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Abstract

This article aims to model the thermal behaviour of a wall using deep learning techniques.

The Fourier theoretical model which is traditionally used to model such enclosures is not

capable of considering several factors that affect a prediction that is often incorrect. These

results motivate us to try to obtain a better thermal model of the enclosure. For this reason,

a connexionist model is provided capable of modelling the behaviour of the enclosure from

actual observed temperature data. For the training of this model, several measurements

have been obtained over the course of more than one year in a specific enclosure, distribut-

ing the readings among the different layers of it. In this work, the predictions of both the

theoretical model and the connexionist model have been tested, contrasting them with the

measurements obtained previously. It has been observed that the connexionist model sub-

stantially improves the theoretical predictions of the Fourier method, thus allowing better

approximations to be made regarding the real energy consumption of the building and, in

general, the prediction of the energy behaviour of the enclosure.

1 Introduction

The thermal behaviour of the walls that make up the facades of buildings is undoubtedly one

of the most important research fields in the search for a reduction in annual energy demand

[1–3]. The transfer of heat between the indoor and outdoor environment facilitated by these

construction elements depends, to a large extent, on some physical parameters of the materials

that make them up [4], on their permeability to the passage of air or steam, on the quality of

the construction or on the incidence of thermal bridges generated by the discontinuity of the

thermal insulation materials. This transfer of heat and air infiltration affects the hygrothermal

conditions of the indoor environment [5–7], and affects energy consumption through HVAC

systems to achieve and maintain the comfort levels demanded by users and regulated by regu-

lations [8, 9].

The Fourier law, valid for parallel layers of materials with unlimited surface area, a station-

ary indoor air temperature regime Ti and outdoor Te, establishes the temperature gradient

that multi-layer facades acquire when there is a thermal jump of temperatures between the
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outdoor air and the indoor air, as shown in Eq 1. However, this law is only valid for ideal situa-

tions [10]. The walls have limited dimensions, discontinuities due to carpentry and glazing,

thermal bridges due to construction requirements [11], some permeability to the passage of

air, or risk of interstitial condensation.

There are other methods to obtain highly accurate results on the determination of optimum

insulation thickness, while some authors used a numerical method based on the implicit finite

volume procedure under steady periodic conditions [12–17], the others used an analytical

method based on Complex Finite Fourier Transform [18, 19]. Generally, the results and con-

clusions from these studies are site specific and applicable only to local climatic conditions,

walls have limited dimensions and present discontinuities due to this metalwork, woodwork,

glazing. Thermal bridges also exist due to construction requirements, discontinuities etc. [20,

21]. Moreover, when the time dependence of internal temperature and energy consumption

of a whole building must be evaluated, that is more complex and requires greater computing

capacity, computer resources and time [22].

For these reasons, we propose a system capable of predicting the behaviour of this facade in

a more reliable way. There are similar works in this line, using neural networks for the predic-

tion of thermal transmittance of windows [23], heat transfer coefficients [24] and moist porous

materials [25]. These studies do not take into account temporal sequences, since they are only

aimed at obtaining coefficients.

For this work we require a set of temperature measurements, similar to those obtained in

[26, 27]. A series of real temperature data is available, obtained by monitoring a facade of a res-

idential building located in Alicante, Spain, on the Mediterranean coast. This facade was moni-

tored for more than one and a half years from January 2012, in order to be able to properly

evaluate its thermal behaviour in the different stations, and to analyse in a comparative way

the effect of the thermal inertia of its materials, and incident solar radiation.

This research focuses on the development of a deep learning system capable of predicting

the thermal behaviour of the facade. The development in recent years of deep learning tech-

niques for the modelling of all types of systems, including image analysis, the development of

voice analysis systems, and the prediction of time series [28–30], demonstrates its great poten-

tial to extract models from a sufficient set of data.

This article will initially characterise the facade to be modelled. Next, the theoretical Fourier

model will be presented in detail, analysing its operation compared to the actual data acquired.

Subsequently, a deep connexionist model will be provided to learn the characteristics of the

facade. The functioning of the model presented will be evaluated, and a discussion regarding

the proper functioning of the deep model presented with respect to the Fourier theoretical

model will conclude the article.

