
RESEARCH ARTICLE

Neo4j graph database realizes efficient

storage performance of oilfield ontology

Faming Gong1, Yuhui MaID
1*, Wenjuan Gong1, Xiaoran Li1, Chantao LiID

1,

Xiangbing Yuan2

1 Department of Computer Technology, College of Computer and Communication Engineering, China

University of Petroleum, Qingdao, Shandong, China, 2 China Petroleum and Chemical Corporation Shengli

Oilfield Branch Ocean Oil Production Plant, Dongying, Shandong, China

* myh_1994gwj@163.com

Abstract

The integration of oilfield multidisciplinary ontology is increasingly important for the growth

of the Semantic Web. However, current methods encounter performance bottlenecks either

in storing data and searching for information when processing large amounts of data. To

overcome these challenges, we propose a domain-ontology process based on the Neo4j

graph database. In this paper, we focus on data storage and information retrieval of oilfield

ontology. We have designed mapping rules from ontology files to regulate the Neo4j data-

base, which can greatly reduce the required storage space. A two-tier index architecture,

including object and triad indexing, is used to keep loading times low and match with differ-

ent patterns for accurate retrieval. Therefore, we propose a retrieval method based on this

architecture. Based on our evaluation, the retrieval method can save 13.04% of the storage

space and improve retrieval efficiency by more than 30 times compared with the methods of

relational databases.

Introduction

The ontology is the formal representation of knowledge as a set of concepts and the relation-

ships within a domain [1]. As an important part of knowledge engineering, domain ontology

describes the concept of a specific discipline [2]. The domain ontology generally has four

parts: domain disciplines, concept attributes, concept attributes, and attribute relationship

constraints. All these parts can demonstrate specific knowledge in a domain, which typically

includes Resource Description Framework (RDF), Web Ontology Language (OWL), or other

terms [3]. The oilfield ontology describes various concepts of knowledge in the petroleum

industry, as well as the interrelationships between concepts, domain activities, and domain

characteristics. According to the oilfield ontology, multidisciplinary knowledge integration

and information integration in the oilfield illustrated the relationship between terminology

and their domain axiom in order to formally describe them. With the deepening of oil exploi-

tation and the rapid expansion of big data, more and more petroleum industries have chosen

domain ontology for knowledge management. Even though significant progress has been

achieved in ontology data management, storage and search are costly and demanding [4].

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gong F, Ma Y, Gong W, Li X, Li C, Yuan X

(2018) Neo4j graph database realizes efficient

storage performance of oilfield ontology. PLoS

ONE 13(11): e0207595. https://doi.org/10.1371/

journal.pone.0207595

Editor: Tao Song, Polytechnical Universidad de

Madrid, SPAIN

Received: September 6, 2018

Accepted: November 3, 2018

Published: November 16, 2018

Copyright: © 2018 Gong et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

the results presented in the study are available

from Berlin SPARQL Benchmark (BSBM)

repository (http://wifo5-03.informatik.uni-

mannheim.de/bizer/berlinsparqlbenchmark/).

Funding: This work was supported by the Chinese

Ministry of Science and Technology Innovation

Work (Grant No. 2015IM010300 to FG). China

Petroleum and Chemical Corporation Shengli

Oilfield Branch Ocean Oil Production Plant provided

support in the form of salaries for authors, but did

not have any additional role in the study design,

http://orcid.org/0000-0003-3625-7492
http://orcid.org/0000-0002-1370-0976
https://doi.org/10.1371/journal.pone.0207595
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207595&domain=pdf&date_stamp=2018-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207595&domain=pdf&date_stamp=2018-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207595&domain=pdf&date_stamp=2018-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207595&domain=pdf&date_stamp=2018-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207595&domain=pdf&date_stamp=2018-11-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0207595&domain=pdf&date_stamp=2018-11-16
https://doi.org/10.1371/journal.pone.0207595
https://doi.org/10.1371/journal.pone.0207595
http://creativecommons.org/licenses/by/4.0/
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/

Many domain ontology datasets are quite large, which brings great challenges to the establish-

ment of the library.

The storage of relational databases adopts organizational technology and can be divided

into three categories according to their storage structure: triple-table, horizontal partition and

vertical partition. A triple-table stores all the RDF data in a single three-column table, where

each row is an RDF statement. Although the triple-table method has superior performance for

small-scale data, as the size of the data increases, it will generate a large number of self-joins.

The horizontal partitioning represents conceptually stores all the RDF data in a single table,

where the columns store each predicate value of the RDF graph. Although this wide-table

method supports multi-valued attributes, the storage method is not suitable for large-scale

data storage because sparse attributes result in a large number of empty cells. The vertical par-

titioning rewrites the triple-table into n two-column tables, where n is the number of unique

properties in the data. It is easily implemented and performs well for queries that specify the

predicate values but is otherwise not a good approach, because the retrieval time of informa-

tion increases exponentially with the volume of data.

The ontology construction method [5–7] can be divided into manual construction and

semi-automatic construction. Researchers have proposed many construction methods, such as

Skeletal Methodology, IDEF-5, Methontology, TOVE enterprise modeling and cyclic acquisi-

tion. It (Fig 1) depicts an ontology construction process inspired by the classical skeletal meth-

odology (SM).

However, in addition to the SM approach, we also considered the multidisciplinary nature

of the petroleum sector and the need for later ontology extensions, so we developed specific

processes. The steps are as follows.

1. Knowledge extraction is the acquisition of knowledge in ontology. The expert extracts

knowledge from the relevant field and establishes a link for a relevant concept.

