the variances σii, i = 1, 2, . . ., p
are all the same, then the exchangeable condition simplifies to ∑l6¼i ρil, i = 1, 2, . . ., p are all the

same, which implies that the average correlation with other species is nearly the same for each

specie. Analogously, the assumption in SparCC simplifies to ∑l6¼i ρil = 0, i = 1, 2, . . ., p, which

implies that the average correlations are very small. In the numerical experiments of section 3,

we show that CDTr still performs well, even when the exchangeable condition does not hold.

In practical applications, we use the empirical version of CDTr loss as

LCDðY; Ŝ ln xÞ ¼
1

2
hY

2
;GŜ ln xGi � hY;Gi: ð7Þ

Since most species do not interact directly when the number of species p is large, we further

assume that the direct interaction network, or Θ, is sparse, which also helps to solve the under-

determined problem caused by compositionality and dimensionality [11, 14, 19]. We employ

the commonly used ℓ1 penalty [18, 19, 21] to handle the sparse assumption, and our sparse

estimator of the precision matrix Θ is proposed as

ŶCDTr ¼ argmin
Y�0;Y¼YT

1

2
hY

2
;GŜ ln xGi � hY;Gi þ ljYj1;off ; ð8Þ

where λ� 0 is the tuning parameter for the tradeoff between the model fitting and the sparsity

of ŶD. Following the idea of Zhao et al. [28], the tuning parameter is selected by minimizing

the Bayesian Information Criterion (BIC) [30] as

BIC ¼ nkðGŜ ln xGYþYGŜ ln xGÞ=2 � Gk
1
þ logðnÞjYj

0
; ð9Þ

Network inference from compositional data via lasso penalized D-trace loss
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where |Θ|0 is the number of non-zero elements in the upper-triangle of Θ, and n is the sample

size.

Zhang and Zou [21] developed an efficient algorithm based on alternating direction meth-

ods [31] for the solution of penalized D-trace loss estimator. We can simply replace Ŝ and I
in D-trace loss with GŜ ln xG and G in our CDTr loss and use the algorithm of Zhang and Zou

[21] for the numerical solution of (8). Following the idea of Zhang and Zhou [21] and Schein-

berg et al. [31], we introduce two new matrices, Θ0 and Θ1. The augmented Lagrangian func-

tion of (8) are considered, and Λ0, Λ1, ρ are Lagrangian multipliers. The steps of the ADMM

algorithm for the lasso penalized CDTr loss estimator are summaried as follows.

(a). Initialization: k = 0, Y
0

0
;Y

0

1
;L

0

0
and L

0

1
;

(b). Y
kþ1
¼ HðGŜ ln xGþ 2rG;Gþ rYk

0
þ rY

k
1
� L

k
0
� L

k
1
Þ;

(c). Y
kþ1

0
¼ SðYkþ1

þ L
k
0
=r; l=rÞ and Y

kþ1

1
¼ ½Y

kþ1
þ L

k
1
=r�

þ
;

(d). L
kþ1

0
¼ L

k
0
þ rðY

kþ1
� Y

kþ1

0
Þ and L

kþ1

1
¼ L

k
1
þ rðY

kþ1
� Y

kþ1

1
Þ;

(e). k = k+1;

(f). Repeat (b)-(e) until convergence.

The definitions of matrix operators H(X), S(X) and [X]+ are listed in S1 Appendix. Com-

pared with CD-trace loss [24] which is also based on D-trace loss and has three terms, our

CDTr is more concise with only two terms. The simpler structure of CDTr makes the applica-

tion of ADMM algorithm straightforward, while a symmetrization step and more auxiliary

matrices are needed before applying ADMM algorithm in CD-trace.

2.3 DCDTr: Differential compositional network analysis with D-trace loss

Consider that the absolute abundances of p microbe species become z� ¼ ðz�
1
; z�

2
; . . . ; z�pÞ

under another condition and that the relative abundances are x� ¼ ðx�
1
; x�

2
; . . . ; x�pÞ, respec-

tively. Similarly, we assume ln z� � N ðμ�;S�Þ. Thus, we want to estimate the difference

between direct interaction networks under different conditions, i.e., the resultant differential

network Δ = S�−1 − S−1.