2 Enclosure description

The building under study is located in the city centre of Alicante (Fig 1). It is a corner building

whose facades about Benito Pérez Galdós Avenue and Catedrático Ferre Vidiella Street. The

building has 69 homes with two, three, and four bedrooms, as well as parking spaces and stor-

age rooms. It has eight different types of dwellings (A-F, Penthouse N-P). It is a building

between dividing walls, in the corner, ground floor plus six and attic, with five vertical commu-

nication cores: four of them with access from Benito Pérez Galdós Avenue, and the fifth one

with access through Catedrático Ferre Vidiella Street.

The dwelling under study corresponds to type C of the typologies of dwellings in the

building, and is located on the third floor, with north and south facades. It consists of two
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bathrooms, four bedrooms (two bedrooms facing the inner courtyard of the building of 4 x 4

m2, and two bedrooms facing the inner courtyard of the block), and a living-dining room and

kitchen facing the north facade, which adjoins the Benito Pérez Galdós Avenue (Fig 2). None

of the boundaries of the dwelling correspond to the median, and therefore all its partitions

adjoin dwellings of the same development.

Fig 1. View of the corner between Avenida Benito Prez Galdós and Catedrático Ferre Vidiella Street (north and west facade), where the

building being studied is located.

https://doi.org/10.1371/journal.pone.0207616.g001

Fig 2. Floor plan of the type C dwelling. The red area represents the monitored ventilated facade.

https://doi.org/10.1371/journal.pone.0207616.g002
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The opaque cladding of the northwest facade is composed by the following layers and

technical characteristics: ventilated facade applied on perforated brick layer, with aluminium

profiles and quadrangular tubes substructure, continuous insulation layer of projected poly-

urethane foam of 2.25 cm thickness, and finished with pieces of porcelain stoneware tiles of 10

mm of thickness.

A thermofluxometric study of the opaque enclosure was carried out in order to obtain the

actual measurement of thermal transmittance U [31], as established in standard ISO 9869–

1:2014 [32]. The equipment consists of a thermal flow plate, a transducer that generates an

electrical signal proportional to the total heat rate floor applied to the sensor surface. Two out-

door and indoor air temperature probes are attached to the data logger, as well as two outdoor

and indoor wall surface temperature sensors. The data analysis was carried out over a week

with the module for calculation of the thermal transmittance of the AMR WinControl software

developed by Ahlborn for ALMEMO measuring instruments. The method used was the “aver-

age method” [33].

The calculation of the thermal transmittance U (Table 1), was also carried out, according

to thicknesses measured in situ, and thermal conductivity values λ obtained in the laboratory

through a C-Therm TCi thermal conductivity analyser from Mathis Instruments Ltd. with

universal sensor, carried out at the University of Alicante [34]. For this purpose, according to

the Technical Building Code (CTE), regulations applicable in Spain [35], a surface thermal

resistance of 1/hi per 0,13 m2 C/W, a surface thermal resistance of 1/he per 0,04 m2 C/W, and

a thermal resistance Rc of the ventilated facade chamber of 0,176 m2 C/W, considered this as a

weakly ventilated chamber.

The air conditioning system of the house consists of a VRV split inverter system, with the

condensing machine located on the roof of the building, and an evaporator of 3,200 W of

power located in the false ceiling of the general bathroom. The treated air is distributed

through rectangular fibreglass ducts.

2.1 Monitoring

The enclosure of a residential building located in Alicante, Spain, on the Mediterranean coast

has been monitored. This enclosure was monitored during the complete cycle of 2012 and

2013, in order to be able to properly evaluate its thermal behaviour in the different seasons,

and to compare the effect of the thermal inertia of its materials and incident solar radiation.

Table 1. Value of the thermal transmittance λ taken from the standard UNE EN ISO 10456:2012, which establishes the Spanish CTE.

Vertical enclosure and horizontal flow Thermal Resistance

LAYERS Thicknesses λ R

m W/m � K m2 � K/W
1 Outdoor environment (Rse) 0.04

2 Discontinuous porcelain stoneware cladding 0.01 2.3 0.005

3 Low-ventilated air chamber 0.07 0.176

4 Projected polyurethane thermal insulation 0.0252 0.028 0.9

5 Perforated ceramic brick 0.115 0.75 0.153

6 Hollow ceramic brick 0.115 0.52 0.221

7 Plaster coating 0.015 0.27 0.056

8 Indoor environment(Rsi) 0.13

RT = ∑ Rj(m2 � K/W) 1.681

Uvalue = 1/RT(W/(m2 � K)) = 0.596

https://doi.org/10.1371/journal.pone.0207616.t001
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The monitoring equipment was installed a few years after the construction of the building.

