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Abstract

Thousands of species of bees are in global decline, yet research addressing the ecology

and status of these wild pollinators lags far behind work being done to address similar

impacts on the managed honey bee. This knowledge gap is especially glaring in natural

areas, despite knowledge that protected habitats harbor and export diverse bee communi-

ties into nearby croplands where their pollination services have been valued at over $3 bil-

lion per year. Surrounded by ranches and farmlands, Pinnacles National Park in the Inner

South Coast Range of California contains intact Mediterranean chaparral shrubland. This

habitat type is among the most valuable for bee biodiversity worldwide, as well as one of

the most vulnerable to agricultural conversion, urbanization and climate change. Pinnacles

National Park is also one of a very few locations where extensive native bee inventory

efforts have been repeated over time. This park thus presents a valuable and rare opportu-

nity to monitor long-term trends and baseline variability of native bees in natural habitats.

Fifteen years after a species inventory marked Pinnacles as a biodiversity hotspot for

native bees, we resurveyed these native bee communities over two flowering seasons

using a systematic, plot-based design. Combining results, we report a total of 450 bee

species within this 109km2 natural area of California, including 48 new species records

as of 2012 and 95 species not seen since 1999. As far as we are aware, this species rich-

ness marks Pinnacles National Park as one of the most densely diverse places known for

native bees. We explore patterns of bee diversity across this protected landscape,

compare results to other surveyed natural areas, and highlight the need for additional

repeated inventories in protected areas over time amid widespread concerns of bee

declines.
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Introduction

The importance of bees as critical ecosystem service providers can scarcely be exaggerated.

Twenty thousand species of bees worldwide provide the pollination services required for

reproduction in 85% of wild and cultivated plants [1,2]. In the United States, the economic

importance of bees to agriculture has been valued at up to $14.6 billion annually [3], with

$3.08 billion and up to 30% of the U.S. diet specifically credited to the four thousand North

American species of native, non-honey bees [4]. Diverse assemblages of native bees have been

found capable of enhancing fruit set and yield in the presence of imported honey bees, and of

providing adequate pollination for a majority of crops in their absence [5–7]. In natural areas,

without the manpower of imported, managed honey bee hives, native bees play a key role in

maintaining plant communities that provide soil structure, shelter other invertebrate ecosys-

tem service providers, and establish the base of the food chain [8,9].

Although native bees are often observed pollinating agricultural fields, they seldom nest

there. Instead, they rely on nearby remnant patches of semi-natural habitat, a resource that is

rapidly disappearing with increasing agricultural intensification, habitat fragmentation, and

urban development [10–12]. Despite recognition of natural areas as valuable reservoirs of pol-

linators [13,14], research on native bee ecology remains concentrated in urban or agricultural

settings where baselines may already reflect impacts of degraded ecosystems. Compared to

massive honey bee research efforts, progress towards a holistic understanding of how to pro-

tect wild bee communities or the habitats they require has not matched their value as pollina-

tors or the known risks they face [15–17].

The relative paucity of research on native bees is due, in part, to the complexity of their

biology and behaviors, particularly in wild landscapes. Efforts to monitor wild bees must con-

tend with the ‘axonomic impediment’ of expertise required to evaluate their vast global biodi-

versity, and the logistics of sampling a taxon with rapid spatiotemporal turnover, short

lifespans, and solitary, elusive habits [18–21]. Unlike many taxa that follow a latitudinal biodi-

versity gradient [22], bee diversity is highest in xeric and Mediterranean environments, owing

to strong seasonal blooms and well-drained soils—features which support a range of foraging

specializations and a high temporal turnover of ground-nesting species [19,20,23]. When envi-

ronmental conditions signal a poor year for host plants, some ground-nesting, specialist bee

species can remain underground in diapause for additional years, necessitating multi-year bio-

diversity monitoring efforts [24]. This fine and irregular partioning of space and time make

native bees challenging, time-consuming, and expensive to exhaustively sample in any habitat

[25]. Once found, many bee species are difficult to identify even with training and, given

reports of functional redundancy within highly-nested pollination networks, the benefit to

ecology of doing so may seem unclear [26,27]. However, links between non-random species

loss and the stability of ecosystems and mutualistic networks [10,28–34] highlight the merits

of species-level bee biodiversity monitoring.

Long-term monitoring of native bee species in natural areas is necessary to reliably assess

trajectories of both thriving and struggling native bee communities over time, and to forecast

their resilience to future climates and perturbations. Evidence is mounting that climate change

affects biotic interactions, increases variability in flowering phenology, and disrupts temporal

synchrony between plants and pollinators, potentially impacting plant reproduction and bee

access to resources [35–38]. There is a growing need to improve our understanding of the

background variability inherent in native bee communities in natural areas in order to contrast

that with patterns recorded over time among bee species experiencing a plethora of shifting

natural and anthropogenic pressures, including climatic instabilty, shifting habitat phenology,
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resource depletion, urbanization, and invasion of novel parasites, predators or competitors

that may alter ecosystem functioning and the structure of terrestrial communities [36,38,39].

Several large surveys of native bee faunas, particularly in the western United States, have

added to current knowledge of the diversity and variability of bee species across space [40–47].

A pair of studies comparing bee faunas from several Mediterranean climate zones concluded

that the chaparral habitats of California represent one of the highest global biodiversity hot-

spots for native bees [48,49]. In the late 1990s, Messinger and Griswold [42] found Pinnacles

National Monument in California’s Inner South Coast Range to be one of the most diverse

areas known for bees, with 393 bee species discovered in what was then a 68km2 area. They

attributed this remarkable richness, in part, to Pinnacles’ high floral diversity and habitat het-

erogeneity [42], features which also make it an ideal place to investigate relationships between

native bee community dynamics and environmental variables. In 2002, Pinnacles staff con-

ducted a native bee survey of three changing habitats that added species and a time step to the

record of bee biodiversity in the monument.