A straightforward approach to estimate Δ is to estimate S−1 and S�−1 separately and then

subtract the estimates under the key assumption that both precision matrices are sparse. How-

ever, a more reasonable assumption is that the difference between the precision matrices are

sparse, not that both matrices are sparse, since direct interactions may not be sparse while the

changes under different conditions are often sparse [29]. Therefore, we proposed a new loss

function for differential network estimation with compositional data (DCDTr loss) to estimate

Δ directly, under the assumption that the differential network Δ is sparse. The DCDTr loss is

proposed as

LDCDTrðD;S;S�Þ ¼
1

4
ðhGSGD;DGS�Gi þ hGS�GD;DGSGiÞ þ hD;GðS� � SÞGi

¼
1

4
ðhGSln xGD;DGSln x�Gi þ hGSln x�GD;DGSln xGiÞ þ hD;GðSln x� � Sln xÞGi:

ð10Þ

Similarly, our DCDTr loss can be regarded as an analogue to the DTL loss LDTLðD;S;S�Þ ¼
1

4
ðhSD;DS�i þ hS�D;DSiÞ þ hD;S� � Si, which is proposed by Yuan et al. [29] to estimate

the differential network Δ when the absolute abundances are known. Again, our DCDTr loss

Network inference from compositional data via lasso penalized D-trace loss

PLOS ONE | https://doi.org/10.1371/journal.pone.0207731 July 24, 2019 5 / 17

https://doi.org/10.1371/journal.pone.0207731


takes the advantage of the bridge Eq (3) to avoid the unobserved absolute abundance and

account for the compositionality. From another perspective, we can arrive at our DCDTr loss

(10) by substituting the approximation S� GSln x G, S� � GSln x� G into DTL loss. In the

numerical experiments of section 3, we also investigated the performance of procedures which

combine the approximation S� GSln x G, S� � GSln x� G with other methods for differential

network estimation, including the ℓ1-minimization method [28] for direct estimation of differ-

ential networks and joint graphical lasso (FGL, GGL) [27] for joint estimation of precision

matrices. The detailed formulas are left in S1 Appendix.

Under the exchangeable condition GS = SG and GS� = S�G, it is easy to check that

LDCDTrðD;S;S�Þ ¼
1

4
kðGSGÞ1=2

ðD � ðS�� 1 � S� 1ÞÞðGSGÞ�1=2
k

2

Fþ

1

4
kðGSGÞ�1=2

ðD � ðS�� 1 � S� 1ÞÞðGSGÞ1=2
k

2

Fþ

1

2
hGðS� � SÞ; ðS�� 1 � S� 1ÞGi:

ð11Þ

Obviously, Δ = S�−1 − S−1 is a minimizer of our DCDTr loss LDCDTr. In practical applications,

we incorporate the finite sample estimators of S, S� and ℓ1 penalty into DCDTr loss, and our

sparse estimator for the differential network Δ is proposed as

D̂DCDTr ¼ argmin
D¼DT

1

4
ðhGŜ ln xGD;DGŜ ln x�Giþ

hGŜ ln x�GD;DGŜ ln xGiÞ þ hD;GðŜ ln x� � Ŝ ln xÞGi þ ljDj1:

ð12Þ

The tuning parameter λ is selected by minimizing the Bayesian Information Criterion (BIC)

[28–30] as

BIC ¼ ðnþ n�Þk
1

2
ðGŜ ln x�GDGŜ ln xGþ GŜ ln xGDGŜ ln x�GÞþ

GðŜ ln x� � Ŝ ln xÞGk1 þ logðnþ n�ÞjDj0;

ð13Þ

where |Δ|0 is the number of non-zero elements in the upper-triangle of Δ, and n and n� are the

sample size.

Taking advantage of the algorithm developed by Yuan et al. [29] for the numerical solution

of lasso penalized DTL loss estimator, the algorithm for the numerical solution of (12) is

straightforward, essentially because we can simply replace Ŝ and Ŝ� in DTL loss with GŜ ln xG
and GŜ ln x�G in our DCDTr loss. Following the idea of Yuan et al. [29], we introduce three

new matrices Δ1,2,3 and Lagrangian multipliers Λ1,2,3, ρ for the solution of (12). The steps of

the ADMM algorithm for the lasso penalized DCDTr loss estimator are presented as follows.