In order to introduce some of the surface temperature sensors, a quasi-circular surface of

approximately 40 cm diameter, four layers of the facade had to be broken [36]. The hole made

in the insulation layer was about 25 cm in diameter (Fig 3). This installed equipment consists

of sensors for temperature and relative humidity of the outside and inside air, sensors for sur-

face temperature in the different layers of the facade, velocity of the inside air and the outside

chamber, and solar radiation by means of a pyrometer located in a facade 1m from this one.

PT 100 surface temperature sensors were also installed in all interior layers of the facade.

This was done with a destructive layer system, causing a perforation of approximately 0.40 m

in diameter in the bottom right-hand side. In this way, the sensors were introduced through

the interior in all five layers that make up the wall.

Subsequently, these layers were closed again with materials similar to the original ones, gen-

erating some discontinuities in construction materials due to construction difficulties. The

thermal gradient curves could be plotted at any time of the year, as well as their variations in

dynamic regime.

The technical description of the sensors used in this study is as follows:

• GPRS RTU, 1 RS232/385 Port, two pulse inputs, 14 digital inputs, six open collector digital

outputs, six 10 V analogue inputs. Modbus master.

• Standard Hygroclip2-HC2-S temperature and relative humidity probe. Temperature range

of −50 to + 100˚C (−40 to + 60˚C, 1 V outputs), relative humidity 0% to 100%. Accu-

racy ± 0.8% rh, ± 0.1 K.

• Standard Hygroclip2-HC2-S3 temperature/relative humidity probe for meteorological appli-

cations. Temperature range of −50 to + 85˚C, relative humidity 0% to 100%. Accuracy ± 1%

rh, ± 0.3˚C.

Fig 3. Location of sensors in the enclosure layers.

https://doi.org/10.1371/journal.pone.0207616.g003
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Fig 4 shows the position of the sensors in the facade.

3 Theoretical modelling

The Fourier law, is a electric analogy applied to heat transfer phenomena in walls made by par-

allel layers of materials of unlimited surface and stationary regimes of indoor air temperatures

Ti and outdoor temperatures Te, establishes the temperature gradient that multi-layer facades

acquire when there is a thermal jump in temperatures between the outdoor air and indoor air,

Fig 4. Chart of sensor location.

https://doi.org/10.1371/journal.pone.0207616.g004
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as shown in Eq 1. It involves thermal transmission by conduction, between the various materi-

als or layers, and convection, according to values of heat resistance or surface thermal resis-

tance due to the convection currents generated.

U � value ¼
1

RT
¼

1
1

hiþ
Pn

0

ei
li
þ 1

he

ð1Þ

Where:

• RT, Total thermal resistance to heat transfer ðm
2 �C
W Þ

• 1

hi, Interior surface thermal resistance ðm
2 �C
W Þ

• 1

he, External surface thermal resistance ðm
2 �C
W Þ

• ei, Thickness of each layer (m)

• λi, Thermal conductivity of the material in each layer ð W
m�CÞ

The value of the transmittance U of the enclosure, which is the inverse of the value of the

total resistance to heat passage RT, represents the value of the heat flow in watts that will occur

between the outdoor environment and the indoor environment per unit of surface area (m2)

and for each °C of temperature difference Te-Ti. This parameter is used in building design to

quantify the annual energy demand, the thermal comfort of the indoor environment, the ther-

mal loads for the design and dimensioning of the air conditioning systems, and to assess the

risk of interstitial condensation, which could cause damage over time. The formulation of

Fourier’s laws works in each layer in the classic linear approach only if material is solid and

fixed (this is not the case of air in enclosures). The Fourier law, is a electric analogy applied to

heat transfer phenomena in walls made by parallel layers of materials of unlimited surface and

stationary regimes of indoor air temperatures. The walls have limited dimensions, discontinui-

ties due to carpentry and glazing, thermal bridges due to construction requirements [11],

some permeability to air passage, and the risk of interstitial condensation. The various layers

that make up a wall are often made up of materials of different natures, with physical parame-

ters of heat resistance, diffusivity α, effusiveness ρ and calorific capacity Cp of various values