2. The Web Ontology Language uses logical representations rather than natural language to

represent the ontology construction process.

3. A suitable storage program can improve the query and management efficiency of the

ontology.

4. The user can use the ontology to search for and acquire needed knowledge.

5. The extension is the process of adding new ontology information or integrating different

ontologies based on the original ontology.

In this paper, we focus particularly on storage and search. We devise Neo4j database map-

ping rules for ontology files (RDF data). A mapping relation is established through the data

structure of the RDF graph and the storage structure of the Neo4j database, and the effective

dump of ontology data in Neo4j is realized. At the same time, we adopt a two-tier index archi-

tecture, including object and triad indices, to keep loading times low and match with different

patterns for accurate retrieval. Thus, we propose a retrieval method based on this architecture.

According to our evaluation, the retrieval method can save 13.04% less storage space and

improve retrieval efficiency by more than 30 times compared to relational database methods.

The remainder of this paper is organized as follows. In section 2, we provide an overview of

related work on RDF data storage and retrieval in the Neo4j database. Section 3 describes the

mapping relationship between RDF data and the Neo4j data model, and presents our data-

storage and query-processing mechanisms. The experimental evaluation of our approach is

described in section 4. Section 5 provides our conclusions and identifies future research

directions.

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 2 / 16

data collection and analysis, decision to publish, or

preparation of the manuscript. The specific roles of

these authors are articulated in the ‘author

contributions’ section.

Competing interests: The affiliaition with China

Petroleum and Chemical Corporation Shengli

Oilfield Branch Ocean Oil Production Plant does not

alter the authors’ adherence to PLOS ONE policies

on sharing data and materials.

https://doi.org/10.1371/journal.pone.0207595

Related work

The appropriate ontology storage method is conducive to the extension of the ontology and

the improvement of query efficiency. Many people use relational databases in ontology stor-

age. Loan [8] proposed an approach of transforming ontologies into relational databases,

which presents the principles of mapping OWL concepts to relational database schemas is pre-

sented with an implemented tool. Since relational database data are stored in a two-dimen-

sional table, and the ontology model uses the map structure of directed graph, an impedance-

mismatch problem will occur in the conversion process [9]. Elbauah[10] selected an object-

oriented database for ontology storage. Although the ontology-storage model based on an

object-oriented database is suitable for data-storage of complex relationships, this technology

is still insufficient to support a massive oil domain ontology database in a big-data

environment.

In order to solve the above problems, Rani [11] proposed an ontology-driven system to ver-

ify the integration of ontology and semantic Web environments by implementing the Felder-

Silverman learning style model. Vysniauskas [12] focuses on the characteristics of OWL ontol-

ogy and attributes. They improve the existing schema by setting the relational table and adding

the relation constraint table Trend to make it easier to implement the information storage of

classes, attributes and complex relationships in the OWL ontology. In addition, domain ontol-

ogy storage has a huge impact on gene ontology in bioinformatics. Dietze [13] proposed bio-

logical ontologies such as the gene ontology (GO) and the human phenotype ontology (HP)

that provided a rich set of constructs for describing biological entities such as genes, alleles and

diseases. Overton et al [14] proposed to use XOD strategy and powerful XOD tool develop-

ment to greatly support ontology interoperability and powerful ontology applications to sup-

port searchable, accessible, interoperable and reusable data. With the continuous

improvement of the information level in the petroleum field, although the ontology storage

can be applied to many fields, the rapid growth of data volume will bring more problems to

the ontology storage and retrieval.

The RDF describes specific information about various applications on the World Wide

Web [15]. An RDF uses the three-tuple form of the subject, predicate, and object to describe

the resources on the Web. The subject generally uses the Uniform Resource Identifier (URI) to

represent the information entity (concept) on the Web, the predicate description contains the

relevant attribute, and the object is the corresponding attribute value. This expression of an

RDF can be used to represent any identified information on the web and makes it possible to

exchange RDFs between applications without loss of semantic information. Hence, the RDF

has become the standard for semantic data description, which is widely used in metadata

description, domain ontology and the Semantic Web.

Fig 1. Ontology construction flow chart.

https://doi.org/10.1371/journal.pone.0207595.g001

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 3 / 16

https://doi.org/10.1371/journal.pone.0207595.g001
https://doi.org/10.1371/journal.pone.0207595

The RDF data is represented as (S,P,O) triples [16]:

T ¼ hs; p; oi 2 ðI [BÞ � I � ðI � B� LÞ

where T is the set of RDF triples, I denotes uniform resource identifiers (IRIs), B denotes

empty nodes, and L denotes literals. An RDF directed graph can be represented by a labeled

node and a labeled edge, and it states the relationship between the subject and the object to

which it refers. An RDF directed graph is the subject of all the triples it contains, and the direc-

tion of the edge always points to the object. A set of RDF data can usually form an RDF

directed graph. Fig 2 shows an RDF chart and the triad table it contains.

The oil exploration and development field includes more than 20 branch fields such as geol-

ogy, exploration, drilling, machinery, underground operations, oil production and oil storage.

The domain ontology is described by OWL-DL language and stored by OWL files. The ontol-

ogy data can be represented RDF triples by parsing OWL files, and multiple RDF triples can

form an RDF directed graph. Storage of the ontology data is the storage of RDF directed graph

data, and the storage of RDF directed graph data is essentially the storage of many RDF triples.