(a). Initialization: k = 0, D
0

1
;D

0

2
;D

0

3
;L

0

1
;L

0

1
and L

0

3
;

(b). D
kþ1

1
¼ KðGŜ ln xG;GŜ ln x�G; 2rD

k
3
þ 2rD

k
2
þ GðŜ ln x � Ŝ ln x� ÞGþ 2L

k
1
� 2L

k
3
; 4rÞ;

(c). D
kþ1

2
¼ KðGŜ ln x�G;GŜ ln xG; 2rD

k
3
þ 2rD

k
1
þ GðŜ ln x � Ŝ ln x� ÞGþ 2L

k
3
� 2L

k
2
; 4rÞ;

(d). D
kþ1

3
¼ S 1

2r
ðrD

kþ1

1
þ rD

kþ1

2
� L

k
1
þ L

k
2
Þ; l

2r

� �
;
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(e). L
kþ1

1
¼ L

k
1
þ rðD

kþ1

3
� D

kþ1

1
Þ, L

kþ1

2
¼ L

k
2
þ rðD

kþ1

2
� D

kþ1

3
Þ and

L
kþ1

3
¼ L

k
3
þ rðD

kþ1

1
� D

kþ1

2
Þ;

(f). k = k+1;

(g). Repeat (b)-(f) until convergence.

The definitions of matrix operators K(X) and S(X) are listed in S1 Appendix.

3 Numerical results

In this section, we conduct several numerical experiments under different settings and com-

pare them with other state-of-the-art methods. Given mean μp and precision matrix Θ, we

first generate the log-transformed absolute abundance ln zi = (ln zi1, ln zi2, . . ., ln zip) with

the multivariate normal distribution N pðμp;Y
� 1
Þ, and then the relative abundances are

xi ¼ ð
zi1Pp

k¼1
zik
;

zi2Pp

k¼1
zik
; . . . ;

zipPp

k¼1
zik
Þ, i = 1, 2, . . ., n. For another given mean μ�p and precision

matrix Θ� under a new condition, the samples x�i , i = 1, 2, . . ., n are similarly generated.

In the following simulations, we take p = 50 and μp sampled from the uniform distribution

Upð� 0:5; 0:5Þ.

3.1 Simulations for CDTr loss

To investigate the performance of CDTr loss and the influence of the exchangeable condition,

we considered the following network structures for Θ.

1. Band graph:

yij ¼

1; ji � jj ¼ 1 or p � 1

� 1; ji � jj ¼ 2 or p � 2

0; otherwise:

8
>>><

>>>:

2. Cluster graph: Divide p nodes into 5 clusters evenly. The nodes in different clusters are not

connected, while the network for each cluster is the same as matrix C = (cij)10×10, where

cij ¼

1; 1 � ji � jj � 5

� 1; 6 � ji � jj � 10

0; otherwise:

8
>>><

>>>:

The link strength is uniformly distributed in [l, u]. To be specific, θij is replaced with θijsij,
where sij � Uðl; uÞ. We take (l, u) = (0.1, 0.1), (0.05, 0.15) and (0.0.2) separately to study the

performance of CDTr loss when the exchangeable condition is satisfied by different degrees.

These scenarios are named as Band-exact (Band-e), Band-approx1 (Band-a1), Band-approx2

(Band-a2) and Cluster-exact (Cluster-e), Cluster-approx1 (Cluster-a1), Cluster-approx2 (Clus-

ter-a2), respectively. To obtain a positive definite precision matrix Θ, we first compute the

smallest eigenvalue of Θ (denoted by e); then the diagonal elements of Θ are set as |e| + 0.3.

The deviation to the exchangeable condition is measured with dev = kGS − SGkF. The devia-

tions under the aforementioned six scenarios are listed in Table 1. For each combination of the

six network structures and four sample sizes n = 50, 100, 150, 200, a total of 100 datasets are

generated and used to recover the network structure. Four state-of-the-art methods for

Network inference from compositional data via lasso penalized D-trace loss
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network recovery are investigated, including gCoda [14], CD-trace [24], SPIEC(MB) and

SPIEC(GL) [12]. We further consider an approximation method called aCDTr, which approxi-

mates S with GSln x G [12] and employs D-trace loss to estimate Θ = S−1. Specifically, the esti-

mator of aCDTr is

ŶaCDTr ¼ argmin
Y�0;Y¼YT

1

2
hY

2
;GŜ ln xGi � hY; Ii þ ljYj1;off : ð14Þ

The true positive rate and true negative rate are evaluated at different tuning parameters and

used to generate the receiver operating characteristic (ROC) curve. We use the area under the

curve (AUC) to quantify the ability to recover the true underlying network.

