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Abstract

A major component of cognitive control is the ability to act flexibly in the environment by either

behaving automatically or inhibiting an automatic behaviour. The interleaved pro/anti-saccade

task measures cognitive control because the task relies on one’s abilities to switch flexibly

between pro and anti-saccades, and inhibit automatic saccades during anti-saccade trials.

Decline in cognitive control occurs during aging or neurological illnesses such as Parkinson’s

disease (PD), and indicates decline in other cognitive abilities, such as memory. However, lit-

tle is known about the relationship between cognitive control and other cognitive processes.

Here we investigated whether anti-saccade performance can predict decision-making, visual

memory, and pop-out and serial visual search performance. We tested 34 younger adults, 22

older adults, and 20 PD patients on four tasks: an interleaved pro/anti-saccade, a spatial

visual memory, a decision-making and two types of visual search (pop-out and serial) tasks.

Anti-saccade performance was a good predictor of decision-making and visual memory abili-

ties for both older adults and PD patients, while it predicted visual search performance to a

larger extent in PD patients. Our results thus demonstrate the suitability of the interleaved

pro/anti-saccade task as a cognitive marker of cognitive control in aging and PD populations.

Introduction

While Parkinson’s disease (PD) is primarily understood as a motor disorder, non-motor

symptoms such as cognitive impairment are present from the early stages of the disorder [1].

PD patients’ cognitive deficits comprise a wide range of abilities including selective attention

[2], response inhibition [3], visual-spatial processing [4], memory [5], task-switching [6], deci-

sion-making [7], and the planning of goal-directed behaviours [8,9]. It was hypothesized that

the underlying cause of PD cognitive impairment is a deficit in inhibitory control, a key com-

ponent in many cognitive abilities and intrinsic to cognitive control [6]. Cognitive control is

the ability to act flexibly, or alternate between inhibiting unwanted behaviours in favour of

goal-directed ones, and responding automatically. In other words, it involves both inhibitory
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control and task-switching abilities [10]. These abilities are required in performing standard-

ized neuropsychological tasks such as the Stroop task where one must actively ignore the col-

our of the letters and instead read the name of a colour [11]. Indeed, PD patients experience

difficulty during the Stroop task because of deficits in cognitive control; they have impaired

inhibitory control and task-switching abilities [12,13].

Cognitive control can also be measured by non-standardized tests using the oculomotor

system, thus offering a faster and simpler alternative to standardized testing. For instance, the

interleaved pro/anti-saccade task requires task-switching and inhibitory control abilities and

can, as a result, measure cognitive control in various clinical populations, notably in PD [3,14–

16]. The task requires participants to alternate between two types of rapid eye-movements:

pro- and anti-saccades [17]. Pro-saccades are an automatic-type of eye-movement, where a

novel stimulus in the visual field attracts the gaze. Anti-saccades, on the contrary, rely on two

sub-processes: a) inhibiting an automatic-type of eye-movement towards a novel stimulus,

and b) generating a voluntary movement in exactly the opposite direction from the novel stim-

ulus, where nothing in the visual field is attracting the gaze. The interleaved pro- and anti-sac-

cade task requires participants to alternate between automatic (i.e., pro-saccades) and

voluntary behaviours (i.e., anti-saccades), thus necessitating cognitive control abilities [18].

Indeed, this paradigm reveals an impairment in switching costs and more frequent pro-sac-

cades during anti-saccades trials in PD [6,19–21].

Anti-saccade performance is also correlated with results in neuropsychological tests in

healthy adults [22], in older adults [23], and in PD patients’ performance in the task correlates

with mild cognitive impairment and dementia [24]. Additionally, previous research has shown

that anti-saccade performance was significantly correlated with cognitive deficits revealed by

tests such as the Wisconsin Card Sort Test, which evaluates cognitive control [25,26].

Cognitive control abilities and saccades recruit the dorsolateral prefrontal cortex [27],

known to be involved in executive functioning [28]. In the case of PD, neural degeneration

occurs in the basal ganglia [29,30] which affects the frontal lobe through pathways linking the

basal ganglia and frontal lobes. Further, these striato-frontal pathways are associated with

inhibitory control abilities [31,32] and other cognitive processes such as memory [5,33]. These

overlapping neuronal circuits suggest common functional processes between cognitive control

and various cognitive functions [6]. Recent findings in PD also imply the sensitivity of anti-

saccades in certain task paradigms could assess cognitive decline and DLPC dysfunction [34].

Yet, whether anti-saccades measure cognitive control involved in performing cognitive tasks

remains largely unexplored in aging populations. Our goal is to investigate the potential of the

interleaved pro/anti-saccade task as a sensitive indirect measure (or predictor) of cognitive

functioning in aging or a neuropathology such as PD. Identifying these relationships at an

early stage would be crucial in the clinical assessment of PD; there is currently no official

screening test for cognitive impairment [35].

Here we compared three groups, younger healthy adults, PD patients in the early stages of

the disease, and age-matched controls, to evaluate the relationships between age, pathology,

and cognitive functioning. We correlated performance in the interleaved pro- and anti-saccade

task with a series of visual cognitive tasks testing decision-making abilities [36], and bottom-

up and top-down visual search [37,38], and spatial visual memory [39].