[37]. Diffusivity is the parameter that allows the heating rate of the different layers of the facade

to be determined. At a high diffusivity, the material transmits heat more quickly, correspond-

ing to a high rate of thermal transmission:

• α¼ l

r�Ce

• α, Thermal diffusivity m2

s

• λ, Thermal conductivity ð W
m�CÞ

• ρ, Density ð
Kg
m3Þ

• Ce, Specific heat ð J
Kg �CÞ

Thermal effusivity is the parameter that determines the capacity of materials to accumulate

heat energy, equivalent to the concept of thermal inertia. The higher the thermal conductivity,

density, and specific heat of a material, the greater the diffusivity and heat storage capacity.

• � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l � r � Ce

p

• �, Thermal effusivity ð s
1
2�W

m2 �CÞ
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• λ, Thermal conductivity ð W
m�CÞ

• ρ, Density ð
Kg
m3Þ

• Ce, Specific heat ð J
Kg �CÞ

The thermal inertia of the materials that make up the enclosure, based on thermal conduc-

tivity λ, the specific heat Ce and its density ρ, alters the linear Fourier process depending on

the time, producing a phase shift df and a damping of the thermal wave. The phase shift of the

thermal wave is the time it takes for energy to pass through the construction element:

• df ¼ 0; 0167: t
2
:

ffiffiffiffiffiffi
r�Ce
p:l:t

q

:d

• df, Disruption of the thermal wave, usually varies by hours.

• λ, Thermal conductivity ð W
m�CÞ

• ρ, Density ð
Kg
m3Þ

• Ce, Specific heat ð J
Kg �CÞ

• T, Period of time of the phenomenon. In climatic applications it is 24 hours.

Thermal wave damping is the percentage of energy that had begun to pass through the con-

struction element, but that is not capable of reaching the interior environment of the room:

• fa ¼ 1 � eð� 0;0167: t
2
:

ffiffiffiffiffi
r�Ce
p:l:t

p
:dÞ

• fa, Thermal wave cushioning.

• λ, Thermal conductivity ð W
m�CÞ

• ρ, Density ð
Kg
m3Þ

• Ce, Specific heat ð J
Kg �CÞ

• T, Period of time of the phenomenon. In climatic applications it is 24 hours.

Part of the heat flow is stored in the enclosure materials, or given up if the direction of the

night phase flow is reversed. Finally, solar radiation also frequently affects the exterior surfaces

substantially increasing their temperature, and therefore the flow of heat into the indoor envi-

ronment. In the case of the indoor environment, the various internal thermal loads, as well as

the air conditioning systems, alter the physical parameters of temperature and relative humid-

ity of the indoor air, and the surface temperatures of the walls [38]. The heat flow thus becomes

a dynamic and complex process [39] (Fig 5).

Once the theoretical model had been presented, it was decided to evaluate its functioning

by comparing it with the actual measurements obtained. Specifically, once the filtering corre-

sponding to the data had been carried out, there were 23,052 valid readings. A reading was

made every 30 minutes, and an approximate time interval of 480 days was covered, obtaining

240 readings per day (48 for each of the five sensors arranged in the facade).

Several metrics have been used to compare actual sensor readings of Yi to the prediction

made by the theoretical model Ŷ . This comparison has been carried out independently for

each insulation of the enclosure. The metrics used were the Mean-Square Error (MSE, see Eq

2) of all data and the MSE of a typical validation set with a representative sample of 20% of the

total data set. This measure was then be used to facilitate comparison with the neural network
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model.

MSE ¼
1

n

Xn

i¼1

ðYi � ŶiÞ
2

ð2Þ

The mean absolute error has also been used (see Eq 3), to compare the average absolute dif-

ference between the prediction and the model. Finally, the mean and standard deviation of the

difference in predictions are also attached (Y � Ŷ ).

MAE ¼

Pn
i¼1

�
�
�Yi � Ŷ i

�
�
�

n
ð3Þ

With this analysis it can be easily observed that the average absolute error of the Fourier

prediction is 1.8˚C, being therefore of little utility as a predictive model of the error obtained

in the Eq 1, because of the static character of the Fourier prediction.