In Table 2, we present the mean AUC scores of the above-mentioned methods under differ-

ent settings. The mean AUC scores of CDTr and aCDTr are superior to the other four meth-

ods in all cases, even when the exchangeable condition does not hold exactly, which implies

Table 1. Deviations from the exchangeable condition under different scenarios.

Network Band-e Band-a1 Band-a2 Cluster-e Cluster-a1 Cluster-a2

dev 0 0.203 0.348 0 0.109 0.205

https://doi.org/10.1371/journal.pone.0207731.t001

Table 2. The mean AUC scores of different methods under different settings.

n Method Network Structure

Band-e Band-a1 Band-a2 Cluster-e Cluster-a1 Cluster-a2

50 SPIEC(MB) 0.662 0.662 0.663 0.641 0.628 0.617

SPIEC(GL) 0.694 0.695 0.690 0.696 0.677 0.660

gCoda 0.689 0.688 0.683 0.679 0.660 0.645

CD-trace 0.691 0.690 0.685 0.682 0.662 0.646

aCDTr 0.727 0.729 0.717 0.817 0.781 0.748

CDTr 0.732 0.733 0.720 0.816 0.780 0.746

100 SPIEC(MB) 0.765 0.760 0.742 0.722 0.705 0.688

SPIEC(GL) 0.809 0.801 0.776 0.793 0.769 0.743

gCoda 0.812 0.803 0.775 0.782 0.759 0.731

CD-trace 0.813 0.802 0.774 0.782 0.758 0.730

aCDTr 0.848 0.838 0.809 0.932 0.902 0.859

CDTr 0.857 0.846 0.816 0.933 0.902 0.859

150 SPIEC(MB) 0.821 0.811 0.786 0.768 0.753 0.729

SPIEC(GL) 0.870 0.857 0.822 0.845 0.823 0.791

gCoda 0.882 0.864 0.825 0.841 0.816 0.783

CD-trace 0.880 0.861 0.822 0.841 0.814 0.781

aCDTr 0.908 0.894 0.855 0.972 0.950 0.910

CDTr 0.919 0.904 0.864 0.973 0.951 0.911

200 SPIEC(MB) 0.858 0.848 0.814 0.799 0.781 0.757

SPIEC(GL) 0.909 0.894 0.851 0.877 0.856 0.823

gCoda 0.926 0.905 0.855 0.879 0.856 0.816

CD-trace 0.922 0.902 0.851 0.873 0.849 0.806

aCDTr 0.943 0.929 0.884 0.988 0.973 0.940

CDTr 0.955 0.940 0.893 0.989 0.975 0.942

https://doi.org/10.1371/journal.pone.0207731.t002
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that CDTr and aCDTr outperform other methods in direct interaction network recovery.

Moreover, the mean AUC of CDTr is slightly higher than that of aCDTr, except for the cluster

graph and sample size n = 50. With increasing deviation, the performance of CDTr and

aCDTr decreases, which is reasonable if the exchangeable condition does not exactly hold.

Interestingly, the performance for the other four methods also decreases with increasing devia-

tion. For all network structures and methods, the mean AUC scores increase as the sample size

increases.

We further conducted several experiments on the following six representative network

structures, without considering the exchangeable condition.

1. Random graph: Two nodes are connected with probability 0.1, and the strength is generated

from a uniform distribution in [−0.2, −0.1] [ [0.1, 0.2].

2. Band graph: Connect pair (i, j) with strength uniformly distributed in [0.05m − 0.3, 0.05m
− 0.25] [ [0.25 − 0.05m, 0.3 − 0.05m], if |i − j| = m, m = 1, 2, 3, 4.

3. Neighbor graph: Select p points from Uð0; 1Þ and connect the 5 nearest neighbors for each

point with strength sampled from a uniform distribution in [−0.15, −0.05] [ [0.05, 0.15].