Fifteen years after that initial species inventory effort and a decade after the smaller survey,

we returned to Pinnacles, which became a National Park in 2013, to reinventory its native bee

biodiversity and establish a more systematic bee monitoring program [50]. Though several

other bee biodiversity studies have spanned multiple years, as far as we are aware, Pinnacles is

the only natural region with published results from exhaustive and repeated bee surveys over

multiple decades, providing much-needed records of native bee biodiversity over longer peri-

ods of time. As such, our study may aid efforts to understand and protect native bee biodiver-

sity in natural areas and help determine restoration goals for bee communities in degraded

habitats. Here we seek to (a) present patterns of species occurrence and resource use from

three decades of bee species inventories at Pinnacles National Park, (b) examine how bee bio-

diversity density at this park compares to other published large-scale bee inventories across the

United States, and (c) use this literature review and comparison to highlight the need for

expanded systematic and repeated bee monitoring efforts in order to understand trajectories

and variability of diverse native bee communities over time.

Materials and methods

Site description and collecting history

Pinnacles National Park is a smaller national park, approximately 109km2, with a highly

dynamic topography. The roughly oval-shaped park is bisected by a high rock-ridge spine run-

ning north-south that creates a steep elevational gradient and divides the park into a higher,

coastal slope to the west and a drier, lower valley on the east. Initial sampling in 1996 by TLG

suggested a rich bee fauna, and motivated the initiation of a more systematic effort to inven-

tory the bee species across the then-monument’s 65km2 was undertaken the following year by

OMC. This first full inventory spanned 1996–1999 and was conducted along the trail network

by opportunistically collecting on a 10–14 day schedule using primarily active (handheld aerial

nets) but also passive (pan traps or "bee bowls") methods during the peak flowering season

(locally February through May). Efforts across these years varied in terms of collecting days (as

few as 5 or as many as 56 per year), months covered, and locations sampled. In 2002, a passive

pan trapping study was conducted by a local park biologist in three grassland plots, with traps

placed out every two weeks between March and mid-July, weather permitting. The purpose of

this study was to examine changes in bee fauna related to native plant restoration efforts.

In 2005, Pinnacles National Monument acquired an additional 15km2 of privately-owned

land that expanded the park boundary primarily to the east, but also incorporated some rela-

tively inaccessible lands to the north and south. In 2010, TLG initiated a follow-up biodiversity
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survey of the bees at Pinnacles, including the new lands to the east. In order to better track

temporal trajectories in native bee biodiversity and phenology, we adopted a more systematic

park-wide sampling protocol and established long-term monitoring plots where timed, regular

collecting events using both nets and pan traps were conducted by JMM across the 2011 and

2012 flowering seasons. The following methods and results are focused on this most recent

systematic survey, since a summary of the 1996–1999 inventory has previously been published

[42].

Field methods

For the 2011–2012 re-inventory effort, we established ten 1-hectare long-term plots across a

diversity of habitat types and reasonably-accesssible areas of the park. We placed three plots

on the western side of the rocky spine divide: two in grasslands and one in a Blue Oak wood-

land. On the larger, lower-elevation eastern side, we set up three plots in alluvial habitats, two

in Live Oak woodlands, and one in a Blue Oak woodland. We also established one plot in a

Blue Oak woodland along the high rock spine bisecting the park. One-hectare rectangular

plots were roughly 200m by 50m, which fit the constraints of the narrow canyon landscapes.

In addition to sampling within plots, we visited areas sampled during the original inventory as

well as newly-acquired lands to conduct opportunistic aerial net collecting, and we set out pan

traps at the same locations that were sampled using pan traps in 2002 (Fig 1). The geographic

coordinates of these ten long-term monitoring locations are included in supplementary mate-

rials (S1 Table) and shown in the map of our field site (Fig 1).

Fig 1. Map of Pinnacles National Park in Monterey and San Benito Counties, California. As a national monument,

established in 1908, it grew from 36 km2 to 68km2, shown by the shaded region. The outlined area encompases lands

added in 2005 and represents the current national park boundary (109 km2). Locations sampled during the original

native bee inventory of 1996–1999 are marked with filled black circles. The three locations where native bees were

sampled with pan traps in 2002 are marked by open circles around an ‘x’. For the 2011–2012 survey, plus signs mark

sites of opportunistic sampling and colored squares indicate the habitat type and position (not sized to scale) of

systematically-sampled hectare plots. Dense chaparral shrubs, steep hillsides, and few trail access points made the

northern and southern regions of the park relatively inaccessible for repeated sampling efforts.

https://doi.org/10.1371/journal.pone.0207566.g001
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Spatially, our collecting extended beyond previous efforts to capture bee biodiversity in

three main ways: by traveling off the trail network (along which most collecting was conducted

in the 1990s, except for one extensive burned area) for plot and opportunistic sampling, by

explicitly establishing repeatedly-sampled plots in a diversity of habitat types across the park,

and by venturing into the 15km2 of new lands acquired by Pinnacles National Monument in

2005 for both opportunistic and systematic sampling, which had not been done save for one

pan-trapping site in 2002 (Fig 1). Temporally, whereas sampling in the 1990s was somewhat

irregular, in 2011–12 we sought to capture the full bee community phenology by sampling

plots fortnightly throughout the entire flowering season, beginning in February before bee

activity began and continuing through late June after most bloom had faded [51].

We sampled all ten plots, typically two per day, every fortnight on days that were mostly

sunny, without high winds, and over 15C˚. We conducted additional opportunistic net collect-

ing along the trail network or in new off-trail areas in between plot efforts. Immediately before

each collecting event, we recorded the ambient temperature, wind speed, humidity, barometric

pressure, and a categorical cloud cover value. During plot sampling, two collectors used aerial

nets to perform thirty-minute timed collections of all bees visually or auditorily detected in

plots at consistent times in both the morning and afternoon. In order to sample the commu-

nity as evenly and systematically as possible, we walked a steady pace through plots rather than

focusing on activity at flowers. We placed all netted bees in vials according to their floral host

and collected a voucher plant when the floral host was unknown. At the end of sampling days,

we pinned and labeled all specimens and froze them for 48 hours to prevent beetle infestation.

In addition to net collecting, we also set out thirty colored pan traps, a common passive col-

lection method, between 9am and 4pm in each plot on the day we net collected there. Pan

traps were made prior to going into the field by spraying 2-oz Solo cups with one of three col-

ors of paint: fluorescent blue, fluorescent yellow, and white, as indicated by the protocol set up

for native bee monitoring by Lebuhn et al. [52]. Traps were placed in alternating colors directly

on the ground approximately 10m apart in an "X" pattern across rectangular plots and were

filled 3/4 full of mildly soapy water to break the surface tension and cause visiting bees to sink

to the bottom. At 4pm, we strained insects from the water and immersed them in 75% ethanol

until they could be rinsed, pinned and labelled. Data for each pan-trapped specimen includes

the color of the bowl from which it was collected.