Methods and materials

Participants

We recruited a total of 76 participants from the community and via the Parkinson Quebec

Network (Montreal, QC): 34 younger adults (M = 22.7 y, SD = 3.7, age range: 19–37 y), 22
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older adults (Mage = 65.6 y, SDage = 8.2, age range: 52–83 y), and 20 medicated patients with

mild to moderate idiopathic PD (Mage = 67.4 y, SDage = 8.3, age range: 52–85 y; see Table 1 for

Hoehn and Yahr staging, medication information and demographics). Older adults were age-

matched to PD patients, within 2 years.

We screened older and PD participants for moderate or severe cognitive impairment, or

dementia, using the Montreal Cognitive Assessment (MoCA) [40] and Mini-Mental State

Examination (MMSE) [41]. We included participants with mild cognitive impairment with a

cut-off point of 23 (see Table 2 for participants’ mean MoCA and MMSE scores) [42]. This is

aligned with previous findings reporting the ability to give informed consent for PD patients is

above a score of 22 on the MoCA [43].

All participants had normal or corrected-to-normal vision. Participants completed a gen-

eral health questionnaire and those with any other neurological or psychiatric disorders were

excluded. Patient’s medication intake and dosage were not controlled for ethical reasons. The

experimental design was approved by the ethical committees at Queen’s University and at the

University of Montreal. Written informed consent was obtained from all participants before

testing, and they received financial compensation for their participation upon completion.

One younger participant did not complete the decision-making task. Two participants did not

complete the pop-out visual search task: one PD patient and one young adult. As a result, they

were only included in analyses for the serial search task.

Materials and procedure

Participants performed five cognitive tasks in randomized order while their eye movements

were recorded: interleaved pro/anti saccade, spatial visual memory, decision-making, pop-out

visual search, and serial visual search during one session of approximately 1h30. Each task was

blocked with few trials per block in order to encourage breaks and prevent fatigue in partici-

pants. The number of blocks and trials per task are described below.

All tasks were designed and implemented using MatLab (The MathWorks, Inc., Natick,

Massachusetts, United States) with Psychophysics toolbox [44]. Testing occurred at Queen’s

University (Kingston, Canada) and at the University of Montreal (Montreal, Canada) with

almost identical setups. Participants sat in a dark room 60 cm away from computer screen (at

Queens: 20” Mitsubishi Diamond Pro CRT, 16x12 inches, 1280x1024 pixels, 60Hz, at the Uni-

versity of Montreal: VIEWpixx 3D (VPixx Technologies, Montreal, Canada) 20.5�11.5 inches,

1920�1080 pixels, 120 Hz). An EyeLink 1000 Plus eye-tracker set in a binocular tower mount

(SR Research, Kanata, Canada) recorded eye movements at 1000 Hz. During recordings, par-

ticipants’ head movements were restricted with chin- and forehead-rests. Button-press

responses to spatial visual memory, decision-making, and visual search tasks were recorded

using a response box (at Queens: SR Research Gamepad (SR Research, Kanata, Canada), at the

University of Montreal: RESPONSEpixx handheld response box (VPixx Technologies, Mon-

treal, Canada).

Interleaved pro- anti-saccade task. Participants were asked to perform anti- or pro-sac-

cades in response to cues presented on the screen (see Fig 1A for schematised experimental

sequence). Each trial began with participants fixating a cue, either a green or red dot (1˚ diam-

eter), in the centre of the screen for 3000 ms, on a light grey background. The colour of the cue

informed participants as to whether they were to perform a pro- (green fixation; left panel in

Fig 1A) or anti-saccade (red fixation; right panel Fig 1A). When the fixation cue disappeared,

the target (black dot of 1˚ diameter) appeared at one of the four diagonal locations (8˚ from

centre). In the pro-saccade condition participants gazed at the target, and in the anti-saccade

condition participants gazed in the opposite direction (180˚ from the target). The target
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remained on the screen for 1000 ms, followed by a blank screen for an inter-trial interval (ITI)

of 2500 ms. These timings were set to allow PD patients with bradykinesia (i.e., slow move-

ments) to accomplish the task. Participants were familiarized with the task by a practice block

of 10 trials, before beginning the experiment that contained three blocks of 40 trials each.

Within each block, 20 trials of each pro- and anti-saccades were interleaved.

Decision-making. Participants performed were asked to discern as quickly as possible the

direction of the dots moving in a coherent direction among randomly moving ones (Fig 1B).

Each trial began with a black fixation cross (1˚ diameter) presented for 1000 ms on a light grey

background. Immediately after the disappearance of the fixation cross, the moving dots were

displayed within a 10˚ circular window in the middle of the screen for 3000 ms. The total

Table 1. Patient demographics and clinical measures.