4. Scale-free graph: A scale-free graph is produced, following the B-A algorithm [32]. The ini-

tial graph has two connected nodes, and each new node is connected to only one node in

the existing graph with the probability proportional to the degree of the each node in the

existing graph. This results in p edges in the graph, and the strength between connected

nodes is generated from a uniform distribution in [−0.2, −0.1] [ [0.1, 0.2].

5. Hub graph: Partition the nodes into 3 disjoint groups evenly and select a node as hub for

each group. The hubs are connected with the non-hubs in the same group with strength

uniformly distributed in [−0.2, −0.1] [ [0.1, 0.2].

6. Block graph: Divide p nodes into 5 blocks evenly. Connect pairs in the same block with

probability 0.3 and pairs in different blocks with probability 0.1. The strength between con-

nected nodes is uniformly distributed in [−0.2, −0.1] [ [0.2, 0.1].

Similarly, the diagonal elements of Θ are set as |e| + 0.3, where e is the smallest eigenvalue

of Θ. The deviations from the exchangeable condition of these networks are listed in Table 3.

We generated 100 datasets for each setting and used them to estimate the true precision

matrix. The mean AUC scores of different methods under different settings are shown in

Table 4. We can see that CDTr performs better than other methods in all cases, while the

results of aCDTr is comparable to those of gCoda and CD-trace, and the results of SPIEC(MB)

and SPIEC(GL) are worse than the others. Note that we did not consider the exchangeable

condition when we set up the networks, implying that CDTr still works, even when the the

exchangeable condition does not hold. Although the objective functions and performances of

CDTr and aCDTr are similar as shown in Tables 2 and 4, they are derived from two quite dif-

ferent perspectives. aCDTr is based on the approximation S� GSln x G and assumes that the

inverse of GSln x G also approximates the inverse of S. However, as Fang et al. [14] stated, this

approximation depends strongly on the condition number of the inverse covariance matrix.

CDTr does not need aforementioned approximation and can guarantee that the inverse of S

Table 3. Deviations from the exchangeable condition of six different network structures.

Network Random Hub Neighbor Block Band Scale-free

dev 0.722 0.932 0.937 0.61 0.949 0.449

https://doi.org/10.1371/journal.pone.0207731.t003
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minimizes CDTr loss exactly under the exchangeable condition. The meaning of CDTr is that

it avoids the use of approximation assumptions and provides a different perspective for preci-

sion matrix estimation.

3.2 Simulations for DCDTr loss

We investigate the performance of DCDTr loss with some experiments in this section. The

first precision matrix Θ is generated as follows:

1. Random graph: For Θ, two nodes are connected with probability 0.5, and the strength is

generated from a uniform distribution in [−0.4, −0.2] [ [0.2, 0.4].

2. Band graph: Connect pair (i, j) with strength uniformly distributed in [0.05m − 0.3, 0.05m
− 0.25] [ [0.25 − 0.05m, 0.3 − 0.05m], if |i − j| = m, m = 1, 2, 3, 4.

3. Neighbor graph: Select p points from Uð0; 1Þ and connect the 10 nearest neighbors for each

point with strength sampled from a uniform distribution in [−0.4, −0.2] [ [0.2, 0.4].

4. Scale-free graph: The scale-free graph is generated with the B-A algorithm [32]. The strength

between connected nodes is generated from a uniform distribution in [−0.4, −0.2] [ [0.2,

0.4].

Table 4. The mean AUC scores of different methods under different settings.