Full methodological details for field and lab protocol steps have been deposited at proto-

cols.io under dx.doi.org/10.17504/protocols.io.wfhfbj6 [53].

Data management and summaries

At the end of the field season, we brought all specimens to the USDA-ARS Pollinating Insect

Research Unit (PIRU) in Logan, Utah and incorporated them into its US National Pollinating

Insects Collection with the exception of small reference and display collections returned to

Pinnacles National Park. Bee identifications were completed by trained experts using Leica dis-

secting microscopes, taxonomic literature, and the extensive reference collection housed at

PIRU (approximately 1.5 million curated bee specimens). After processing all 2011 and 2012

bee specimens, we reviewed all identifications for the Pinnacles bees from the 1996–1999 and

2002 collections (which are also housed at PIRU) to ensure nomenclature was current and

consistent with recent inventory identifications. We identified plant vouchers using appropri-

ate keys [54] and guidance from botanists at Pinnacles or the Utah State University Inter-

mountain Herbarium.

We entered field data into PIRU’s existing relational database, assigned corresponding indi-

vidual ID numbers and barcodes to each specimen, and pinned labels with this information to
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each bee. We conducted quality checks with multiple people at each step of the curation pro-

cess. We used SQL and Microsoft Access to query and manage data, and Microsoft Excel,

R-Cran statistical package version 0.99.879 or ARC-GIS to clean, arrange, analyze, and map

data [55]. Data is either included as supplementary tables or will be deposited with Dryad.

Data and code for analysis will be publicly available on Github.

We conducted various summary analyses to asses whether our sampling intensity provided

a good characterization of bee biodiversity, and to explore what environmental factors may be

related to the bee biodiversity at Pinnacles. We compared species diversity over time by group-

ing species data across all three sampling collections by year and family and plotting as total

values or proportions of total diversity per year. To ascertain whether the recent sampling

attempt had captured a sufficient portion of total estimated biodiversity at Pinnacles, we used

plot-samplelevel species data to construct a species-accumulation curve with 95% confidence

intervals and expected species accumulation values using the ‘vegan’ package in R [56]. We

assessed the distribution of bee species data using the Shapiro-Wilk normality test and the rela-

tionship between floral richness and bee richness or abundance at the plot-sample level using

power-law regression models in the base R package.

Literature review and study comparisons

To place the bee biodiversity results at Pinnacles National Park in context with those of other

bee inventory efforts across the United States, we conducted a literature search for all pub-

lished studies that reported at least one hundred bee species from natural (non-agricultural,

non-urban) areas and methods indicative of an exhaustive, systematic diversity inventory.

Using Web of Science and Google Scholar, we identified nineteen published studies that met

these criteria, to which we added four unpublished studies that qualify. To allow for a quanti-

tative comparison of relative richness between exhaustive bee surveys, we used a novel metric

to calculate biodiversity density along the species-area curve based on the number of species

and genera reported in each publication as well as the total size of the area covered, described

below. For studies that did not specify the area of land covered, we contacted authors for

estimates and/or performed a web search of the study place named to estimate total area

surveyed.

Comparisons of the bee species richness over area size reported by different studies was

conducted according to Arrhenius’ original description of the species-area relationship as a

double logarithmic equation [57,58]:

log S ¼ log kþ z log A; ð1Þ

where S represents the number of species recorded in an area of size A, and k and z are con-

stants that may vary with the taxa or habitat assessed.

To quantify the relative richness of studies conducted over different-sized areas and to iden-

tify each as recording either above or below the richness per area expected by the relationship

defined above, we calculated the distance from each species-area point to the overall log-log

regression line calculated according to Eq (1) above. We then plotted these observed:expected

values in a barplot to compare the relative deviation above or below expected of bee biodiver-

sity values from different studies identified in the literature. These calculations and visualiza-

tions were all conducted in R statistical package [55]. All relevant data are within the

manuscript and its Supporting Information files. Data and code are also publicly available on

GitHub at https://github.com/beecycles/pinnacles_bee_biodiversity.
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Results

Pinnacles bee collections over time

Initial trail collecting between 1996–1999 yielded 27,055 bee specimens representing 382 spe-

cies and 52 genera collected over 125 collector days at 32 different locations within the old

monument boundary (Table 1) (differences from results reported by Messinger and Griswold

in 2003 are a result of recent taxonomic changes) [42]. The smaller pan trapping study by park

biologist Amy Fesnock over 10 days in 2002 yielded 7,255 bees representing 151 species and 38

genera from 3 different locations in the central lowlands of the eastern edge and exterior of the

monument boundary. In the recent inventory during the flowering seasons of 2011 and 2012,

we captured 52,789 bees over 214 collector days (107 days with two collectors) at 90 different

locations across all accessible areas of the park (Fig 1). This effort resulted in a collection of

291 bee species across 45 genera in 2011 and 294 species across 49 genera in 2012 (Table 1a).

There was a 79% overlap in species and a 94% overlap in genera between the two years

(Table 1b). The preservation and curation of older specimens enabled us to update species

determinations from previous inventories based on more recent taxonomic changes to com-

pare and combine biodiversity records across inventory efforts (Table 2).

Table 1. Summary of bee sampling efforts at Pinnacles National Park. (a) Specimen collection statistics by year of sampling. (b) Proportion of overlap between bee spe-

cies and genera collected during each year of sampling.

(a)

Bee collection statistics for Pinnacles Natl Park Grand

totals

Year

1996 1997 1998 1999 2002 2011 2012

Number of Specimens Collected 87,099 1362 8077 9382 8234 7255 20351 32438

Number of Species Collected 450 172 299 313 211 151 291 294

Number of Genera Collected 54 38 48 49 43 38 45 49

Number of New Species Records - - all 140 60 10 20 22 26

Number of New Genus Records - - all 11 1 0 0 0 3

Specimens per New Species Record 177 8 56 142 749 470 565 903

Specimens per New Genus Record 1668 36 734 9383 - - - - - - 10839

Species Unique to that Year - - 4 22 21 2 5 15 26

Genera Unique to that Year - - 1 0 0 0 0 0 3

Days of Collecting 246 5 50 56 14 10 55 52

Methodology (equipment):

Since methodology and sampling effort vary widely between years
and projects, comparisons should be interpreted with caution.