Neo4j uses graph structure as its storage structure, which is a general data structure that can

model data and give it powerful expressive power. Linked list, tree, and hash tables and other

data structures can be expressed by an abstract network. Neo4j has the characteristics of the

attribute graph data model, which can flexibly expand its network model. Its primitive consists

of three elements: node, relationship and attribute, which can completely describe the situation

of many users. The advantage of this storage model is that the node attributes of the storage

model can be added or deleted at any time, effectively solving the problem of semi-structured,

unstructured data storage and memory waste. In addition, due to its unique data model, the

Neo4j database can quickly query information node related information through deep tra-

versal and other methods. Fig 3 shows the data structure of Neo4j.

Our method

This paper uses Protégé software and the classic skeleton method (SM) to construct the oilfield

ontology data [17]. Protégé software is an open source ontology editing and knowledge acqui-

sition software developed in the Java language. The OWL is used to build RDF datasets in the

Fig 2. An RDF graph and corresponding triples relationship.

https://doi.org/10.1371/journal.pone.0207595.g002

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 4 / 16

https://doi.org/10.1371/journal.pone.0207595.g002
https://doi.org/10.1371/journal.pone.0207595

oilfield. It combines hybrid reasoning with the Jayton inference engine to add rich semantic

information by adding blending rules.

3.1 Structures of oilfield ontology

The structure of oilfield ontology is a five-tuple O = {C,R,Hc,Rel,Ao} [18]. With the semantic

basis of communication between different subjects, the ontology is composed of a specific set

of terms that describe a particular situation in the oilfield, as well as a hypothetical set of corre-

sponding representations. The ontology can not only describe the hierarchical structure of the

concept, but can express other relationships between concepts, and constrain the connotative

explanation of the concept by adding a set of appropriate relations, axioms, and rules. A com-

plete ontology includes five elements: class (C), relation (R), attribute (At), axiom (Rel), and

instance (Ao). Fig 4 is an example of an RDF directional marker map in the oilfield ontology.

Among them, the solid-line ellipse represents the class, axiom, and instance of the ontology,

the dashed ellipse represents the corresponding attribute, and the directed arrow represents

the correspondence between the semantics.

1. Class (C). In addition to the general sense of the concept, the class can also indicate tasks,

actions, events, and other names in the RDF triples expressed as the subject and object. For

Fig 3. The data structure of Neo4j.

https://doi.org/10.1371/journal.pone.0207595.g003

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 5 / 16

https://doi.org/10.1371/journal.pone.0207595.g003
https://doi.org/10.1371/journal.pone.0207595

example, the triples (Oil and gas exploration and development, rdfs: type, OWL: class) is a

class.

2. Relationship (R) describes the relationship between the concepts in the field by defining the

constraints between the domain and the value domain. Among them, the definition domain

is the concept in the concept collection, and the value domain may be the concept, data

type, or numerical value composition. The main relationships between domain ontology

concepts include subclass relations (subClassOf) and those between the instances and the

concepts (edf: type). For example, subClassOf (geological object, oil and gas field) means

“oil and gas fields” are subclasses of “geological objects”.

3. Attribute (At). The concept of domain ontology contains two attributes: the object attri-

butes and the data attributes. The object attributes associate objects with each other, and

the data attributes associate objects with data-type values. Concepts are also divided into

four different relationships based on their interrelationships, as shown in Table 1, which

classifies the relationships between concepts.

4. The axiom (Rel) is a description of the eternal truth, a reflection of reality.

Fig 4. An example of an RDF directional marker map in the oilfield ontology.

https://doi.org/10.1371/journal.pone.0207595.g004

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 6 / 16

https://doi.org/10.1371/journal.pone.0207595.g004
https://doi.org/10.1371/journal.pone.0207595

5. Examples (Ao) are concrete examples of classes. In domain ontologies, instances inherit the

attributes and relationships of related classes, and are the ranges in the domain ontology.

For example, the Tadan-1 well (rdfs: type. OWL: Namedindividual) indicates that the well

in the Tazhen-1 well is an example.

3.2 Neo4j storage features

A Neo4j graph is also known as the property graph (PG) [19]. PG = (V,E,src,tgt,lbl,;) is a six-

tuple representation of the label with a directed graph. Specifically, V is the set of nodes, E rep-

resents the set of edges, the function src:E!V indicates that each edge has a corresponding

starting node, the function tgt:E!V indicates that each side has a corresponding termination

node, the function lbl:E!dom(S) means that each edge has a label, and the function ϕ:

V[E!2P represents a collection of property key-value pairs.

Neo4j is a high-performance NOSQL graphics database whose basic structure is composed

of nodes, relationships and attributes [20]. The nodes are designated as starting nodes and ter-

mination nodes, and two such nodes are connected by a relationship. The attributes are com-

plementary to different nodes. Each node of Neo4j has a label, which can be divided into iri,

literal, and bnode. The iri node has two attributes, kind and IRI, the bnode only has one kind

of attribute, and the literal node has four attributes, which are kind, value, datatype, and lan-

guage. The same node with different attributes is stored in the form of a linked list, as shown

in Fig 5 for the Neo4j database stored procedure.

Table 1. Relationships between concepts.