Patients Sex Age (y) Education (y) H&Y Medications

Generic name Dosage (mg)

1 M 77 21 1.5 L 100/25

2 F 69 13.5 2.5 Se 5

3 M 69 18 2 . .

4 M 85 18 � 3 L 100/25

5 M 59 16 1 L, Sa 100/25, 30

6 F 69 16 2 L 100/25

7 M 54 14 2 L 100/25

8 F 62 13 2 L 100/25

9 M 54 17 � 3 L 150

10 M 69 16 � 3 L 100/25

11 F 53 16 1.5 L, R 100/25, 0.5

12 M 74 6 2 L 100/50

13 M 64 12 1 L 100/25

14 F 67 21 3 L 100/25

15 M 74 10 2 L 100/25

16 M 66 14 2 L, Sa 100/25, 0.4

17 F 66 14.5 1 L 100/25

18 M 68 13 1 L 100/25

19 M 70 13 1 L 100/25

20 F 79 16 1.5 L 100/25

H&Y, Hoehn and Yahr Scale; L, Levodopa/carbidopa/entacapone; R, Rasagiline; Sa, Sandoz; Se, Selegiline. Missing data are illustrated by a dot.

https://doi.org/10.1371/journal.pone.0207589.t001

Table 2. MoCA and MMSE score differences between older and PD cohorts.

Variable n M SD F p
MoCA 8.66 < .01

Older adults 22 27.8 2.3

PD patients 20 26 2

MMSE 2.40 .13

Older adults 22 28.3 1.7

PD patients 20 29.1 1.4

n, subsample size; M, mean; SD, standard-deviation; F, one-way ANOVA with group as a factor; MoCA, Montreal

Cognitive Assessment; MMSE, Mini-Mental State Examination.

https://doi.org/10.1371/journal.pone.0207589.t002
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Fig 1. Experimental sequence and timings of the cognitive tasks. (A) Interleaved pro/anti-saccade task. In pro-

saccade trials (left panel), the cue is green and indicates to participants to make a saccade towards the target. In the

anti-saccade condition (right panel), the cue is red, and participants are asked to inhibit a saccade towards the target

and to make a saccade 180˚ away from it instead. The cue remained on the screen for 3000 ms and target appeared for

1000 ms. For both trial types, correct saccades according to cue are illustrated by an arrow while dotted lines represent

possible cue locations. There was an inter-trial interval (ITI) was of 2500 ms. (B) Decision making task. Participants

had to detect the direction, either left or right, of coherently moving dots among randomly moving ones. Each trial

began with participants fixating a fixation cross in the center of the screen for 700 ms. Moving dots appeared in a

circular window of 10˚, illustrated by dotted lines, with a coherence of 10, 20 or 30% among moving dots. The

Anti-saccades predict cognitive functions
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number of dots remained constant, but the percentage of coherently moving dots was either

10, 20 or 30, randomized across trials. The direction of the motion was either left or right, also

randomized between trials. Participants indicated the direction of the coherently moving dots

with one of two button presses. Participants performed 10 practice trials, followed by two

experimental blocks of 40 trials each.

Spatial visual memory. As depicted in Fig 1C, the participants’ task was to remember the

location of one, three or five squares of different colours (black, white, red, green, blue, yellow,

or cyan). Each trial began with a black central fixation cross (1˚ diameter), on a dark grey back-

ground, which remained on the screen for 700 ms. Immediately following the extinction of the

fixation cross, a randomized number of squares of various colours appeared within a window

subtending 5.5–11.5˚, for 200 ms. The squares appeared at randomized locations within the

window, with a minimal distance of 1.41˚ from one another. The squares were then replaced

by a blank dark grey screen for 1000 ms. Then, one of the squares reappeared for 250 ms but

was shifted horizontally, from its original position, by either 0.5˚, 2˚, or 5˚ to the left or right,

in randomized order [39]. Participants indicated with one of two button presses the direction

of the shift. After participants’ response, there was an ITI of 1000 ms during which a dark grey

blank screen was displayed. Testing consisted of a practice of 12 trials and three experimental

blocks of 54 trials each.

Pop-out visual search. Participants were instructed to detect as quickly as possible

whether a target was present or absent among distractors within a search array (Fig 1D). Each

trial began with a black fixation dot (1˚ diameter) set against a light grey background. A gaze

verification was applied within a window of 4.4�4.4˚ around the fixation dot. Once gaze was

detected within this window, the fixation dot was replaced with a rectangular search array

(25�18˚), which remained on the screen until participants responded by one of two button

presses. The search array was randomly composed of either 12, 24 or 48 items, including dis-

tractors and the target, if present. Distractors consisted of circles (1.1˚ diameter), while the tar-

get, when present, was the same circle except with a vertical line (0.75˚) crossing the bottom

half, essentially resembling a lollipop (also known as a feature-present visual search) [45].

Once participants responded, the search array was replaced by a blank screen for an ITI of 300

ms. Testing began with 12 practice trials, followed by one block of 81 trials of which 72 were

target-present (24 repetitions of each condition—12, 24, or 48 items) and 9 were target-absent

trials, in a randomized order.