Opportunistic trail

collecting (aerial

handheld net) + pan traps

Passive collecting

(pan traps)

Plot (N = 10) sampling (aerial nets

+ pan traps); Trail collecting (nets);

Resample of 2002 bowl sites (pan

traps)

Primary Collectors Olivia Messinger Carril &

Terry Griswold

Amy Fesnock Joan Meiners & Therese Lamperty

(b)

Collection Year 1996 1997 1998 1999 2002 2011 2012

1996 - - 0.68 0.64 0.71 0.52 0.63 0.61 Prop. of species in

common (above diagonal)1997 0.86 - - 0.81 0.73 0.49 0.75 0.52

1998 0.85 0.99 - - 0.72 0.52 0.78 0.75

1999 0.89 0.95 0.93 - - 0.52 0.69 0.67

2002 0.87 0.88 0.87 0.91 - - 0.57 0.59

2011 0.89 0.95 0.96 0.93 0.92 - - 0.79

2012 0.85 0.93 0.94 0.91 0.87 0.94 - -

Proportion of genera in common (below diagonal)

https://doi.org/10.1371/journal.pone.0207566.t001
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Table 2. Overview of Pinncles National Park bee biodiversity and comparisons between survey efforts. Numbers of species unique to that survey timeframe are in

parentheses. Due to taxonomic changes, updated species determinations, and the addition of data from 2002, some totals differ from those reported in Messinger and Gris-

wold 2003. See S2 Table for additional species details.

Family Genus Number of species in

early surveys (1996–

1999, 2002)

Number of species in

recent survey (2011–

2012)

Number of singleton species

(represeted by only one

specimen)

Number of species recorded

only in new lands (acquired

in 2005)

Cleptoparasitic (C);

Oligolectic (O)

Andrenidae Ancylandrena 1 (1) 1 O

Andrena 60 (19) 49 (8) 7 3

Calliopsis 8 (2) 6 O

Macrotera 1 1 O

Panurginus 4 (1) 3

Perdita 13 (5) 10 (2) 3 1 O

Apidae Anthophora 12 (4) 8 3

Anthophorula 2 2

Apis 1 1

Bombus 6 (1) 5

Brachynomada 1 (1) C

Centris 1 (1)

Ceratina 11 11

Diadasia 5 9 (3) 1 O

Epeolus 3 4 (1) 1 C

Eucera 9 9

Habropoda 3 (1) 2

Melecta 3 3 C

Melissodes 9 (4) 8 (3) 3 3

Neopasites 1 (1) 1 1 C

Nomada 26 (10) 21 (5) 6 1 C

Oreopasites 2 2 C

Peponapis 1 (1) O

Townsendiella 2 (1) 1 1 C

Triepeolus 2 (1) 7 (5) 1 1 C

Xeromelecta 2 (1) 1 1 C

Xylocopa 1 1

Colletidae Colletes 5 (1) 5 (1) 2 O

Hylaeus 15 (5) 10 2

Halictidae Agapostemon 2 2

Augochlorella 1 1

Conanthalictus 2 2 O

Dufourea 6 7 (1) 1 O

Halictus 4 (1) 3

Lasioglossum 28 (2) 29 (3) 2 2

Micralictoides 2 2 O

Sphecodes 10 (5) 6 (1) 3 C

Megachilidae Anthidiellum 1 1

Anthidium 6 (3) 5 (2) 1 1

Ashmeadiella 16 (5) 13 (2) 2 1

Atoposmia 3 (1) 3 (1) 1 O

Chelostoma 7 7 O

Coelioxys 4 (2) 3 (1) 1 C

Dianthidium 5 (1) 4 1

(Continued)
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The combined results from all three inventories document a total of 450 species of bees

across 53 genera and all six North American bee families within the modest 109km2 of Pinna-

cles National Park (Table 2). The most recent survey documented 48 new species records for

the Pinnacles National Park area and did not recapture 95 species that had been collected in

earlier studies (S2 Table). Of the 48 species recorded for the first time in 2011 and 2012, 47

were rare (here defined as represented by fewer than ten specimens), and 20 were singletons

(represented by a single specimen) (S2 Table). Thirty of the 48 new species were captured in

areas previously sampled, while 18 were only captured in new lands added to the park since

previous inventories (Table 2). Overall, 51 of the 450 species were singletons (Table 2), and 95

were present in only one year of sampling, with the majority of these temporally rare species

being from the families Apidae and Andrenidae (Fig 2a). The family Megachilidae had the

most species present in all seven years of sampling (N = 38 out of 68 total) (Fig 2a). Overlap in

species lists between years ranged from 49% to 81% and overlap in genera ranged from 85–

99% between any two years (Table 1b).

Despite extensive sampling of bee biodiversity within Pinnacles National Monument

between 1996–1999, subsequent sampling continued to add species richness to the overall col-

lection (Fig 2b). The 2002 effort added 20 new species to the park list. The 2011 collection net-

ted 22 bee species new to Pinnacles, and the 2012 collection, which sampled mostly the same

areas as 2011, resulted in 26 new species and 3 never-before recorded genera within Pinnacles

National Park (Table 1a). Between 2 and 26 species were unique to a particular year and not

recorded within the park during any of the other six years of surveys. The genus Ancylandrea
(family Andrenidae) was present only in the 1996 collection and 2012 was the only year that

three genera from the family Apidae (Neopasites, Peponapis, and Brachynomada) were docu-

mented (S2 Table). For five out of six bee families, new species were added to the park list

nearly every year. Melittidae is represented by only two common species, both of which were

collected in the original year of sampling, and in every year thereafter (Fig 2b).