In order to be able to visualise in more detail the predictive quality of the theoretical model,

the difference in the prediction of the model with respect to the real data (Y � Ŷ ) is presented

(see Table 2). In Fig 6, the prediction difference is presented for each of the isolations, as

well as the violin graph of said difference, where it is possible to observe the density of the

Fig 5. Diagram of the dynamic process of heat transmission through the enclosures.

https://doi.org/10.1371/journal.pone.0207616.g005

Table 2. Comparison of actual reading data Y compared to predictions Ŷ by applying the Fourier theoretical model. Mean-square error and mean absolute error are

presented for all readings as well as for a test set containing a random 20% sample of the data. The mean and standard deviation of the difference in predictions are also

attached (Y � Ŷ ). The differences between predictions are shown in Celsius degrees.

Layer MSE MSE Test. MAE MAE Test. mðY � Ŷ Þ sðY � Ŷ Þ
N1 10.2654 10.3203 1.6231 1.6263 1.4928 2.8349

N2 13.9785 13.7576 2.1095 2.0770 2.0444 3.1303

N3 7.9670 8.3208 2.3064 2.3052 2.1886 1.7824

N4 6.2510 7.2774 1.8905 1.9272 1.7463 1.7893

N5 2.0348 2.0821 1.1135 1.1317 1.0315 0.9853

https://doi.org/10.1371/journal.pone.0207616.t002
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Fig 6. a) Violin graphics to represent the difference of actual data from the theoretical Fourier model (Y � Ŷ ) for each

isolation. This graph allows the easy visualisation of the distribution of the data and its probability density. b) Direct

representation of (Y � Ŷ ). Colour represents the density of points in a given area. Lighter colour (yellow) determines higher

data density. It should be noted that both graphs are presented on a logarithmic scale. The differences between predictions

are shown in Celsius degrees.

https://doi.org/10.1371/journal.pone.0207616.g006
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prediction error. It is observed that the model does not behave in a stable way in terms of pre-

diction with respect to the actual data obtained.

4 Deep Learning Modeling

4.1 Network design

As mentioned above, a model is required that is capable of predicting the temperature of

different areas of a facade. As input data both the outside temperature Te and the inside tem-

perature Ti of the facade are used. There also exists a history of readings of the different tem-

peratures, both internal and external to the facade. Multiple readings have been taken over a

period of about one-and-a-half years at 30-minute intervals.

Although the theoretical model presented above does not take into account previous tem-

perature data, it seems reasonable to contemplate the “memory” effect of the insulation materi-

als and therefore to include a limited number of previous values in the model. It has also been

considered that the distinctive characteristics of each insulation type used in the facade require

specific modelling.

These characteristics guide the proposal of the use of Machine learning. Machine learning

is a form of data analysis that automates analytical model building. The field of construction is

well placed to benefit from the advent of machine learning and artificial intelligence. Deep

Learning is an advanced new approach to Machine Learning, where the algorithm defines

an end-to-end computation: from the raw sensor data all the way to the final output. In this

model, the algorithm must figure out for itself what the correct features are and how to com-

pute them. This results in a much deeper level of computation.

More specifically, a neuronal model is able to draw conclusions from temperature readings

and a certain enclosure that includes special features (imperfections, environment, reading

errors . . .), impossible to predict and describe in a general theoretical model. These algorithms

work better the more examples they have for its training. As we will see, this is why we have

determined that a whole year of training data will be provided to the model to take into

account an entire seasonal cycle.

We will use feed-forward time-delay neural networks (TDNN) for this model. These net-

works are a promising and potentially high-potential method for forecasting time series [40]

and other time-dependent problems [41].

4.1.1 Temporary forecast using TDNN. The prediction of time series in the field of neu-

ral networks can be done in several ways. There are two different lines that allow the require-

ments for this type of series to be established. On the one hand, time can be represented

explicitly, with recurrent connections of the output nodes to previous layers. On the other

hand, an implicit representation of time can be established by providing a Multilayer Percep-

tron (MLP) network with dynamic properties.

Recurrent Neural Networks (RNN) assume that the sequence of the data has a temporal

relationship. The memory feature of the RNN structures can capture this temporal informa-

tion by learning time dependencies. The RNN networks are capable of handling sequences of

different sizes, up to a certain maximum value. In addition, these types of networks are benefi-

cial if the most important data points are always at the end of the sequence.