Relationship Name Relationship Description

Part-of Represents the relationship between the concept of part and whole

Kind-of Represents the inheritance relationship between concepts

Instance-of Represents the concept of the relationship between examples and concepts

Attribute-of Expresses another property of a concept

https://doi.org/10.1371/journal.pone.0207595.t001

Fig 5. Neo4j database stored procedures.

https://doi.org/10.1371/journal.pone.0207595.g005

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 7 / 16

https://doi.org/10.1371/journal.pone.0207595.t001
https://doi.org/10.1371/journal.pone.0207595.g005
https://doi.org/10.1371/journal.pone.0207595

3.3 RDF data to Neo4j mapping rules

The RDF directed graph is represented by the subject, predicate, and object, in which the sub-

ject can express the classes and the concepts. The object can not only represent the class and

the concept, but can express the concept and the attribute of the class. The predicate expresses

the relationship between the subject and object [21]. At the same time, the Neo4j data model

and the RDF directed graph of the oilfield ontology information shown in Fig 4 have similari-

ties in the structural model. We have implemented a series of mapping rules to map the RDF

directed graph to the Neo4j data structure, as shown in Fig 6.

The following are the mapping steps from the RDF directed graph to the Neo4j database.

1. Traverse each attribute value in the RDF directed graph. In Neo4j, each attribute value in

the RDF directed graph is generated by the corresponding node. Each node can establish

multiple relationships with multiple nodes, and a single node can set multiple key-value

pairs. For example, V = {v1,v2,v3,v4} is a set of nodes that are mapped in the RDF directed

graph in the Neo4j database.

2. For each empty node (bnode)v(b) in the set V of nodes, the attribute set is obtained as ϕ(v(b)) =

{h"kind","hash"i}, which means that the node has no extra attribute except the type label.

3. For each resource identifier node (iri)v(u) in the set V of nodes, we can obtain a collection

of properties ϕ(v(u)) = {h"kind","IRI"i,h"IRI","im(u)"i}, which includes the node type and

the attribute set of the “IRI” lable. For example,

�ðvðu1ÞÞ ¼ fh}kind}; }IRI}i; h}IRI}; }One well of tarin basin}ig

�ðvðu2ÞÞ ¼ fh}kind}; }IRI}i; h}IRI}; }Well drilling}ig

�ðvðu4ÞÞ ¼ fh}kind}; }IRI}i; h}IRI}; }Well type}ig

Fig 6. Mapping of RDF directed graph to Neo4j data structure.

https://doi.org/10.1371/journal.pone.0207595.g006

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 8 / 16

https://doi.org/10.1371/journal.pone.0207595.g006
https://doi.org/10.1371/journal.pone.0207595

4. For each literal node (literals)v(l) in the set V of nodes, we can obtain an attribute set:

�ðvðlÞÞ ¼ fh}kind}; }literal}i; h}value}; vm� 1ðlÞi

h}datatype}; imðdtypeðlÞÞig [lang:

We can get the “value”, “datatype” and “lang” attributes of the node type, where the “lang”

attribute can be null. For example,

�ðvðu3ÞÞ ¼ fh}kind}; }literal}i; h}literal}; 3582i; h}datatype}; intig:

5. Each edge in the Neo4j database represents a different RDF triple. For example, E = {e1,e2,

e3} is an edge set of the RDF directed graph map in the Neo4j database.

6. For each tuple T = hs,p,oi, the labels of the edges correspond to im(p), and the starting and

termination nodes are v(s) and v(o). For example,

srcðe1Þ ¼ v1; tgtðe1Þ ¼ v2; lblðe1Þ ¼ }rdf : type}

srcðe2Þ ¼ v1; tgtðe2Þ ¼ v3; lblðe1Þ ¼ }Depth}

srcðe3Þ ¼ v2; tgtðe3Þ ¼ v4; lblðe3Þ ¼ }rdfs : subClassOf}

This paper is mainly based on the Java Jena API method in the Eclipse environment to

achieve the RDF file to Neo4j map data storage model conversion.

3.4 Retrieval method based on a two-tier index architecture

The SPARQL protocol and the RPF query language are one of the core technologies of Seman-

tic Web. The SPARQL protocol is a protocol for RDF to develop ontology-retrieval language

and data collection, the RPF query language is used to access and manipulate RDF data [22]. It

is one of the core technologies of the Semantic Web. When RDF data must be associated with

the retrieval, it is necessary to construct the SPARQL query and perform multiple query tasks,

which are not conducive to our query request. Combining with the characteristics of multidis-

ciplinary fields in the oilfield, we propose a retrieval algorithm for the ontology of petroleum

domain that achieve the ontology query function by using CYPHER [23] search language and

Apache Solr [24] indexing technology.

First, we need to create a two-tier index architecture, including an object indexing mecha-

nism and a triple indexing mechanism. The first layer is used for object indexing and the sec-

ond layer is used for triple indexing. Tables 2 and 3 respectively show object and triad index.

Among them, the object index is to arrange the information with retrieval meaning in an

orderly manner to establish an object index table, which achieve the purpose of rapid classifi-

cation and retrieval. The information having the meaning of retrieval may be a unique identifi-

cation id, an object name, and the like. The object index table consists of object attributes and

corresponding label descriptions. The object properties are used to describe the nature of an

object, including numbering, name, alias, and entity type, which is a feature that distinguishes

Table 2. Object index.

Attribute Description

Numbering id

Name label

Alias altLabel

Entity type entityType

https://doi.org/10.1371/journal.pone.0207595.t002

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 9 / 16

https://doi.org/10.1371/journal.pone.0207595.t002
https://doi.org/10.1371/journal.pone.0207595

an object from other objects. All objects in Table 2 are assigned an id number by the indexing

mechanism to build an index table, which is convenient for querying objects quickly.

The triplet index is an index method formed by taking the subject resource, the predicate,

and the object resource as an object, which is a specific representation of the object index. The

predicates are used to describe and determine the relationship between object properties, fea-

tures, or objects. In Table 3, the subject, the predicate, and the object are all special objects.