Recent Pinnacles bee survey details

During the 2011–2012 survey, we completed 150 plot samples across our ten one-hectare

plots, eighty in 2011 and seventy in 2012, sampling only on days that were sufficiently sunny,

calm, and warm to ensure adequate bee activity for comparisons between plots. In 2011, 80

plot samples conducted over 55 days resulted in between 1 and 2088 bees from an individual

plot sample, with a mean of 368 bees per plot per day and a standard deviation of 398. In 2012,

Table 2. (Continued)

Family Genus Number of species in

early surveys (1996–

1999, 2002)

Number of species in

recent survey (2011–

2012)

Number of singleton species

(represeted by only one

specimen)

Number of species recorded

only in new lands (acquired

in 2005)

Cleptoparasitic (C);

Oligolectic (O)

Dioxys 4 (1) 3 1 C

Heriades 1 (1)

Hoplitis 17 (2) 15 O

Megachile 18 (5) 15 (2) 1

Osmia 38 (6) 35 (3) 5 2

Protosmia 1 1

Stelis 13 (2) 12 (1) 1 C

Trachusa 2 2

Melittidae Hesperapis 2 2 O

Totals 417 (95) 355 (48) 51 18

https://doi.org/10.1371/journal.pone.0207566.t002
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70 plot samples conducted over 52 days resulted in between zero and 1317 bees collected in a

day and plot, with a mean of 370 and a standard deviation of 380 bees per plot per day.

A species accumulation curve for the observed rate of capture of the 334 species collected in

plots across 150 plot samples shows that our efforts captured a majority of the estimated true

Fig 2. Comparison of bee species collections at Pinnacles National Park over seven years of surveys. (a) Numbers

of species in each of six North American bee families represented in up to all seven years of collections. (b)

Accumulation over time of number of species collected in each of six North American bee families from each

additional year of collecting.

https://doi.org/10.1371/journal.pone.0207566.g002
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bee biodiversity within these areas (Fig 3). The leveling off of the curve at the far right indicates

that additional plot sampling would be very slow to yield many more species to the collection,

especially for organisms like insects for which observed richness rarely reaches a true asymp-

tote [59]. The prevalence of singleton and doubleton species recorded across many genera

illustrates the frequency of rare bee species at Pinnacles National Park, which additional sam-

pling efforts may or may not detect (S2 Table). The blue curve and vertical confidence interval

lines indicate the estimated rate of species accumulation for a random community with the

same number of species and samples (Fig 3). That the observed curve has an initially steeper

slope than expected is indicative of Pinnacles’ rich biodiversity resulting in rapid early accu-

mulation of common species. Expanding collecting efforts into the more remote chaparral

habitats in the northern and southern ranges of the park may be more likely to record addi-

tional biodiversity without requiring enormous sampling efforts to do so (Fig 1).

Bee species richness in 150 plot samples was normally distributed (Shapiro-Wilk normality

test, p = 0.8) and positively related to the floral richness of bee-visited plants by a power-law

linear regression model (Bee Richness = exp(2.79 + 0.38�log(FR)); R2 = 0.37, p<0.01, S1a Fig).

To a lesser extent, bee abundance (square-root transformed to normalize distribution) was

also significantly positively correlated with the floral diversity of bee-visited plants in plot sam-

ples (Bee Abundance = exp(2.26 + 0.23�log(FR)); R2 = 0.16, p<0.01, S1b Fig).

Bee abundance, dominance, and floral activity varied between species and the two consecu-

tive years of sampling at Pinnacles National Park. Across all 150 plot samples over two years,

Lasioglossum (Halictidae) was the most abundant bee genus, followed byHesperapis (Melitti-

dae), Osmia (Megachilidae), andHalictus (Halictidae). Oreopasities, Peponapis, Xeromelecta,

and Townsendiella (all Apidae) were among the rarest genera collected over the two years of

plot sampling; all but Peponapis are cleptoparasites.

Between years, rank abundance of the top twenty-five bee species reflects high interannual

species turnover, withHesperapis regularis (Melittidae) occupying the top spot in 2011 and

only ranking as the fourth most abundant species in 2012 (Table 3a). Similarly, Osmia nemoris

Fig 3. Species accumulation curve. Observed rate of accumulation of 334 species across 150 samples (black line, grey 95%

confidence interval bands) compared to an expected rate of species accumulation for a random community with the same number

of species and samples (blue line and 95% confidence interval bars).

https://doi.org/10.1371/journal.pone.0207566.g003
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Table 3. Most commonly-collected bees and most bee-popular plants in 2011 and 2012 surveys at Pinnacles National Park. (a) Twenty-five most commonly-collected

bee species by rank abundance per year. (b) Twenty-five most commonly recorded plants visited by bees, ranked by popularity with bees per year. See S2 and S3 Tables for

the complete taxa lists.

(a)

During the 2011 flowering season During the 2012 flowering season

Bee Family Genus Species Rank Abun. Bee Family Genus Species
Melittidae Hesperapis regularis 1 Megachilidae Osmia nemoris
Halictidae Halictus tripartitus 2 Halictidae Halictus tripartitus
Halictidae Lasioglossum nigrescens 3 Halictidae Lasioglossum incompletum
Halictidae Lasioglossum brunneiventre 4 Melittidae Hesperapis regularis

Megachilidae Osmia nemoris 5 Halictidae Halictus farinosus
Halictidae Lasioglossum incompletum 6 Halictidae Lasioglossum nigrescens

Apidae Apis mellifera 7 Apidae Melissodes stearnsi
Halictidae Lasioglossum punctatoventre 8 Apidae Apis mellifera
Halictidae Halictus farinosus 9 Halictidae Lasioglossum brunneiventre
Halictidae Lasioglossum sp. 9 10 Halictidae Lasioglossum punctatoventre
Halictidae Lasioglossum imbrex 11 Apidae Eucera actuosa

Apidae Ceratina arizonensis 12 Andrenidae Panurginus gracilis
Andrenidae Andrena aff. cerasifolii 13 Halictidae Agapostemon angelicus/texanus
Andrenidae Andrena sp. 14 Halictidae Lasioglossum sp. 9
Halictidae Agapostemon angelicus/texanus 15 Apidae Diadasia bituberculata

Andrenidae Andrena crudeni 16 Apidae Melissodes sp.

Halictidae Lasioglossum nevadense 17 Andrenidae Perdita distropica
Megachilidae Protosmia rubifloris 18 Halictidae Lasioglossum sp.