Network Structure

n Method Random Band Neighbor Scale-free Hub Block

50 SPIEC(MB) 0.630 0.615 0.599 0.671 0.647 0.613

SPIEC(GL) 0.652 0.637 0.616 0.697 0.690 0.635

gCoda 0.652 0.636 0.615 0.700 0.745 0.633

CD-trace 0.650 0.627 0.615 0.685 0.708 0.630

aCDTr 0.677 0.664 0.636 0.728 0.748 0.660

CDTr 0.681 0.670 0.641 0.729 0.757 0.664

100 SPIEC(MB) 0.728 0.687 0.674 0.785 0.767 0.693

SPIEC(GL) 0.758 0.712 0.697 0.809 0.812 0.723

gCoda 0.766 0.717 0.703 0.811 0.866 0.729

CD-trace 0.765 0.713 0.706 0.797 0.839 0.725

aCDTr 0.778 0.737 0.714 0.827 0.860 0.746

CDTr 0.786 0.745 0.726 0.831 0.872 0.754

150 SPIEC(MB) 0.782 0.731 0.713 0.845 0.834 0.746

SPIEC(GL) 0.816 0.758 0.742 0.870 0.877 0.783

gCoda 0.831 0.770 0.756 0.874 0.925 0.796

CD-trace 0.830 0.770 0.761 0.868 0.909 0.793

aCDTr 0.832 0.779 0.759 0.883 0.914 0.802

CDTr 0.844 0.790 0.773 0.889 0.926 0.814

200 SPIEC(MB) 0.820 0.761 0.745 0.884 0.880 0.780

SPIEC(GL) 0.856 0.791 0.778 0.909 0.921 0.820

gCoda 0.876 0.806 0.800 0.913 0.955 0.836

CD-trace 0.873 0.810 0.808 0.912 0.952 0.842

aCDTr 0.870 0.809 0.792 0.917 0.945 0.835

CDTr 0.883 0.821 0.811 0.923 0.955 0.849

https://doi.org/10.1371/journal.pone.0207731.t004
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5. Hub graph: Partition the nodes into 3 disjoint groups evenly and select a node as hub for

each group. The hubs are connected with the non-hubs in the same group with strength

uniformly distributed in [−0.4, −0.2] [ [0.2, 0.4].

6. Block graph: Divide p nodes into 5 blocks evenly. Connect pairs in the same block with

probability 0.5 and pairs in different blocks with probability 0.3. The strength between con-

nected nodes is uniformly distributed in [−0.4, −0.2] [ [0.4, 0.2].

Then 10% of the connected pairs in Θ will change to an unconnected state, while the same

number of unconnected pairs in Θ will change to a connected state, such that we get another

precision matrix Θ�. For scale-free and hub graph, the ratio of change is 40% based on the

sparsity of the two graphs. The diagonal elements of Θ and Θ� are set as |e| + 0.3, where e is the

smallest eigenvalue of Θ or Θ�, respectively. The deviations from the exchangeable condition

of Θ and Θ� are listed in Table 5. Therefor, the differential matrix Δ is Θ� − Θ. The two preci-

sion matrices Θ and Θ� are used to generate data separately. The aforementioned four meth-

ods, including DCDTr, FGL, GGL and ℓ1-M, are used to estimate the true differential matrix

Δ. Similarly, we evaluate the true positive rate and true negative rate at different tuning param-

eters and then compute the area under the ROC curve (AUC). We take the sample size

n = 100, 200, 300, 400 and repeat this procedure 100 times.

Table 6 presents the mean AUC scores of different methods under different settings. We

see that no method is generally better than the others in all cases. DCDTr performs better than

other methods in random graph, neighbor graph and block graph, while GGL achieves higher

AUC in scale-free and hub graph. With the increase of sample size, the advantage of DCDTr

Table 5. Deviations from the exchangeable condition of six different network structures.

Network Random Band Neighbor Scale-free Hub Block

dev 0.56 0.56 0.89 0.36 1.07 1.23

dev� 0.48 1.02 1.03 0.39 0.49 0.99

https://doi.org/10.1371/journal.pone.0207731.t005

Table 6. The mean AUC scores of different methods under different settings.

Network Structure

n Method Random Band Neighbor Scale-free Hub Block

100 ℓ1-M 0.588 0.735 0.673 0.771 0.799 0.610

FGL 0.566 0.760 0.680 0.830 0.848 0.578

GGL 0.545 0.768 0.679 0.845 0.862 0.556

DCDTr 0.596 0.732 0.677 0.769 0.789 0.619

200 ℓ1-M 0.662 0.834 0.790 0.890 0.902 0.701

FGL 0.616 0.837 0.763 0.923 0.922 0.636

GGL 0.566 0.840 0.752 0.930 0.930 0.591

DCDTr 0.673 0.831 0.792 0.890 0.899 0.711

300 ℓ1-M 0.712 0.877 0.851 0.937 0.943 0.765

FGL 0.654 0.865 0.808 0.952 0.950 0.682

GGL 0.585 0.864 0.782 0.954 0.952 0.616

DCDTr 0.721 0.875 0.855 0.938 0.944 0.774

400 ℓ1-M 0.754 0.911 0.894 0.963 0.964 0.813

FGL 0.683 0.890 0.838 0.966 0.963 0.718

GGL 0.595 0.882 0.803 0.965 0.962 0.635

DCDTr 0.765 0.911 0.897 0.963 0.965 0.822

https://doi.org/10.1371/journal.pone.0207731.t006
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becomes increasingly significant. Generally speaking, our proposed DCDTr performs well in

different network estimations.