The object is uniquely identified by the id, which embodies the semantic information between

various concepts.

When the search engine analyzes the search statements for the user, we use a two-tier index

architecture to construct the retrieval expressions according to the retrieval requirements, and

performs the retrieval tasks.

1. Match object retrieval: Object matching retrieves the object index by querying the result of

exact matching or fuzzy matching, and sorting the result set to obtain the correlation of the

result set. For example, the exact matching of the object named "Tarim Basin" is retrieved,

and its search is

Query ¼ ðlabel : }Tarim Basin}ÞorðaltLabel : }Tarim Basin}Þ

2. Relationship matching search: This is mainly used for a triad index of a retrieval method. In

the triple (s,p,o), we must retrieve the relationship between s and o. For example, when we

search for the “exploration technology” object, the search engine first finds the ID corre-

sponding to the “exploration technology” in the ID index table, and obtains the correspond-

ing ID of “9672”. Then the search for the structural relationship is:

Query ¼ ðsID : }9672}Þ or ðoID : }9672}Þ

If we know the familiarity of the object and its designation, we can retrieve another corre-

sponding object by using the s and p or o and p known by the triple, and we need to use the

object o or s to retrieve another match. For example, we need to search for the components

of “petroleum”, and combine mutual rule systems. The given search structure is:

Query ¼ ðsLabel : }oil}Þ and ðpLabel : }composition}Þ

or ðpLabel : }composition}Þ and ðsLabel : }oil}Þ

3. Relational degree retrieval: This is a retrieval method defined according to the graphical

structural features formed by multiple sets of triples in the oilfield ontology, and each triplet

represents a relationship, as shown in Fig 7. The left graph shows the graphical structure

formed by multiple sets of triples, and the right graph shows the relationship details of mul-

tiple triples. When two objects are known to be different, such as B2 and D2, we define the

path by querying the degree of relationship weight between the instance nodes A1 corre-

sponding to the two objects. The degree of relationship weight is determined by the associa-

tion and similarity of two objects in knowledge engineering. If the degree of similarity is

Table 3. Triad index.

Attribute Subject Predicate Object

Numbering sID pID oID

Name sLabel pLabel oLabel

Type sType pType oType

Type name sTypeValue pTypeValue oTypeValue

https://doi.org/10.1371/journal.pone.0207595.t003

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 10 / 16

https://doi.org/10.1371/journal.pone.0207595.t003
https://doi.org/10.1371/journal.pone.0207595

larger, the relationship weight is smaller, then the distance between the two nodes is closer

in the figure. These paths are defined as options such as “near”, “far”, “closer” and “further”

depending on the size of the relationship weight, which is the distance factor in the graph.

According to different semantic relations, we may have different results for the relational

degree retrieval of the same two objects. For example, we query the relational degree between

B2 and D2.When querying along the path A1!B1!B2 and A1!D1!D2, the length of the

paths are 6, and we define both as “closer”. However, when queried along the path

A1!C1!C2!B2 and A1!C1!C2!D2, the length of the path is 7 and 6, respectively, and

we define both as “near”. Finally, we return the path from node to root in different semantics

by means of map traversal, providing more path selection for relational retrieval. The Neo4j

database’s relational degree retrieval and map traversal mechanism provides flexible access to

query results through CYPHER queries. For example, we need to query the relationship

between “Shengli Oilfield” and “Tarim Oilfield”. Then the CYPHER query statement is:

start a ¼ nodeð�Þ; b ¼ nodeð�Þmatch p ¼ a � ½�0:2� � b

where was a:label ¼ }Shengli Oilfield} and b:label ¼ }Tarim Oilfield}

return p order by lengthðpÞ

Experiment

4.1 Experimental design

The purpose of our evaluation was to: (1) see the query response time for datasets of different

sizes; (2) see the storage scale for datasets of different sizes; (3) compare our methods with tra-

ditional methods by loading a full dump into a relational database and extracting by query

4.2 Experimental setup

To further validate the advantages of this method, we carried out a test with the Berlin

SPARQL Benchmark (BSBM) [25] standard dataset. We divided the dataset into five different

datasets by size and named them a, b, c, d, and e, as shown in Table 4. We used these five data

Fig 7. Graphic structure of multiple sets of triples in relational degree retrieval.

https://doi.org/10.1371/journal.pone.0207595.g007

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 11 / 16

https://doi.org/10.1371/journal.pone.0207595.g007
https://doi.org/10.1371/journal.pone.0207595

sets to test and verified that when the size of the data set is growing, our proposed method is

significantly better than the traditional relational database in terms of space usage and retrieval

time. In addition, using the same size data set, we added the method of triple index direct

index storage as an experimental comparison to get the results of data storage and retrieval.

We measured the performance of our approach in terms of runtime and storage consumption.

All experiments were implemented on a Windows 10 machine with an Intel Core i5-8400 pro-

cessor, 8 GB of RAM, and a 120-GB SSD.

4.3 Implementation

In the RDF data-storage experiment, first, we store the RDF data in a triplet manner, and

name it Ta, Tb, Tc, Td, and Te on five different data sets. Then we put the RDF data triples

into the Neo4j database, stored them in Java, and manipulated them using our datasets with

different sizes, naming them Na, Nb, Nc, Nd, and Ne. At the same time, datasets of the same

size are stored in a relational database by creating tables and other forms. We name them Ra,

Rb, Rc, Rd, Re.