Apidae Eucera actuosa 19 Andrenidae Andrena aff. cerasifolii
Megachilidae Osmia brevis 20 Megachilidae Osmia aglaia
Andrenidae Panurginus gracilis 21 Megachilidae Osmia regulina
Halictidae Lasioglossum sisymbrii 22 Halictidae Lasioglossum nevadense

Apidae Diadasia angusticeps 23 Andrenidae Andrena macrocephala
Megachilidae Trachusa perdita 24 Andrenidae Andrena w-scripta
Megachilidae Osmia regulina 25 Apidae Ceratina arizonensis

(b)

During the 2011 flowering season During the 2012 flowering season

Plant Name Plant Family Popul. Rank Plant Name Plant Family

Clarkia unguiculata Onagraceae 1 Eriogonum fasciculatum Polygonaceae

Adenostoma fasciculatum Rosaceae 2 Adenostoma fasciculatum Rosaceae

Eschscholzia californica Papaveraceae 3 Eschscholzia californica Papaveraceae

Clarkia purpurea Onagraceae 4 Clarkia unguiculata Onagraceae

Chaenactis glabriuscula Asteraceae 5 Hirschfeldia incana Brassicaceae

Lotus scoparius var.scoparius Fabaceae 6 Marrubium vulgare Lamiaceae

Ranunculus californicus Ranunculaceae 7 Eriodictyon tomentosum Boraginaceae

Eriogonum fasciculatum var.foliolosum Polygonaceae 8 Chaenactis glabriuscula Asteraceae

Hirschfeldia incana Brassicaceae 9 Amsinckia menziesii Boraginaceae

Salix exigua Salicaceae 10 Salix lasiolepis Salicaceae

Lupinus albifrons Fabaceae 11 Clarkia purpurea Onagraceae

Vicia villosa Fabaceae 12 Lasthenia californica Asteraceae

Eriodictyon tomentosum Boraginaceae 13 Lupinus albifrons Fabaceae

Viola pedunculata Violaceae 14 Calochortus venustus Liliaceae

Quercus agrifolia var.agrifolia Fagaceae 15 Ceanothus cuneatus var.cuneatus Rhamnaceae

Lasthenia californica Asteraceae 16 Chorizanthe douglasii Polygonaceae

(Continued)
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(Megachilidae) was the most abundant species collected in plot samples at Pinnacles in 2012,

after having been ranked fifth most abundant in 2011. Halictidae was the bee family with the

highest number of most abundant species in both years, followed by Megachilidae in 2011 and

Andrenidae in 2012 (Table 3a).

The most bee-popular plants also varied between years. In 2011, more bees visited Clarkia
unguiculata (Onagraceae), the host plant of 2011’s most abundant bee,Hesperapis regularis,
than any other plant (N = 247, compared to 116 bees on this flower in 2012), and Eriogonum
fasciculatum (Polygoneaceae) was visited by the most bees in 2012 (N = 644, compared to 109

bees on this flower in 2011) (Table 3b). Adenostoma fasciculatum (Rosaceae) and Eschscholzia
californica (Papaveraceae) maintained their positions as the second and third most bee-popu-

lar plants, respectively, in both years of collecting. Floral species from the Boraginaceae family

dominated the list of top twenty-five most bee-popular plants in 2011 and tied with Asteraceae

and Fabaceae for most bee-popular family in 2012 (Table 3b). A broader examination of bee

metrics across different habitat types can be found in Meiners 2016 [51].

Pinnacles bee biodiversity in context

To assess the bee biodiversity density at Pinnacles relative to other locations, we used literature

searches and expert opinions to compile a list of 23 studies within the United States that

matched our criteria for comparison (N>100 species, extensive inventory-style sampling in a

natural area) (Table 4). It is worth visualizing that, while efforts to survey native bees have

increased in recent years, these published inventories still only cover a small proportion of nat-

ural areas and habitat types across the United States, and thus offer only a small window into

the status of native bees across the country (Fig 4).

Without controlling for the area sampled, Pinnacles’ 450 bee species place it fourth among

23 completed studies reporting high numbers of bee species within a natural area. Studies with

more total bee species include Grand Staircase Escalante National Monument, where OMC

recorded 656 different species of bees between 2000–2003 [43], a study conducted by TLG in

Clark County, Nevada that documented 598 bee species over three years [40], and an unpub-

lished study in Yosemite National Park in the mid-2000s that found 554 species (Griswold,

unpublished data). A variety of additional systematic inventories conducted in natural lands

also report high bee biodiversity, including 393 bee species found over seven years in San Ber-

nardino Valley, Arizona [23], previously thought to have the highest biodiversity of native bees

by area.

A meaningful biodiversity comparison between this list of bee inventories is hindered by

the vastly different areas each covers. A more direct comparison of the biodiversity of different

surveys requires accounting for these differences in area. Because species richness does not

Table 3. (Continued)

Marrubium vulgare Lamiaceae 17 Erodium cicutarium Geraniaceae

Pholistoma auritum var.auritum Boraginaceae 18 Salix exigua Salicaceae

Arctostaphylos pungens Ericaceae 19 Penstemon heterophyllus Plantaginaceae

Amsinckia menziesii Boraginaceae 20 Lotus scoparius var.scoparius Fabaceae

Ceanothus cuneatus var.cuneatus Rhamnaceae 21 Baccharis salicifolia Asteraceae

Bloomeria crocea Liliaceae 22 Vicia villosa Fabaceae

Heliotropium curassavicum Boraginaceae 23 Malacothamnus aboriginum Malvaceae

Erodium brachycarpum Geraniaceae 24 Ranunculus californicus Ranunculaceae

Salix lasiolepis Salicaceae 25 Heliotropium curassavicum Boraginaceae

https://doi.org/10.1371/journal.pone.0207566.t003
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scale linearly with spatial area [72,73], we plotted a power-law species-area relationship based

on the reported species richness and area covered by known bee inventories (Table 4) to calcu-

late which of the 23 listed studies found lower-than-expected bee richness based on their size

and which studies were likely true hotspots of native bee biodiversity (Fig 5).