Serial visual search. The instruction and protocol of the task were the same as for the

pop-out visual search described above. However, target and distractors were reversed: partici-

pants were asked to search for the plain circle among lollipops (Fig 1E, known as feature-

absent visual search) [45]. While bottom-up information processing can be measured with the

pop-out task, the serial tasks solicit top-down processes [37,38]. The number of trials for the

practice session and the experimental block, as well as the other parameters (the three

movement of the dots is indicated by arrows in the figure. Following the moving dot screen, a blank screen remained

until button-press response and the next trial began. (C) Spatial visual memory task. Participants’ instructions were to

determine the direction of the shift of one of the targets. Each trial began with a fixation cross for 700 ms in the center

of the screen. Next, one, three of five targets appeared for 200 ms. This was followed by a blank screen for 1000 ms,

after which one of the targets reappeared for 250 ms but shifted to the right or the left as illustrated by an arrow in the

figure. Thereafter the screen remained blank until participant’s button-press response. The ITI lasted 1000 ms. (D)

Pop-out visual search task. Participants searched for a lollipop shaped target among circles (feature-present) and were

asked to report as quickly as possible whether the target was present or absent in the search array. (E) Serial visual

search task. Targets and distractors were reversed, and participants searched for a circle among lollipops (feature-

absent). Trials began with a square fixation window of 4.4˚ in the center of the screen (illustrated by dotted lines in the

figure) surrounding a black fixation dot. When participants’ gaze was detected within this window, the search array

appeared and remain until their button-press response. The next trial began after an inter-trial interval (ITI) of 300 ms.

https://doi.org/10.1371/journal.pone.0207589.g001
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conditions, and the ratio of present/absent trials) were the same as described above in the pop-

out visual search.

Data analysis

Interleaved pro/anti-saccade task. After the analysis of recording trials, it was revealed

that 11 participants (five younger adults, one older adult and five PD patients) made an eye-

movement 90˚ away from target during anti-saccade trials instead of 180 ˚ away. We con-

cluded these participants did not understand the task instructions and they were thus excluded

from subsequent analyses. From the remaining participants, we recorded 5,136 trials, from

which we first removed trials where the saccade reaction times (SRTs) were less than 100 ms

or more than 1000 ms (28 trials, 0.5% of total trials). Next, we removed trials where the sac-

cades had start positions above 5 degrees from the centre of the screen (14 trials, 0.3% of total

trials) or extreme end position (12 trials, 0.2% of total trials). We also removed amplitude out-

liers, defined as trials where the saccades were smaller than 2˚ or larger than 20˚ (91 trials,

1.8% of total trials). Finally, we removed all trials with a saccade amplitude beyond three stan-

dard-deviations (SDs) from each participant’s mean saccade amplitude (52 trials, 1% of total

trials). There remained 4,939 trials (96.2% of total trials).

We conducted our statistical analyses on error rates (ERs) and SRTs for pro- and anti-sac-

cade trials. For ERs, we defined incorrect pro-saccades as saccades away from the target, while

incorrect anti-saccades were saccades to the target. Separately for pro- and anti-saccades, we

then divided the number of incorrect trials by the total number of trials per participant. SRTs

were calculated only from correct trials, by taking the mean saccade reaction time for each par-

ticipant, for each condition (pro- and anti-saccade).

Decision-making. We defined decision times (DT) as participants’ response time on cor-

rect trials. We conducted an outlier analysis per participant on their DT collapsed across

coherence levels, from a total of 5,956 trials. We also removed outliers as trials with DT longer

than three SDs of each participant’s mean (112 trials, 1.9% of total trials). There remained

5,844 trials (98.1% of total trials).

Spatial visual memory task. We collected a total of 10,808 trials, all of which were used in

the analyses. Percentage correct was defined as the number of correct trials divided by the total

number of trials, collapsed across the number of squares.

Pop-out and serial visual search tasks. We calculated participants’ search times (STs)

separately for each visual search task as follows: the time between the onset of the search array

and participants’ button-press, only including correct trials. From a total of 12,068 recorded

trials, we first removed extreme STs for each visual search task, i.e., any ST longer than 9000

ms (24 trials, 0.002% of total trials). Second, we removed ST outliers on an individual basis:

these were calculated per participant and per type of visual search as two SDs outside their

mean ST, or 95% of each participant’s overall trials (734 trials, 6.1% of total trials). For statisti-

cal analyses, there remained 11,310 trials (93.7% of total trials) with which we calculated the

mean STs collapsed across item number (12, 24, and 48) for each visual search task.

Target absent trials were not analysed but were included as catch trials to ensure that partic-

ipants were performing the task correctly, i.e. pressing the button when they detected the but-

ton rather than automatically pressing the button at every trial. To confirm that participants

were following instructions, we compared performance for target present and absent trials by

calculating ERs and performing a mixed ANOVA with group and target (present and absent)

as factors.
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For each of the tests listed above, we compared performance across groups with ANOVAs

and followed up any significant results with the appropriate post-hoc tests. Full data set is

available in S1 File.

Results

We began our statistical analyses by comparing performance in the interleaved pro/anti-sac-

cade, decision-making, visual search and spatial visual memory tasks across groups. This pro-

vided an overview of each group’s baseline performance. We followed these analyses by

conducting preliminary correlations to explore relationships between task performance, spe-

cifically how anti-saccade performance related to the other tasks. We lastly performed regres-

sion analyses for PD patients and older adults to investigate how anti-saccade performance

predicted performance in the other tasks.

Interleaved pro/anti-saccade task: Error rates (ERs), saccade reaction times

(SRTs)

We compared pro- and anti-saccade ERs, and pro- and anti- SRTs to validate of our inter-

leaved pro/anti-saccade paradigm for each population tested (Fig 2A). As expected, repeated

measures ANOVAs revealed that pro-saccade ERs were significantly lower than anti-saccade

ERs, F(1, 64) = 53.44, p< .001, and that pro SRTs were also significantly lower than anti SRTs,

F(1, 64) = 1198.86, p< .001. These results replicate previously reported patterns [15,38] and is

therefore valid.