In our case, it seems reasonable that the time memory required by this problem is limited.

We need a small and fixed sequence size, where each element of the sequence has the same

importance. We assume that the temporal sequence is neither long nor complex since the

influence of the external agents to the enclosure is diluted with time. One simple way of build-

ing short-term memory into the structure of a neural network is through the use of time delay,

which can be implemented in the input layer of the neural network. A network can be made
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dynamic by providing it with long-term or short-term memory terms, in the structure of a

classical neural network. An example of such architecture is a time-delay neural network,

which is used in this article.

TDNNs is a simple way to represent mapping between past and present values. The delays

in the TDNN remain constant throughout the training procedure and are known before train-

ing. In this way, we consider that this type of model is appropriate for the required prediction

task. Moreover, there are several studies that validate that both types of networks work in an

equivalent way in the problem of temporal sequences predictions [42–44].

Time-delay neural networks, originally designed for speech recognition, performs excel-

lently in the modelling of dynamic systems with a time delay [40], [45], [46].

The response of these neural networks in time t is based on the inputs in times (t − 1),

(t − 2), . . ., (t − n). In this case, a mapping performed by the TDNN f produces a y(k) output at

time k as:

yðkÞ ¼ f ðuðkÞ; uðk � 1Þ; . . . ; uðk� MÞÞ

where u(k) is the input at time k and M is the maximum adopted time-delay.

After being adequately trained, TDNN have been used successfully for prediction, because

they are able to capture the dynamics of a system and to foresee the output at the current time.

4.1.2 Model design. The TDNN’s network architecture used to model the enclosure is

presented in Fig 7:

As can be seen, each insulation layer will have its own TDNN network, which will be in

charge of making the temperature prediction, given the w of previous indoor and outdoor

temperature data. The model presented requires determining the number of layers layer, the

Fig 7. TDNN network architecture used. Five nets were used to model each of the insulation types that form part of

the facade. Each TDNN network will be characterised by a specific value w, h, adn layers.

https://doi.org/10.1371/journal.pone.0207616.g007
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number of neurons per layer h and the number of temperatures prior to use w (although due

to the physical characteristics of this problem this number will be very limited, and in this case

it will be assumed that it will not exceed one day).

The output from each of the TDNN networks will be the temperature value predicted in

isolation for the next instant (30 minutes after the current state). As this is a prediction prob-

lem, MSE will be used as a cost function to optimise the network, where θ are the weights of

the network, n is the number of training examples, xi is the training element i, yi the class of

that element and hθ(xi) the prediction of the network given the weights θ.

JðyÞ ¼
1

n

Xn

i¼1

ðhyðxiÞ � yiÞ
2

For the network training process, back propagation with the optimiser Adam is used, with

the parameters (lr, β1 = 0.9, β2 = 0.999, � = 1e − 08, lrdecay).

4.2 Training process

4.2.1 Hyperparameter determination. To optimise the parameters discussed above

(lr, lrdecay layer, h, w) a randomised search was performed, as specified in [47] verifying its

impact on the model by cross-validation. Table 3 shows the hyperparameters for each of the

TDNN networks obtained for each insulation type.

4.2.2 Training. In this paper, the data series is divided into training and test sets. The train-

ing set is used for parameter estimation as well as to measure network generalisation. Of the data

available in the training set, 20% is used as a validation set to determine the hyperparameters of

the model. The test set is used exclusively to present the final performance results. To automate

testing, early-stopping is used, where the training is stopped when the mean absolute error

(MAE) increases in order to obtain a network having good generalisation performance. Table 3

shows the training and test error rate for each TDNN model. In addition, Table 4 includes,

among other metrics, the MAE and MSE of the validation set for each enclosure insulator.

Table 3. Hyperparameters obtained for each of the insulating elements of the enclosure. It shows the learning rate, the decay rate, the number of layers, the number of

neurons per layer and the amount of historical data used (data corresponds to one reading every 30 minutes). In addition, the cost of training and testing is provided for

each layer.