Based on this difference between observed and expected species richness per area (the posi-

tive or negative distance of the point to the trend line in Fig 5), we conclude that Pinnacles

National Park is home to the highest bee biodiversity per area surveyed of any published or

known exhaustive bee biodiversity survey (with over 100 species) in natural areas across the

United States. Grand Staircase Escalante National Monument (GSENM) also contains more

bee biodiversity than would be expected by even its vast size, as does Yosemite National Park;

Carlsbad Caverns National Park; Clark County, Nevada; San Bernardino, Arizona; Carlinville,

Illinois; MPG Ranch, Montana; Curlew Valley, Idaho; Indiana Dunes, Indiana; and San Rafael

Desert, Utah. Studies that reported bee biodiversity lower than what would be expected by our

species-area relationship included Black Belt Prairie, Missouri; Hattiesville, Missouri; Tonasket

Ranger District, Washington; and the Black Hills of South Dakota and Wyoming, among

other natural areas (Fig 5, Table 4). Many more studies will be necessary to fill in the map of

Table 4. Bee biodiversity density results for all known native bee inventory projects with at least 100 species in natural or semi-natural areas across the United

States (N = 23).

Study location Study daates Species Approx. total area (km2) References

Grand Staircase Escalante National Monument,

UT

2000–2003 656 7,610 [43]

Clark County, NV 1998; 2005, 2006 598 20,487 [40]

Yosemite National Park, CA 2006–2009 554 3028 pers. comm. T. Griswold
Pinnacles National Park, CA 1996–1999; 2002; 2011–

2012

450 109 present results & [42]

San Bernardino, AZa 2000–2007 383 1,088a [23]

Carlsbad Caverns National Park, NM 2010–2011 364 189 pers. comm. T. Griswold
Curlew Valley, ID 1969–1974 340 4,999 [60]& updated totals by pers. comm. T.

Griswold
San Rafael Desert, UT 1979–1992 333 5,180 [61]

Mojave National Preserve, CA 1975–1995 305 6,475 pers. comm. T. Griswold
Black Hills of SD and WY 2010–2011 290 12,950 [46]

Carlinville, ILa 1884–1916 288 256a [23]

Plummers Island, MDb 1920s-2006 232 0.15 [62]

MPG Ranch, MT 2013–2015 229 39 [63]

Indiana Dunes, IN 2003, 2004; 2010 204 60 [64]

Albany County, WYa 1995–1996 200 11,160a [65]

Palouse Prairie, ID 2012–2013 174 2,122 [66]

Dugway Proving Ground, UTa 2003, 2005 163 3,243a [45]

Channel Islands, CA Not specified 154 904 [67]

Black Rock Forest Preserve, NY 2003 144 15.5 [47]

Tonasket Ranger District, WAa 2004 140 1,678a [68]

Black Belt Prarie, MSa 1991–2001 118 803a [69]

Archibold Biol. Station, FL 113 21 [70]

Hattiesburg, MSa 1943–1944 104 140a [71]

aArea sizes not specified by publication or through author communications were estimated by calculating known size of map area named in study.
bThe Plummer’s Island study was eliminated as an outlier in the species-area relationship shown in Fig 5 because of its extremely restricted area size sampled compared

to other studies.

https://doi.org/10.1371/journal.pone.0207566.t004
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Fig 4. Map of the location, size, and number of bee species recorded for all exhaustive bee inventory efforts

undertaken across the United States for which data is published or reported. The black arrow points to Pinnacles

National Park. See Table 4 for project details.

https://doi.org/10.1371/journal.pone.0207566.g004

Fig 5. Species-area relationships and trend line for all major, exhaustive bee inventory studies conducted in the United States in natural or semi-

natural habitats. (a) The black trend line delineates expectations for how the number of species will increase with increasing area size based on the

(log-transformed) species-area relationship. Studies above the trend line (grey points) recorded more bee species than expected for the area of the site;

those below the line (black points) recorded fewer bee species than might be expected on average for that size area. Pinnacles National Park is circled

in red. (b) Barplot of the difference in the number of bee species observed in each study relative to the number of bee species predicted by the trend

line plotted in panel (a). Pinnacles National Park is outlined in red. Study details are listed in Table 4.

https://doi.org/10.1371/journal.pone.0207566.g005
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bee biodiversity in natural areas (Fig 4) and interpret how the bee species-area relationship

relates to ecosystem, climate, or habitat stage (Fig 5).

Discussion

Wild, native bees are key ecosystem service providers in both natural and agricultural land-

scapes [5–7,74]. Compared to the unstable European honey bee, on which United States agri-

culture is heavily dependent, little is known about the four thousand North American species

of native bees, who may also be vulnerable to the same parasites, pesticides, and habitat modifi-

cation plaguing the honey bee [3,16,17,34,75,76]. One of the reasons for this lack of attention

to native pollinators is the expense, time, and skill required to collect and identify native bees,

which are spatiotemporally variabile, short-lived, diverse in their taxonomy and nesting habits,

and often difficult to see. Even when extensive bee inventories are conducted at intensities and

intervals sufficient to capture local diversity in native bees, our literature review found that

they are rarely replicated later, resulting in few datasets that allow for robust assessment of

trends in native bee populations over ecologically relevant time scales.

With three separate inventories conducted over three decades, the native bee inventory

efforts at Pinnacles National Park in the Inner South Coast Range of California represent an

exception to this lack of temporal knowledge. Combined results from seven years of sampling

suggest that Pinnacles National Park may harbor the highest density of bee species currently

known anywhere in the United States, and potentially the world, since California is already

recognized as a global bee biodiversity hotspot [20]. In comparison to Pinnacles’ 450 species

across an area of 109km2, only 388 species of bees have been recorded in the state of Wisconsin

and only 40 species on the entire two large islands of New Zealand [77,78]. The closest com-

parison by habitat type outside of the United States may be a survey conducted 1983–1987

over a Mediterranean area of unspecified size outside Athens, Greece that reported 661 species

of bees [79]. A survey of seven California urban areas recorded between 60 and 80 total bee

species [74]. However, the fact that substantial species diversity was added to the bee inventory

list for Pinnacles even after five prior years of surveys (Figs 2b and 3) suggests that inventories

in other locations over shorter timespans may grossly undercount rare species.