In the search-efficiency comparison experiment, we use the triple direct index method to

retrieve data for Ta, Tb, Tc, Td and Te, and record the corresponding time. By using the

retrieval method based on the two-layer index architecture, we searched Na, Nb, Nc, Nd, and

Ne, and recorded the time consumed by the Cypher language retrieval method proposed in

this paper. We similarly searched Ra, Rb, Rc, Rd, and Re using the traditional SQL query lan-

guage, and recorded the retrieval time. We compared the experimental results of the five data-

set sizes on query efficiency under the same method, and compared our proposed storage

method with the traditional method with the same dataset sizes.

4.4 Results

In Figs 8 and 9, the brown line represents triad direct index storage method, the green line rep-

resents the storage method of the traditional relational database, and the yellow line represents

our storage method. These compare the size of the storage space and the retrieval time of infor-

mation from datasets of different sizes. We can draw the following conclusions.

1. In the case of using the same dataset size, our storage method can save 30.8% of the stor-

age space compared to the simple use of the triad direct index storage method. At the same

time, if we use traditional relational database for storage, our method is also superior, which

can save 13.04% (S1 Table) storage space.

2. With the same dataset size, our search method is 30 (S2 Table) times more efficient than

the traditional SQL query method. At the same time, the retrieval efficiency of the traditional

relational database SQL query method is slightly better than the triple index direct method.

3. With increasing dataset sizes, the proposed storage mapping and retrieval methods are

more adaptable than traditional methods.

Conclusions

In this paper, we propose a domain ontology building process based on the Neo4j graphics

database and a retrieval method based on a two-tier index architecture. Our assessment shows

Table 4. Sizes of five groups.

Numbering A B C D E

RDF triples

Size (unit)

50,000 250,000 1,000,000 5,000,000 25,000,000

https://doi.org/10.1371/journal.pone.0207595.t004

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 12 / 16

https://doi.org/10.1371/journal.pone.0207595.t004
https://doi.org/10.1371/journal.pone.0207595

that our approach can save 13.04% of the storage space and is 30 times more efficient com-

pared to relational databases. These methods are the main steps toward building large-scale

domain ontology. Some neural-like models should be involved into the dataset, like spiking

neural networks and artificial intelligent neural networks [26–31], for further research in pro-

cessing the data. Also, some chemical data and methods can be considered as functional mod-

ules in Neo4j graph database [32–36].

As the first step of a larger research agenda, this work dramatically improves large-scale

RDF data management. The proposed approach focuses only on two of five stages of the pro-

cess of building the domain ontology. In the future, we aim to support the subsequent stages of

ontology expansion and multi-ontology integration. We envision that organizations will be

empowered to seamlessly integrate RDF data into an existing ontology. A particular challenge

Fig 8. Storage capacity comparison chart.

https://doi.org/10.1371/journal.pone.0207595.g008

Fig 9. Query time-consumption comparison chart.

https://doi.org/10.1371/journal.pone.0207595.g009

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 13 / 16

https://doi.org/10.1371/journal.pone.0207595.g008
https://doi.org/10.1371/journal.pone.0207595.g009
https://doi.org/10.1371/journal.pone.0207595

is the mapping of RDF data to existing internal information structures and the establishment

of a co-evolution between private and public data involving continuous update propagation

from RDF sources while preserving revisions applied to prior versions of these datasets.

Supporting information

S1 Table. Store experimental result data.

(XLSX)

S2 Table. Query experimental result data.

(XLSX)

Acknowledgments

We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this

manuscript.

Author Contributions

Conceptualization: Faming Gong, Wenjuan Gong.

Data curation: Yuhui Ma, Chantao Li, Xiangbing Yuan.

Formal analysis: Faming Gong, Yuhui Ma, Wenjuan Gong, Xiaoran Li, Chantao Li.

Funding acquisition: Faming Gong.

Investigation: Chantao Li.

Methodology: Faming Gong, Xiaoran Li.

Project administration: Wenjuan Gong.

Supervision: Faming Gong, Wenjuan Gong.

Validation: Yuhui Ma.

Writing – original draft: Yuhui Ma, Xiaoran Li.

Writing – review & editing: Yuhui Ma, Xiaoran Li.

References

1. Isotani S, Bittencourt I I, Barbosa E F, Dermevalet D, Paiva R O A. Ontology Driven Software Engineer-

ing: A Review of Challenges and Opportunities. IEEE Latin America Transactions. 2015; 13(3): 863–

869. https://doi.org/10.1109/TLA.2015.7069116 PMID: 15019795

2. Kiran V K, Vijayakumar R. Ontology based data integration of NoSQL datastores. International Confer-

ence on Industrial and Information Systems. 2015; 1–6. https://doi.org/10.1109/ICIINFS.2014.7036545

PMID: 14920284

3. Sequeda J F, Arenas M, Miranker D P. On directly mapping relational databases to RDF and OWL.

International Conference on World Wide Web. 2012; 649–658. https://doi.org/10.1145/2187836.