Layer lr lrdecay layers h w Loss Test Loss

N1 5.090E–04 2.040E–06 13 98 39 0.3026 0.2224

N2 6,536E–04 4.710E–06 8 150 46 0.6337 0.4853

N3 4.534E–04 3.767E–06 7 146 36 1.3835 0.8599

N4 1.001E–04 1.255E–06 7 126 45 1.3835 0.8599

N5 8.982E–04 4.454E–06 6 113 40 0.4272 0.2818

https://doi.org/10.1371/journal.pone.0207616.t003

Table 4. Comparison of actual data Y compared to prediction Ŷ made using the TDNN model. Mean-square error and mean absolute error are presented for all read-

ings, as well as for a test set containing a random 20% sample of the data. The mean and standard deviation of the difference in predictions are also included (Y � Ŷ ). The

differences between predictions are shown in Celsius degrees.

Layer MSE MSE Test. MAE MAE Test. μ σ
N1 0.2512 0.2161 0.3089 0.3018 0.0415 0.4995

N2 0.5457 0.6336 0.4561 0.4532 0.2096 0.7084

N3 0.9873 1.1134 0.3772 0.3939 −0.1900 0.9753

N4 0.2309 0.2458 0.2868 0.2920 −0.1608 0.4528

N5 0.3211 0.3382 0.2521 0.2477 0.1433 0.5482

https://doi.org/10.1371/journal.pone.0207616.t004
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4.3 Model results

Once the prediction model was developed, its performance was evaluated by comparing it

with actual measurements. As in the theoretical model analysis, MSE and MAE metrics from

actual temperature data were used with respect to the data predicted by the model. For easy

comparison with the cross-section in section 3, these metrics have been applied to both the

data set and the test set used.

In addition, in order to visualise the predictive quality of the model in an effective way, the

difference between the prediction of the model and the real data are presented. In Fig 8 the

prediction difference, as well as the violin graph of said difference, is presented for each of the

isolations where it is possible to observe the density of the prediction error. The mean absolute

error of the neuronal model prediction is 0.33˚C for both the test set and the entire dataset.

It is important to note that after a training process that lasts no more than 1 hour (using an

Intel i7 3.4Ghz CPU with a Nvidia 970GTX GPU), the network is able to make predictions in

real time, with negligible response times. This is an advantage of this type of networks, com-

pared with other models that require much more time or computing power to obtain new

predictions.

5 Discussion

After reviewing the previous data, it can be observed how the connexionist model is able to

substantially improve the prediction made by means of the Fourier theoretical model. Fig 8,

shows a much more stable prediction than that found in Fig 6. In addition, the mean absolute

error MAE of the neuronal model prediction is 0.33˚C for both the test set and the entire data-

set. Therefore, the temperature values obtained by the connexionist model are much closer to

the actual readings than the average MAE error obtained by the Fourier model (1.8˚C).

To assess the models in more detail and establish a comparison between them, Fig 9 is

shown. In this case, differences in the prediction error metrics of both models are observed.

This shows how, for all the metrics used, this difference is never negative, which means that

the TDNN model always improves the theoretical model.

It also presents the Fig 10, which compares by means of a heat graph the MAE, MAE met-

rics of the test set and the mean and standard deviation of its prediction with respect to the

actual data for each model.

In this case, the stability of the neuronal model is evident, where its mean error is close to

zero for all isolations. The same is true for the standard deviation of differences, much less so

in the connexionist case. These relationships are displayed quantitatively in Fig 9.

It is important to point out that the above graphs show a different behaviour for each of

the layers of material that form part of the enclosure. In Fig 10, based on the MAE metric, it

can be determined that the most complicated layers of modelling in both models are N2 and

N3, followed by N4 and N1. The simplest layer is N5. This is because the N2 and N3 sensors

pick up temperature variations on both sides of the thermal insulation, where the greatest

thermal jumps occur, and the incidence of thermal inertia is greater when the daily oscilla-

tion of the outdoor air temperature is wide. The differences with respect to the measure-

ments, according to the stationary or Fourier model, are thus greater. The N5 layer is the

easiest to model due to the low daily variation in indoor air temperature. The internal ther-

mal admittance Y11—the relationship between the heat flow through the exterior face of the

facade and the oscillation caused by the temperature of the indoor air—is conditioned by the

thermal inertia of the layers. The effect of solar radiation mainly affects the N1 layer, causing

differences compared to the Fourier model, which only takes into account the surface ther-

mal resistance 1/he.
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Fig 8. a) Violin graphics to represent the difference of actual data from TDNN model (Y � Ŷ ) for every layer. This graph

allows the distribution of the data and its probability density to be easily visualised. b) Direct representation of (Y � Ŷ ).