We next assessed differences across groups for ERs and SRTs. One-way ANOVAs for pro-

saccade ERs, F(2, 64) = .45, p = .64, and SRTs, F(2,64) = .34, p = .71, did not reach significance.

In contrast, for anti-saccade ERs, there was a significant main effect of group, F(2, 64) = 4.16, p
= .02. Older adults (M = 32.00%, SD = 24.71%) and PD patients (M = 30.49%, SD = 26.37%)

had significantly higher ERs than younger adults (M = 16.68%, SD = 11.96%), t(48) = 15.675, p
= .005; t(42) = 13.34, p = .02, while there was no significant difference between PD patients

and older adults, t(34) = -.18, p = .86 (Fig 2A). As for anti SRTs, there was no main effect of

group, F(2, 64) = 2.11, p = .13 (Fig 2B). However, there is a tendency for SRTs to increase with

both age and pathology. The lack of effect found here thus appears to be due to lack of statisti-

cal power as many studies have showed increased SRTs in older adults [46] and PD patients

[20,47].

Decision-making task: Decision time (DT). For decision-making times, we also found a

significant main effect of group, F(2, 74) = 7.554, p = .001. Results showed that PD patients

had longer DTs (M = 1674.25 ms, SD = 766.09 ms) than younger adults (M = 1093 ms,

SD = 376.98 ms) and older adult (M = 1238.36 s, SD = 473.59 ms; t(51) = -3.691, p = .001; t(40)

= 2.24, p = .03, respectively. Further, there was no significant difference between older and

younger adults’ DTs, t(53) = -1.26, p = .21 (Fig 2C). This suggests that decision-making abili-

ties, as measured by our coherent motion detection task, tend to decrease with aging and

appear to be further delayed by PD.

Spatial visual memory task: Percentage correct

For the spatial visual memory task, we found a significant main effect of group on perfor-

mance, F(2, 75) = 12,164, p< .001. Indeed, younger adults (M = 88.17%, SD = 5.20%) per-

formed significantly better than older adults (M = 81.78%, SD = 5.02%) and PD patients

(M = 77.68%, SD = 10.08%; t(54) = 4.555, p = .001; t(52) = 5.052, p< .001, respectively), while

performance between older adults and PD patients was not significantly different, t(40) =
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-1.691, p = .099 (Fig 2D). These results show a decline in spatial visual memory performance

with age.

Visual search tasks: Error rates (ERs), and search time (ST)

We first confirmed that participants performed the task according to given instructions. We

conducted statistical analyses as outlined in the Method section for error rates and we found

no main effect of group or target and no interaction effect for pop-out, F(2, 69) = 2.40,

p = 0.92; F(1, 69) = 1.47, p = 0.23; F(2, 69) = 1.83, p = 0.17, and serial search, F(2,71) = .12, p =

.88; F(1,71) = .14, p = .71; F(2,71) = .48, p = .62. Further, these results illustrate similar accuracy

across groups for both visual search tasks.

Fig 2. Performance across groups in the saccade and cognitive tasks. Younger adults’ performance is shown in blue,

older adults’ in purple and PD patients’ in red. (A) Mean error rates in percentages for pro-saccades and anti-saccades.

Pro, pro-saccade trials; Anti, anti-saccade trials. (B) Mean saccade reaction times in ms for each group. (C) Decision

times for correct decisions in the decision-making task. (D) Performance in the spatial visual memory task in

percentage correct. (E) Search times both the pop-out and serial visual search tasks. We compared group performance

in each panel with one-way ANOVAs and corrected t-tests, � = p<0.05, ��� =<0.001. Bars represent standard error of

the mean across subjects for each group.

https://doi.org/10.1371/journal.pone.0207589.g002
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Mean STs are plotted in Fig 2E. They followed the expected pattern; in both pop-out and

serial tasks young adults had the lowest STs, and PD patients had the highest STs. For pop-out

search, we observed a significant main effect of group, F(2, 71) = 22.489, p< .001. Pop-out STs

for PD patients (M = 945.08 ms, SD = 257.08 ms) were significantly longer than younger

(M = 633.40 ms, SD = 123.66 ms) and older adults’ (M = 735.71 ms, SD = 78.79 ms; t(49) =

-5.863, p< .001; t(37) = 3.549, p< .001). In contrast, the difference between the two control

groups’ STs only showed a trend, t(52) = -3.38, p = .07. For serial search, we also found a signif-

icant main effect of group, F(2,73) = 35.05, p< .001; in this case all three groups were different

from each other. PD patients’ STs (M = 1776.89 ms, SD = 437.51) were higher than younger

adults’ (M = 1052.98 ms, SD = 235.07 ms), and older adults’ (M = 1389.22 ms, SD = 254.04

ms), and older adults had longer ST than younger adults, t(51) = -7.86, p< .001; t(38) = 3.47, p
< .001; t(53) = -5.00, p< .001. Overall, these results suggest PD patients have significantly

impaired performance in visual search types invariably of task type compared to older adults.

In addition, the latter cohort show deficits in the serial search task compared to younger

adults.