4 Real data analysis

In this section, we illustrate our proposed method with an application to mouse skin micro-

biome data [33]. A total of 261 mice were divided into 3 groups: 78 non-immunized controls

(Control), 119 immunized healthy individuals (Healthy) and 64 immunized epidermolysis

bullosa acquisita individuals (EBA), according to the health conditions of skin immunizations.

The OTUs appearing in less than 50% of the samples are filtered out, and the samples with a

number of nonzero OTU counts less than 50% of the total selected OTUs are also removed.

We finally arrived at a dataset with p = 77 OTUs and n = 232 samples (63 Control, 114 Healthy

and 55 EBA). We use Bayesian-multiplicative replacement [34–36] to impute zero counts and

normalize the data to compositional data.

Since the the underlying true direct interaction networks were not available and the accu-

racy of estimated networks was unobtainable, we evaluated the performance of the proposed

methods with reproducibility as Fang et al. [14] and Kurtz et al. [12] suggusted. More specifi-

cally, we first constructed a reference network est1 (precision matrix or differential matrix)

with all data for each group and method. We then selected half of the samples randomly to

estimate the precision matrix or differential matrix (denoted by est2) again. The reproducibility

was measured by the fraction of overlapping edges shared by est1 and est2 in the reference net-

work est1.

For each group and each method of precision matrix estimation, the procedure stated

above was repeated 20 times. The mean reproducibility is summarized in Table 7. CDTr and

aCDTr outperformed the other four methods in terms of reproducibility in all three groups,

implying that CDTr and aCDTr are more stable and accurate in direct interaction estimation.

We also estimated the differential network for the Control-Healthy and Control-EBA groups,

and the evaluation procedure was also repeated 20 times. The mean reproducibility is listed in

Table 8. The highest reproducibility of DCDTr also implies that DCDTr is more stable and

accurate in differential network estimation.

Finally, we employed all methods to build a candidate microbiome association network

from the unified dataset for each group and group pairs. In Fig 1, we present the number of

shared edges for direct interaction networks recovered from various methods via Venn dia-

grams. We can see that the direct interaction network from CDTr is close to that of CD-trace,

while the network from SPIEC(GL) and SPIEC(MB) are more similar. A total of 21, 38 and 22

edges are shared by all candidate networks for control, healthy and EBA groups, respectively,

comprising the core interaction network among OTUs. Moreover, almost all direct interac-

tions discovered by CDTr are in this core interaction network, while SPIEC(GL), SPIEC(MB)

and gCoda discover some eccentric interactions. The number of shared edges for differential

networks are shown in Fig 2. The situation for differential networks is much more compli-

cated. ℓ1-M discovered many eccentric differential edges in both groups, but these were not

Table 7. The mean reproducibility for various methods and groups.

SPIEC(MB) SPIEC(GL) gCoda CD-trace aCDTr CDTr

Control 0.47 0.55 0.57 0.58 0.59 0.62

Healthy 0.55 0.62 0.59 0.80 0.83 0.84

EBA 0.47 0.60 0.55 0.74 0.97 0.96

https://doi.org/10.1371/journal.pone.0207731.t007
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Table 8. The mean reproducibility for various methods and groups.

ℓ1-M FGL GGL DCDTr

Control-Healthy 0.72 0.53 0.54 0.78

Control-EBA 0.84 0.63 0.64 0.87

https://doi.org/10.1371/journal.pone.0207731.t008

Fig 1. Venn diagrams of shared edges among direct interaction networks from various methods.

https://doi.org/10.1371/journal.pone.0207731.g001

Fig 2. Venn diagrams of shared edges among differential networks from various methods.

https://doi.org/10.1371/journal.pone.0207731.g002
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confirmed by other methods. The differential edges from GGL and FGL are almost the same

for both groups, and are more than the edges from DCDTr. Most differential edges from

DCDTr were verified by both GGL and FGL for both groups, implying that DCDTr is good at

inferring the crucial differential edges without mixing nonessential edges.