2187924

4. Liu B, Huang K, Li J, Zhou M. An incremental and distributed inference method for large-scale ontolo-

gies based on mapreduce paradigm. IEEE Transactions on Cybernetics. 2014; 45(1): 53–64. https://

doi.org/10.1109/TCYB.2014.2318898 PMID: 24816632

5. Punitha S C, Punithavalli M. Performance evaluation of semantic based and ontology based text docu-

ment clustering techniques. Procedia Engineering. 2012; 30:100–106. https://doi.org/10.1016/j.

proeng.2012.01.839

6. Wang H, Zhu Y, Wang J, Li J. The applied research of the method in ontology mapping based on the

relational model. Journal of Convergence Information Technology. 2013; 8(11): 292–302. https://doi.

org/10.4156/jcit.vol8.issue11.33

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 14 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207595.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207595.s002
http://www.letpub.com/
https://doi.org/10.1109/TLA.2015.7069116
https://doi.org/10.1109/ICIINFS.2014.7036545
https://doi.org/10.1145/2187836.2187924
https://doi.org/10.1145/2187836.2187924
https://doi.org/10.1109/TCYB.2014.2318898
https://doi.org/10.1109/TCYB.2014.2318898
http://www.ncbi.nlm.nih.gov/pubmed/24816632
https://doi.org/10.1016/j.proeng.2012.01.839
https://doi.org/10.1016/j.proeng.2012.01.839
https://doi.org/10.4156/jcit.vol8.issue11.33
https://doi.org/10.4156/jcit.vol8.issue11.33
https://doi.org/10.1371/journal.pone.0207595

7. Terkaj W, Urgo. Ontology-based modeling of production systems for design and performance evalua-

tion, IEEE International Conference on Industrial Informatics. 2014; 748–753. https://doi.org/10.1109/

INDIN.2014.6945606 PMID: 14718831

8. Ho L T T, Chi P T T, Hoang Q. An Approach of Transforming Ontologies into Relational Databases.

Intelligent Information and Database Systems. 2015; 9011:149–158. https://doi.org/10.1007/978-3-

319-15702-315

9. Pinkel C, Binnig C, Jiménez-Ruiz E, May W, Ritze D, Skjæveland M G, et al. RODI: A Benchmark for

Automatic Mapping Generation in Relational-to-Ontology Data Integration. European Semantic Web

Conference. 2015; 9088:21–37. https://doi.org/10.1007/978-3-319-18818-82

10. Elbattah M, Roushdy M, Aref M, Salem A B M. Large-scale ontology storage and query using graph

database-oriented approach: The case of Freebase. IEEE Seventh International Conference on Intelli-

gent Computing and Information Systems. 2016; 39–43. https://doi.org/10.1109/IntelCIS.2015.

7397191 PMID: 15756918.

11. Rani M, Nayak R, Vyas O P. An ontology-based adaptive personalized e-learning system, assisted by

software agents on cloud storage. Knowledge-Based Systems. 2015; 90(C):33–48. https://doi.org/10.

1016/j.knosys.2015.10.002

12. Vysniauskas E, Nemuraite L. Transforming Ontology Representation from OWL to Relational Data-

base. Eleventh International Conference on Machine Learning. 2015; 35:333–343.

13. Dietze H, Berardini T Z, Foulger R E. Term Genie-A web application for pattern-based ontology class

generation. Journal of Biomedical Semantics, 2014; 5(1):48. https://doi.org/10.1186/2041-1480-5-48

PMID: 25937883

14. Song T, Pang S, Hao S, Alfonso P, Pan Z. A Parallel Image Skeletonizing Method Using Spiking Neural

P Systems with Weights, Neural Processing Letters. 2018, https://doi.org/10.1007/s11063-018-9947-9

15. Peng P, Zou L, Chen L, Zhao D. Processing SPARQL queries over distributed RDF graphs. Vldb Jour-

nal—the International Journal on Very Large Data Bases. 2016; 25(2):243–268. https://doi.org/10.

1007/s00778-015-0415-0

16. Sagharichian M, Naderi H, Haghjoo M. ExPregel: a new computational model for large-scale graph pro-

cessing. Concurrency and Computation Practice and Experience. 2015; 27(17):4954–4969. https://doi.

org/10.1002/cpe.3482

17. Wu Y N, Bao G Y. A Method of Semantic Annotation and Ontology Construction for Unified Command

and Control Language. Web Information System and Application Conference. 2014; 415–418. https://

doi.org/10.1109/WISA.2013.84 14197941

18. Zhou M J, Tao J C. A framework for ontology-based knowledge management. International Conference

on Business Management and Electronic Information. 2011; 428–431. https://doi.org/10.1109/ICBMEI.

2011.5921003 PMID: 12074091

19. Hartig O. Reconciliation of RDF* and Property Graphs. Computer Science. 2014.

20. Kang J H, Luo Z X. Research on RDF data storage based on graph database Neo4j. Information Tech-

nology. 2015; (6):115–117.

21. Holzschuher F. Performance of graph query languages: comparison of cypher, gremlin and native

access in Neo4j. Joint EDBT/ICDT 2013 Workshop GraphQ. 2013; 1:195–204. https://doi.org/10.1145/

2457317.2457351

22. Zheng W, Zou L, Peng W, Yan X, Song S, Zhao D, et al. Semantic SPARQL similarity search over RDF

knowledge graphs. Proceedings of the Vldb Endowment. 2016; 9(11):840–851. https://doi.org/10.

14778/2983200.2983201

23. Kuć, Rafał. Apache Solr 4 Cookbook. Packt Publishing; 2013.

24. Association I R M. International journal on Semantic Web and information systems. Journal of Polymer

Science Polymer Chemistry Edition. 2013; 22(10):2625–2640.