Regression analysis

We first performed correlational analysis between all measures of our tasks to determine

whether there were any relationships between participants’ performance in the interleaved

pro/anti-saccade task and their performance in the other cognitive tasks. These preliminary

correlational analyses (Fig 3) demonstrates that while performance in the cognitive tasks and

the interleaved pro/anti-saccade task were overall not correlated in young adults (Fig 3A), they

were often correlated in older adults (Fig 3B), and were particularly strongly correlated in PD

patients (Fig 3C). In this figure, weak correlations are illustrated in white and strong ones, in

red. The overall weak correlations in young adults is likely due to ceiling effects—the tasks

were, for the most part, too easy for the young adults. For this reason, we removed young adult

data from further regression analyses, but these results are available in S1 Table. We also did

not consider pro SRTs and pro ERs in the regression model; because of the automatic nature

of pro-saccades, they were only a means to induce task-switching in participants. Thus, we

only included measures obtained from the anti-saccade task in a two-level hierarchal linear

regression model to distinguish between correlation strength and group effects for each task:

we first tested anti SRTs and anti-saccade ERs as predictors (level 1); we then assessed for an

effect of group (level 2) as an additional predictor (i.e., a difference between older adults and

PD patients). We determined whether performance in anti-saccades predicted performance of

the spatial visual memory, decision-making, pop-out visual search, and serial visual search

tasks, and scores on the MoCA and MMSE (see Table 3).

We found that performance in the anti-saccade task significantly predicted performance in

the decision-making task. With SRT and ER as predictors, 46% of the variability in decision

time was explained, F(2, 33) = 14.02, p< .001. Considering the large amount of the variance

explained, anti-saccade measures are good predictors at the group-level for both tested popula-

tions. Adding Group as a predictor did not contribute significantly to the model’s fits (R2
Δ =

.47, FΔ(1, 32) = 0.76, pΔ = .39). This suggests increases in SRTs and ERs are related to increases

of DT in both groups. In other terms, participants who took longer to perform anti-saccades,

and made more anti-saccade errors, had increased DT in the decision-making task.

Similarly, performance on the spatial visual memory task was significantly predicted by per-

formance on the anti-saccade task. The anti SRT and ER predicted 35% of the variability in the

proportion of trials were the position of the squares were correctly remembered, F(2, 33) =

8.86, p = .001. Nonetheless, the variance explained for this task was moderate, suggesting that
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the unexplained variance might be due to individual differences such as MoCA scores, age,

medication intake and disease progression (i.e., Hoehn & Yahr stages) in the specific case of

the PD group. Adding Group did not significantly improve the model (R2
Δ = .36, FΔ(1, 32) =

0.48, pΔ = .49). Overall, the relationship among the variables and predictors show that increases

in SRT and ER are related to decreases in percentage correct. This suggests that participants

who had longer SRTs and higher ERs, were more likely to make more mistakes on the spatial

visual memory task.

In contrast, the two visual search tasks required different regression models than those

described for predicting performance in the spatial visual memory and decision-making tasks.

Specifically, the anti-saccade predictors in the first level of the model explained 27% of varia-

tion in ST for the pop-out task, F(2, 31) = 6.53, p = .004, and adding group significantly

Fig 3. Heat maps of correlations among all tasks for each group. Pearson’ correlations between the performance

measures for the different tasks for younger adults in (A), older adults in (B), and PD patients in (C). Weak

correlations, near 0, are in white while those nearing 1 are in red, portraying strong correlations. Pearson’s correlations

are in absolute values.

https://doi.org/10.1371/journal.pone.0207589.g003
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improved the model, FΔ(1, 30) = 8.77, pΔ = .006. Taken together, predictors explained 46% of

variation of ST for the pop-out task, which supports the idea that the reported relationship was

related to inter and intra-group factors. The predictive strength of the combined anti-saccade

factors (ß = .56) was similar to the strength of the group effect (ß = -.40). Group was a signifi-

cant predictor because pop-out STs were strongly correlated with anti-saccade performance in

PD, but to a much lesser extent, if at all, in older adults (see correlations in Fig 3B and 3C). As

Table 3. Standard multiple linear regression of anti-saccade measures on cognitive task performance for older populations.