Colour represents the density of points in a given area. Lighter colour (yellow) determines higher data density. It should be

noted that both graphs are presented on a logarithmic scale. The differences between predictions are shown in Celsius

degrees.

https://doi.org/10.1371/journal.pone.0207616.g008
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The model provided substantially improves upon the stationary or Fourier prediction

model. It takes into account the effects due to the effusivity and diffusivity of the materials that

make up the enclosure in dynamic mode, with the daily oscillations of the outside air tempera-

ture, the effect of the heating of the outer layer due to the incidence of solar radiation, the

Fig 9. Differences in prediction metrics presented in section 3 for the Fourier model with respect to the TDNN model for each of the

layers. The differences between predictions are shown in Celsius degrees.

https://doi.org/10.1371/journal.pone.0207616.g009

Fig 10. Heat graph for each layer of metrics (MAE, MAE on the test set, mean, and standard deviation) applied to the difference in

prediction of actual data with respect to the model (Y � Ŷ ) for: a) Fourier model, b) TDNN model. The differences between predictions are

shown in Celsius degrees.

https://doi.org/10.1371/journal.pone.0207616.g010
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oscillation of the indoor air temperature and the surface temperature due to the air condition-

ing systems, and the infiltration of air experienced by the enclosures when the pressure or tem-

perature increases.

The design of a mathematical model for predicting the behaviour of building envelopes is

extremely complex, and could not take into account aspects as relevant as the quality of con-

struction, with the usual defects in the execution of the works, real discontinuities in materials,

or permeability to the passage of air. The modelling using deep learning techniques is able to

predict the actual thermal behaviour of the facade with much greater precision and simplicity.

It is a highly useful model for simulating the dynamic thermal behaviour of building envelopes,

and thus evaluate energy losses through the facade and the risk of interstitial condensation,

which the Fourier model cannot solve.

In this way, the TDNN model presented in this research will make it possible to optimise

the layout of the different layers of a facade during the design phase, the choice of materials

and their thicknesses—especially the insulation layer—as well as the quantification of the

building’s annual energy demand by integrating the model into simulation tools such as

TRNSYS or Design Builder. It will also allow the evaluation of the action of passive condition-

ing systems incorporated in the facade, such as ventilated chambers, greenhouse effects,

Trombe walls, or the disposal of PCM phase change materials integrated in the facade. These

lines of work will be undertaken in future research.

Supporting information

S1 File. Temperature data. Temperature data obtained in the building using the sensors pre-

sented in the paper. This dataset contains 23,052 valid readings. A reading was made every 30

minutes, and an approximate time interval of 480 days was covered, obtaining 240 readings

per day (48 for each of the five sensors arranged in the facade). The dataset is saved within a

hd5f file for all the sensor data: Outside temperature, N1, N2, N3, N4, N5 and Inside tempera-

ture.

(H5PY)

Author Contributions

Conceptualization: Fidel Aznar, Victor Echarri, Carlos Rizo, Ramón Rizo.

Data curation: Victor Echarri.

Formal analysis: Fidel Aznar, Carlos Rizo.

Investigation: Fidel Aznar, Victor Echarri, Carlos Rizo, Ramón Rizo.

Methodology: Carlos Rizo, Ramón Rizo.

Project administration: Ramón Rizo.

Software: Fidel Aznar.

Supervision: Victor Echarri, Ramón Rizo.

Validation: Fidel Aznar, Victor Echarri, Ramón Rizo.

Visualization: Fidel Aznar.

Writing – original draft: Fidel Aznar, Victor Echarri, Carlos Rizo.

Writing – review & editing: Fidel Aznar, Victor Echarri, Carlos Rizo.

Modelling the thermal behaviour of a building facade using deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0207616 December 21, 2018 17 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207616.s001
https://doi.org/10.1371/journal.pone.0207616


References
1. Echarri Iribarren V, Espinosa Fernández A, Galiano Garrigós A. Energy efficiency of flooded roofs:

the University of Alicante Museum. Ashurst, United Kingdom: WIT Transactions on Engineering Sci-

ences; 2016. p. 163–175. Available from: http://library.witpress.com/viewpaper.asp?pcode=HT16-

016-1.
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