25. Yokota H, Yokota H, Yokota H. JARS: Join-Aware Distributed RDF Storage. International Database

Engineering and Applications Symposium. 2016; 264–271. https://doi.org/10.1145/2938503.2938548

26. Song T, Zou Q, Zeng X, Liu X. Asynchronous Spiking Neural P Systems with Rules on Synapses. Neu-

rocomputing. 2015; 151(3): 1439–1445. https://doi.org/10.1016/j.neucom.2014.10.044

27. Ghoshdastidar S, Adeli H. Spiking Neural Networks. International Journal of Neural Systems. 2009; 19

(4): 295–308. https://doi.org/10.1142/S0129065709002002 PMID: 19731402

28. Song T, Zheng P, Wong M L D, Wang X. Design of Logic Gates Using Spiking Neural P Systems with

Homogeneous Neurons and Astrocytes-like Control. Information Sciences. 2016; 372: 380–391.

https://doi.org/10.1016/j.ins.2016.08.055

29. Dan G, Brette R. Brian: A Simulator for Spiking Neural Networks in Python. Frontiers in Neuroinfor-

matics. 2008; 2(1):1–2. https://doi.org/10.3389/neuro.11.005.2008 PMID: 19115011

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 15 / 16

https://doi.org/10.1109/INDIN.2014.6945606
https://doi.org/10.1109/INDIN.2014.6945606
https://doi.org/10.1007/978-3-319-15702-315
https://doi.org/10.1007/978-3-319-15702-315
https://doi.org/10.1007/978-3-319-18818-82
https://doi.org/10.1109/IntelCIS.2015.7397191
https://doi.org/10.1109/IntelCIS.2015.7397191
https://doi.org/10.1016/j.knosys.2015.10.002
https://doi.org/10.1016/j.knosys.2015.10.002
https://doi.org/10.1186/2041-1480-5-48
http://www.ncbi.nlm.nih.gov/pubmed/25937883
https://doi.org/10.1007/s11063-018-9947-9
https://doi.org/10.1007/s00778-015-0415-0
https://doi.org/10.1007/s00778-015-0415-0
https://doi.org/10.1002/cpe.3482
https://doi.org/10.1002/cpe.3482
https://doi.org/10.1109/WISA.2013.84
https://doi.org/10.1109/WISA.2013.84
https://doi.org/10.1109/ICBMEI.2011.5921003
https://doi.org/10.1109/ICBMEI.2011.5921003
https://doi.org/10.1145/2457317.2457351
https://doi.org/10.1145/2457317.2457351
https://doi.org/10.14778/2983200.2983201
https://doi.org/10.14778/2983200.2983201
https://doi.org/10.1145/2938503.2938548
https://doi.org/10.1016/j.neucom.2014.10.044
https://doi.org/10.1142/S0129065709002002
http://www.ncbi.nlm.nih.gov/pubmed/19731402
https://doi.org/10.1016/j.ins.2016.08.055
https://doi.org/10.3389/neuro.11.005.2008
http://www.ncbi.nlm.nih.gov/pubmed/19115011
https://doi.org/10.1371/journal.pone.0207595

30. Song T, Rodrı́guez-Patón A, Zheng P, Zeng X. Spiking Neural P Systems with Colored Spikes. IEEE

Transactions on Cognitive and Developmental Systems. 2017; (99):1–1. https://doi.org/10.1109/TCDS.

2017.2785332

31. Zhang L, Yuan S, Feng L, Guo B, Qin J, Xu B, et al. Pore-Environment Engineering with Multiple Metal

Sites in Rare Earth Porphyrinic Metal-Organic Frameworks. Angewandte Chemie. 2018; 130(18).

https://doi.org/10.1002/anie.201802661 PMID: 29508501

32. Zhang M, Xin X, Xiao Z. A multi-aromatic hydrocarbon unit induced hydrophobic metal–organic frame-

work for efficient C2/C1 hydrocarbon and oil/water separation. Journal of Materials Chemistry A. 2017;

5:1168–1175. https://doi.org/10.1039/C6TA08368D

33. Wang X, Song T, Gong F, Zheng P. On the Computational Power of Spiking Neural P Systems with

Self-Organization. Scientific Reports. 2016; 6:27624. https://doi.org/10.1038/srep27624 PMID:

27283843

34. Wang B, Xie Y, Zhou S, Zheng X, Zhou C. Correcting Errors in Image Encryption Based on DNA Cod-

ing. Molecules. 2018; 23(8):1878. https://doi.org/10.3390/molecules23081878 PMID: 30060471

35. Wang X, Zheng P, Ma T M, Song T. Computing with Bacteria Conjugation: Small Universal Systems,

Moleculer, 2018, 2018, 23(6), 1307

36. Wang B, Zheng X, Zhou S, Zhou C, Wei X, Zhang Q, et al. Constructing DNA Barcode Sets based on

Particle Swarm Optimization. IEEE/ACM Transactions on Computational Biology and Bioinformatics.

2018; 15(3):999–102. https://doi.org/10.1109/TCBB.2017.2679004 17822280

Ontology storage of oilfield based on graph database

PLOS ONE | https://doi.org/10.1371/journal.pone.0207595 November 16, 2018 16 / 16

https://doi.org/10.1109/TCDS.2017.2785332
https://doi.org/10.1109/TCDS.2017.2785332
https://doi.org/10.1002/anie.201802661
https://doi.org/10.1039/C6TA08368D
https://doi.org/10.1038/srep27624
http://www.ncbi.nlm.nih.gov/pubmed/27283843
https://doi.org/10.3390/molecules23081878
http://www.ncbi.nlm.nih.gov/pubmed/30060471
https://doi.org/10.1109/TCBB.2017.2679004
https://doi.org/10.1371/journal.pone.0207595