Tasks Model Predictors Unstandardized coefficients Standardized

coefficients

R2 R2 change F p

B SE ß p
Memory 1 .349 .349 8.863 .001

Anti SRT -.022 0.013 -.310 .096

Anti ER -.093 0.049 -.344 .066

2 .359 .010 0.478 .494

Anti SRT -.021 0.013 -.292 .122

Anti ER -.096 0.049 -.358 .060

Group 1.333 1.928 .099 .494

DM 1 .459 .459 14.015 < .001

Anti SRT 1.939 .824 .388 .025

Anti ER 6.834 3.115 .362 .035

2 .472 .013 .764 .389

Anti SRT 1.836 .835 .368 .035

Anti ER 7.144 3.146 .378 .030

Group -107.318 122.778 -.113 .389

Pop-out 1 .296 .296 6.530 .004

Anti SRT .663 .269 .456 .020

Anti ER .754 1.043 .134 .476

2 .455 .159 8.765 .006

Anti SRT .578 .243 .397 .024

Anti ER .903 .935 .160 .341

Group -106.441 35.954 -.402 .006

Serial 1 .175 .175 3.389 .046

Anti SRT 1.234 .645 .377 .065

Anti ER .831 2.545 .064 .746

2 .280 .105 4.535 .041

Anti SRT 1.032 .620 .316 .106

Anti ER 1.159 2.420 .090 .635

Group -195.529 91.820 -.329 .041

MoCA 1 .146 .146 2.815 .074

Anti SRT -.008 .005 -.299 .159

Anti ER -.011 .020 -.114 .585

2 .301 .155 7.120 .012

Anti SRT -.006 .005 -.227 .247

Anti ER -.016 .018 -.172 .376

Group 1.899 .712 .398 .012

N = 35. DM, decision-making; SE, standard error; MoCA, Montreal Cognitive Assessment.

https://doi.org/10.1371/journal.pone.0207589.t003
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anti-saccade performance improved (i.e., ERs and SRTs decrease), pop-out STs decreased in

PD patients to a larger extent than in older adults.

The serial visual search showed similar results as for pop-out visual search: the first level

determined that anti-saccade performance significantly predicted ST (R2 = .18, F(2, 32) = 3.39,

p = .046) and the addition of group as a factor in the second level significantly improved the

model’s fit (R2
Δ = .21, FΔ(1, 31) = 4.54, pΔ = .041). Nonetheless, the variance explained

remained low in this second model’s fits; the large amount of unexplained variance is likely

due to individual differences, such as age or characteristics related to PD. Once more consider-

ing correlational relationships, we observed a strong significant correlation between anti-sac-

cade ER and serial ST in PD patients, but not in older adults (Fig 3B and 3C). As shown for the

pop-out visual search task, the predictive strength of the combined anti-saccade factors (ß =

.41) was similar to the strength of the group effect (ß = -.33). Increases in anti SRTs and ERs

are related to increase in serial STs in PD patients and less so, in older adults. In summary, the

significant effect of group demonstrates that performance in the anti-saccade trials is a stron-

ger predictor of performance in the visual search tasks in PD patients, compared to older

adults.

Lastly, we attempted to predict MoCA and MMSE scores from anti-saccade performance.

For the first test, anti-saccade performance marginally significantly predicted the variation in

MoCA scores (R2 = 0.15, F(2, 33) = 2.815, p = .074) and the addition of group as a predictor

improved the model, so that a total of 30% of variation in MOCA scores were explained, FΔ(1,

32) = 7.120, pΔ = .012. The extent variance explained does not exclude individual differences

within each group, for example age and characteristics related to PD. However, the majority of

the significant effects were driven by the strong correlations between both anti-saccade perfor-

mances and MoCA scores in PD patients, which were not observed in older adults (Fig 3B and

3C). This is explained by similarities found between the strength of combined anti-saccade fac-

tors (ß = -.40) and the strength of the group factor (ß = -.40). As anti-saccade performance

increased, MoCA scores decreased, but more so in PD patients than in older adults.

Nevertheless, anti-saccade performance did not significantly predict MMSE scores (R2 =

.027, F(2, 33) = 0.429, p = .636), and the addition of group did not lead to an improvement in

the regression model (R2
Δ = .074, FΔ(1, 32) = 1.637, pΔ = .210). In sum, while anti-saccade per-

formance was related to MOCA scores, particularly in PD patients, we found no such relation-

ship to MMSE scores.

Discussion

In the present article, we aimed to predict cognitive functioning in three subject groups

(young healthy adults, older healthy adults, and PD patients) with a saccade task known to

measure cognitive control. We initially showed that young adults had the best performance in

all of our cognitive tasks—in fact they often performed at ceiling. In contrast, PD patients were

impaired in decision-making and visual search tasks compared to their age-matched controls.

Aging itself tended to degrade performance across all tasks. Additionally, regression analyses

revealed that the measures of anti-saccade performance—ERs and SRTs—could predict per-

formance in spatial visual memory and decision-making tasks in older adults and PD patients.

In the specific cases of visual search and MoCA, performance in anti-saccades were more pre-

dictive for PD patients compared to healthy older adults. Taken together, our results support

the hypothesis that anti-saccade performance reflects cognitive abilities and therefore can pro-

vide generalized measures of cognitive control.

Cognitive decline in normal aging has been attributed to frontal lobe degeneration [48,49].

Recent studies have shown that dysregulation in the parieto-frontal and striato-frontal
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pathways can also cause deficits in cognitive functioning. The role of the parietal remains

ambiguous in inhibitory mechanisms related to the anti-saccade task [19,50–58]. However, it

has been shown but PD inhibitory control deficits may be explained with over-activation of

this structure to compensate for dopamine loss in the basal ganglia [59]. As for dysregulations

in the striato-frontal pathways, they are associated with deficits in cognitive control in both PD

and normal healthy aging [60,61]. For example, visuospatial memory relies on the integrity of

the dorsolateral prefrontal cortex [62,63], the parietal cortex [64], the caudate [62,65] and the

mediodorsal thalamic nucleus [66]; all regions included in the striato-frontal or parieto-frontal

pathways [67–69]. The striatum and the dorsolateral prefrontal cortex are also critical for the

speed-accuracy trade-off underlying our decision-making task [70,71]. The fact that anti-sac-

cades also recruit the striato-frontal and parieto-frontal neural substrates explains our reported

correlations between anti-saccade performance and spatial visual memory, and decision-mak-

ing abilities [19,27,72]. Further, it may suggest these substrates mediate the relationship

between cognitive control and decision-making and visual memory processes.