Our comparison of the bee biodiversity at Pinnacles with other exhaustive bee surveys con-

ducted in the continental United States supports previous assertions that Pinnacles National

Park is home to an expectionally high density of bee species. We attribute the extraordinarily

rich bee fauna of Pinnacles National Park to its Mediterranean climate, steep environmental

gradients, and high habitat heterogeneity, the last of which has been found in other research to

be a stronger predictor of species richness than the species-area relationship [80,81]. Habitat

heterogeneity can occur over both space and time. Mediterranean habitats, including those at

Pinnacles, are known for rich ‘flash-bloom’ cycles during spring months, followed by hot, dry

summers and mild, wet winters, an environment that tends to support a high biodiversity of

many taxa by creating many temporal habitat niches [9,82]. Among bees, the rapid turnover of

floral resources in these areas may favor solitary species, whose shorter flight periods and more

specialized foraging behaviors may allow many species to coexist in a single area, as each occu-

pies a narrower temporal and foraging niche space than longer-lived social or generalist spe-

cies, which are more common in temperate areas [19,23]. This highly dynamic coexistence of

bee species over time at Pinnacles (Fig 2a, Table 1b) underscores the importance of long-term

sampling to meet the research challenge of defining what relative stability and baseline vari-

ability in a bee community looks like, against which to measure all other changes [83].

Across space, habitats at Pinnacles change rapidly from the western, coastally-influenced

slopes, up the 500m elevational gradient to the rock ridge, and down the different aspects and
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microclimates of the drier east side. Pinnacles spans several fault lines, the geologic movements

of which may have contributed to its elevational variation and broader array of soil types than

would typically be found in such a small area [84]. Perhaps because of this soil heterogeneity,

Pinnacles is also considered to be a transitional zone between the floral ecotones of northern

and southern California [85] and boasts a plant list of nearly 700 species, many of them flower-

ing [86]. We found bee richness to be highly correlated with the richness of bee-visited angio-

sperms on any given day and site at Pinnacles (S1 Fig), which corroborates results from

previous studies [9,43]. Indeed, our conclusion is that the extraordinary diversity of native

bees at Pinnacles is a function of the dynamic climate, rich wildflower flora, and landscape

patchiness creating a wide array of spatiotemporal habitat niches. These factors may allow

more diverse bee communities to coexist across space than has been found anywhere else.

The unparallelled biodiversity of native bees at Pinnacles National Park is especially intrigu-

ing given its juxtaposition with nearby agricultural intensity. Salinas Valley, at the doorstep of

Pinnacles National Park, produces most of the strawberries, tomatoes, spinach, lettuce, celery,

and garlic for the country, along with many smaller crops. Many of the lands surrounding the

park that are not irrigated for crops are grazed by cows, which may reduce available floral

diversity for bees [87]. Native bees are most diverse in natural, undisturbed areas, proximity to

which has been linked to crop pollination success because of the constant influx of wild polli-

nating insect populations into arated lands inhospitible to long-term residence [11,13]. Agri-

cultural habitats fail to support diverse native bees due to impacts of pesticides, nutritional

deficits resulting from monocultures offering only one type of bloom, and practices of tilling

and turning over the soil where many native bee species overwinter [5,30,88]. The native bees

known to pollinate crops persist not within the fields but in nearby patches of natural, unculti-

vated land. California has increased efforts to restore habitat for wild bees in agricultural lands.

But less attention has been paid to bee source populations in adjacent natural areas, even

though source-sink dynamics have recently been determined to influence bee population sen-

sitivity to decline [89]. To date, no measures of bee exchange between Pinnacles and nearby

croplands are available, but such data would help define the beneficial halo of bee biodiversity

hotspots.

If Pinnacles National Park is indeed a biological refuge for native bee populations within a

highly-altered landscape, it will be even more important to track trends in its bee biodiversity

over time. Our establishment of ten 1-hectare plots and repeatable methodology will facilitate

ongoing monitoring activities and better comparisons of bee biodiversity and population sta-

bility over time than are currently possible. During 2011 and 2012, we recorded 355 species of

bees at Pinnacles National Park, 48 of which were new records for the park. Initial inventories

in the 1990s recorded 382 species, 95 of which we did not encounter during the recent inven-

tory. After six prior years of sampling and a clear leveling of the species accumulation curve,

we still recorded three new genera in 2012. These results illustrate the difficulty in deciphering

ecological trends from inventories conducted using different methods or in different locations.

Long-term, systematic monitoring studies in consistent locations will enable improved under-

standing of species turnover, range extensions (invasions), local extinctions, baseline states,

and how to differentiate natural community variability from bee biodiversity decline, a ques-

tion we consider a research priority towards assessing pollinator trajectories.

The need for multi-year, temporally replicated bee surveys to better quantify trends and

declines in native bees over time is further highlighted by the recent increase in the use of

chronosequences, which substitute space as a proxy for time in restored habitats to model

changes in native bee dynamics [90,91]. This is a clever approach but increasing efforts to

repeat surveys using the same methodology in the same natural areas over actual timespans

would be better. Spatial coverage of published bee inventory studies is sparse (Fig 5), and
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temporal coverage is worse. Expanding long-term bee biodiversity monitoring to additional

habitats and supporting the museum work and collection maintenance that enable temporal

comparisons will bolster our chances of protecting native bees and agricultural stability.

Conclusions

Here we reported details of the third extensive bee inventory effort at Pinnacles National Park

in California over multiple decades in order to share ongoing findings from a native bee biodi-

versity hotspot and to highlight the need for additional studies that evaluate temporal trends

among pollinators. We are the first to compile and compare similar information on native bee

biodiversity from published surveys of natural areas across the United States. With 450 species

of native bees, we found that Pinnacles houses a higher density of species than any other natu-

ral area studied or than would be expected by the species-area curve, but that this result may

be partially due to its high sampling intensity over time. Nevertheless, currently our results

indicate that America’s newest national park may be a substantial exporter of free, native polli-

nators into economically-valuable agricultural lands as well as neighboring semi-wild lands.

Only by comparing natural and disturbed areas over time to quantify the relative impacts of

activities such as urbanization and agricultural intensification separate from more pervasive

pressures like climate change, as is a goal of climate change vulnerability assessments [83], will

we be able to determine the best multi-pronged approach to mitigating native bee declines.

Our discovery that Pinnacles is the only area to have been extensively and repeatedly surveyed

for bee biodiversity over multiple decades further underscores our call for increased repeated

monitoring efforts to facilitate research on bee population decline and variability at its source.
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for rare if bee visits were fewer than 10 in that year, with “U” for uncommon if bee visits ran-

ged between 10–100, and “C” for common when over 100 bees were collected on that plant.

The last row sums the plant taxa on which bees were collected per year. Dashed vertical line

marks 2002 collection as separate from original 1996–9 study, and prior to the current study.

(PDF)
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