To investigate the influence of zeros in the compostional data, we first divide 77 variables

into 7 sets evenly according to the proportion of nonzero measurements in each variable, and

then calculate the percentage of nonzero measurements (named nonzero density) in each set.

The average degree of variables (i.e., nodes) in the same set is computed with each network

constructed by above-mentioned methods. The nonzero density and average degree for each

set are summarized in Tables 9 and 10 for Control, Healthy, EBA and Control-Healthy, Con-

trol-EBA group, respectively. For Control and EBA group, the average degree tends to be big-

ger with larger nonzero density for all methods. When the nonzero density is 20% in Set1 for

Control group and 49% in Set1 for EBA group, aCDTr and CDTr do not recover any connec-

tions with these rare abundance bacteria, which implies that the recovered connections are not

due to zero corrections. For Healthy, Control-Healthy and Control-EBA group with fewer

zeros in the data, the average degree does not show clear pattern and is more close to random

distribution, which implies that zero measurements do not influence network inference signif-

icantly when zeros in compositional data are relatively few.

Table 9. The nonzero density and average degree for each set and networks constructed by various methods in control, healthy and EBA group.

Control

Set1 Set2 Set3 Set4 Set5 Set6 Set7

Nonzero Density 20% 45% 56% 67% 79% 90% 99%

SPIEC(MB) 0.55 1.46 1.40 1.75 2.50 2.90 4.54

SPIEC(GL) 0.00 1.27 1.80 1.58 4.80 5.20 7.92

gCoda 0.18 1.67 1.20 0.92 4.80 3.00 3.78

CD-trace 0.00 0.09 0.30 0.33 1.40 0.80 2.00

aCDTr 0.00 0.27 0.60 0.42 3.40 2.50 3.62

CDTr 0.00 0.36 0.60 0.50 3.20 2.50 3.62

Healthy

Set1 Set2 Set3 Set4 Set5 Set6 Set7

Nonzero Density 62% 69% 78% 83% 88% 95% 99%

SPIEC(MB) 2.54 1.44 3.92 3.00 2.91 2.30 4.33

SPIEC(GL) 5.09 1.56 4.77 2.64 4.00 3.10 7.33

gCoda 7.27 2.78 6.85 4.64 2.82 2.50 4.58

CD-trace 2.00 0.33 1.85 1.09 1.09 0.90 3.00

aCDTr 2.00 0.22 1.77 0.91 1.09 0.90 3.50

CDTr 2.64 0.33 2.08 1.00 1.36 0.90 3.83

EBA

Set1 Set2 Set3 Set4 Set5 Set6 Set7

Nonzero Density 49% 60% 66% 73% 83% 89% 99%

SPIEC(MB) 0.78 2.30 1.56 1.81 2.00 3.10 4.17

SPIEC(GL) 0.67 3.10 2.33 2.12 2.46 4.40 5.58

gCoda 0.89 2.20 1.44 1.44 1.18 3.00 2.42

CD-trace 0.00 0.80 0.11 0.38 0.36 2.00 1.58

aCDTr 0.00 1.20 0.11 0.56 0.73 2.60 2.00

CDTr 0.00 1.20 0.11 0.56 0.73 2.60 2.00

https://doi.org/10.1371/journal.pone.0207731.t009
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5 Conclusion

Inferring the direct interactions among microbial species and understanding how the network

structure changes are important in the study of ecology and medicine. In this paper, we pro-

pose two loss functions to estimate the direct interaction network and differential network

from compositional microbial data based on clr transformation and D-trace loss for absolute

abundance data. Although the proposed CDTr loss and DCDTr loss are derived from an

exchangeable condition, we show that they still perform well and better than other methods

under different scenarios in our numerical simulations. However, the reasonableness of the

exchangeable condition should be further examined in theory and biology. Finally, the consis-

tency of the estimators does not come with a theoretical guarantee, which is a common limita-

tion of gCoda, SPIEC, CDTr and DCDTr. For future work, we are interested in developing

theorems about the consistency property in both direct interaction network and differential

network estimation.
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