Both the frontal-striatum and the parieto-frontal neural networks are crucial for inhibitory

control and task-switching abilities underlying most measures of cognitive control [18,73–75].

The role of the prefrontal cortex in anti-saccade inhibitory mechanisms has been shown in

multiple neurophysiological studies. For example, its cortical activity predicts the level of per-

formance in memory-guided and anti-saccade tasks [54]. Other studies have demonstrated

increased pre-stimulus activity during anti-saccade trials [76,77] as well as changes in saccade

triggering thresholds [78], reflecting pre-emptive top-down inhibitory mechanisms [55]. Neu-

roimaging studies have also revealed the specific involvement of the frontal cortex in the inhi-

bition of responses [79]. Similarly, task-switching has implicated both the prefrontal and

parietal networks [80–82]. Given the recruitment of both inhibitory and task-switching abili-

ties, anti-saccade tasks can be effective in neuropsychological settings as a measure of function

within these networks [55].

Although most neuropsychological standardized tests, such as the Stroop task, are often

developed with the intent of measuring one specific cognitive function, studies show that they

tend to measure more than one cognitive ability [83–85] and to correlate with other non-

related standardized tasks [86]. This is likely because most standardized tests implicate similar

cognitive abilities, and most importantly cognitive control. Thus, the interleaved pro/anti-sac-

cade task presents the advantage of measuring cognitive control through individuals’ inhibi-

tory control and task-switching functioning.

We observed a difference between PD patients and older adults in the ability of anti-sac-

cades to predict performance in some of the cognitive tasks measured here (e.g. visual search

and MoCA); the predictive pattern of anti-saccades for the visual search tasks differed across

groups unlike from the ones observed for the spatial visual memory and decision-making

tasks. Decreases in visual search tasks’ performance are observed in abnormal aging [87–89],

which could suggest it requires more damage to the cortex before detection of cognitive

impairment is possible via these tasks. In our study, PD patients were more cognitively

impaired and more variable in their performance than the older adult population. As we noted

stronger correlations in the linear fits of anti-saccade performance and search times in both

visual search tasks in PD patients, compared to older adults, this may merely reflect a general

impairment in information processing associated with the disorder [90]. Indeed, older adults

have less of an impairment in visual information processing compared to PD patients [91] and

in attention [2], both abilities inherent to the performance of visual search tasks [92]. There-

fore, older adults would be less delayed in their performance on the visual tasks compared to

PD patients.
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We also reported more severe cognitive impairment in PD patients, as revealed by signifi-

cantly lower MoCA scores. This difference could explain the stronger relationship between

MoCA scores and anti-saccade measures in PD patients compared to older adults. In contrast,

there was no significant relationships between MMSE and anti-saccade performance, which is

likely due to the lack of variability in MMSE scores of participants included in the study.

MMSE was designed as a tool to assess severe cognitive impairment, and is specific and sensi-

tive only to such sever impairments [41], while MOCA scores are more sensitive to mild cogni-

tive impairments. In our study, moderate-to-severe cognitive impairment was an exclusion

criterion, because of the complexity of the anti-saccade task. Therefore, we demonstrated that

the anti-saccade task was related to mild cognitive impairment as measured by the MoCA, but

not to MMSE scores.

It is important to note that all our participants were medicated, in most cases with dopa-

mine agonists (see Table 1). We did not control for medication intake and dosage in this first

exploratory study, for ethical reasons. Dopamine circuits are important in the regulation of

striato-frontal pathways [93,94]. Further, dopaminergic medications such as Levodopa has

been shown to decrease anti-saccade errors in PD patients [95] and its withdrawal is associated

with impaired task-switching abilities [96]. Thus, medication could have influenced our find-

ings. Further studies are needed to directly explore the effects of dopamine on cognition with

carefully controlled medications.

We propose that the interleaved pro/anti saccade task may also have potential as a cognitive

rehabilitation tool for clinical populations. Anti-saccade training is effective in younger [97]

and older adults [98], and clinical populations [99,100]. Due to the relationships between anti-

saccade performance and performance in other cognitive tasks reported here, training in our

saccade task may improve connectivity in the striato-frontal and parieto-frontal pathways,

and, in turn, increase inhibiting and task-switching abilities. Thus, anti-saccade training may

transfer to improvement in a wide variety of cognitive functions in older adults and PD

patients.

In conclusion, we demonstrated that performance in the interleaved pro/anti-saccade task

is related to decline in cognitive functions as measured by spatial visual memory, decision-

making, visual search, and MoCA. We suggest that the dysregulation of the striato-frontal and

the parieto-frontal neural pathways likely underpin this relationship. Our findings demon-

strate the sensitivity of the anti-saccade task as a cognitive marker for cognitive function in

older healthy and pathological populations. Due to the relative simplicity of the anti-saccade

task, it would be a particularly useful complementary task for neuropsychological testing in

mild cognitive impaired populations, even in medicated populations (such as our PD

patients).
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