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Abstract

The modelling of deceptions in game theory and decision theory has not been well studied,

despite the increasing importance of this problem in social media, public discourse, and

organisational management. This paper presents an improved formulation of the extant

information-theoretic models of deceptions, a framework for incorporating these models of

deception into game and decision theoretic models of deception, and applies these models

and this framework in an agent based evolutionary simulation that models two very common

deception types employed in “fake news” attacks. The simulation results for both deception

types modelled show, as observed empirically in many social systems subjected to “fake

news” attacks, that even a very small population of deceivers that transiently invades a

much larger population of non-deceiving agents can strongly alter the equilibrium behaviour

of the population in favour of agents playing an always defect strategy. The results also

show that the ability of a population of deceivers to establish itself or remain present in a

population is highly sensitive to the cost of the deception, as this cost reduces the fitness of

deceiving agents when competing against non-deceiving agents. Diffusion behaviours

observed for agents exploiting the deception producing false beliefs are very close to empiri-

cally observed behaviours in social media, when fitted to epidemiological models. We thus

demonstrate, using the improved formulation of the information-theoretic models of decep-

tion, that agent based evolutionary simulations employing the Iterated Prisoner’s Dilemma

can accurately capture the behaviours of a population subject to deception attacks introduc-

ing uncertainty and false perceptions, and show that information-theoretic models of decep-

tion have practical applications beyond trivial taxonomical analysis.

Introduction

The importance of models that accurately represent deception cannot be overstated. The per-

vasive use of digital communications, information storage and processing has led to a transfor-

mational paradigm shift much like that observed with the introduction of Gutenberg’s press in
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the fifteenth century [1, 2]. An unintended byproduct of this shift is the low cost incurred in

exploiting data and information for deceptive purposes, resulting in a pandemic of deceptive

behaviours, most recently, in social media. The problem is so pervasive, that a representative

survey would be a major study in its own right, given several past studies each of much nar-

rower scope [3–12].

The absence of a coherent and complete approach in how to best model deceptions has per-

sistently impaired research that explores problems arising from the digital mass distribution of

deceptive content, whether in social or mass media.

Many examples exist in which the absence of robust modelling methods has impaired

understanding of empirically observed effects. An interesting recent instance was the widely

reported case of the “Macedonian Fake-News Complex”, a de factominor local industry

formed by teenagers who were earning quite significant website advertising revenue by pro-

ducing “Fake News”, and distributing it through social media during the United States presi-

dential election of 2016 [13].

We define a deception as an action, or an intentional inaction, that aims to bring the second

party to a false belief state, or to maintain a false belief state. The intent of a party producing a

deception may or may not be to disadvantage the deceived party.

Framing the deception problem has presented persistent challenges in decision theory,

and in game theory, in part due to the immense diversity and complexity observed in decep-

tive behaviours, and in part because deception is fundamentally an information-theoretic

phenomenon, which impacts through its effects many problems in game theory and decision

theory.

Li and Cruz aptly observed that “it is still difficult to directly formulate deception as an

additional control input of a decision-maker in a real-world conflict situation. Questions of

when and how to formulate deception practically remain illusive” [14]. This reflects the obser-

vation of Vane et al that decision theory and game theory share a focus on utility, but diverge

in the area of probabilities and information, insofar as decision theory favours the use of

knowledge about an opponent and explicit probabilities, to maximise utilities, while game the-

ory favours perfect information and minimising vulnerabilities [15].

Deception impacts subjective probabilities of players, subjective utilities of players, or deci-

sion mechanisms, by means of hiding information, introducing uncertainty, introducing false

beliefs, or changing how a player might interpret a situation. In many ways the problem of

deception challenges assumptions commonly used in modelling problems using purely game

theoretic or decision theoretic methods.

Deception aims to produce suboptimal strategies, utilities or choices in the cognitive system

of the victim.

There is no shortage of literature, especially in the humanities, which empirically docu-

ments, analyses or taxonomically categorises human deceptions in social systems. The result of

this is that most if not all deceptive games played in social systems are well known and under-

stood. Notable studies are the works of Haswell and Heuer, dealing with military and intelli-

gence deceptions, the works of Bernays and Goebbels, dealing with propaganda, political and

sales deceptions, Berne’s studies of psychological games, a much more recent survey by Flem-

ing and Zyglidopoulos exploring deceptions inside organisations, and Pettit’s study of the his-

tory of deception in commerce [7, 16–19].

Robust work dealing with the empirical study of deceptions can also be found in the beha-

vioural and social sciences, psychology, and in areas such as computational linguistics, but

extant research on deception in the decision theory and game theory communities remains

sparse, reflecting the absence of widely accepted models for understanding deception [3, 5, 16,

20, 21].

Information-theoretic models of deception
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Most often, the focus has been on how specific deceptions alter specific games and decision

processes, rather than the manner in which the deceptions are produced. There is a recurring

focus on the effects of deceptions, rather than the fundamental nature of the deceptions.

Attempts to explain deceptions with wide generality have been few.

Greenberg studied deceptive game strategies from the perspective of decision theory and

payoffs, explaining the motivation for deception [22, 23], while Li and Cruz explored the prob-

lem of conditions required for deception to produce effects in games [14].

Hypergames, as defined by Bennett, are another construct used in modelling deceptions.

These are games of incomplete information, capturing a decision model, in which the players

may not be fully aware of the nature of the game they are playing, or indeed that they are

actually participating in a game. Bennett’s hypergame emerged following the initial work of

Thompson and Spencer on games of deception [24], and exists in both ordinal and cardinal

forms [25–30]. The ‘perfect information’ and ‘complete information’ assumptions do not hold

for a hypergame. False beliefs, such as misperceptions, deceptions and surprise apply [30]. As

with other extant game and decision theoretic constructs, the deception effects are integrated

into the model, by altering player perceptions and outcome preferences in the hypergame.

Ettinger and Jehiel also focus on player beliefs, aiming for a general model of deception,

and explain deception in games within the framework of social psychology [31, 32]. Guala’s

philosophical criticism of game theory is that it suffers from “empirical anomalies”, which are

argued to derive from players’ perceptions of games, choices in games, preferences and utilities

in games [33]. The central argument underpinning “psychological game theory” is that player

beliefs are central to human behaviours in games, and Geanakoplos et al argue that “. . .the tra-

ditional theory of games is not well suited to the analysis of such belief-dependent psychologi-

cal considerations as surprise, confidence, gratitude, disappointment, embarrassment, and so

on” [34].

The information-theoretic model of deception is centred in how false beliefs are produced.

It was independently constructed in 1999 by Borden and by Kopp. Borden was initially solving

problems in electronic warfare, while Kopp was attempting to explain common deceptions

observed in social systems and the cyber domain. Both arrived at the same model, with some

differences in nomenclature and scope [35, 36]. Later work by Kopp mapped a wide range of

known deceptions in social systems into this model [37, 38], while Mills and Kopp mapped the

model into known biological deceptions [39], and Brumley, Kopp and Korb studied the man-

ner in which deceptions impact cognitive and decision cycles [40–42].

This model is now established in the information warfare community [43–45], as it pro-

vides a fundamental mathematical theory that can be easily mapped into well established mod-

els for electronic information transmission [46].

In this paper, we present a unified framework for modelling deception based on informa-

tion-theoretic models, and apply this approach to demonstrate, in a simulation, two examples

of how deceptive effects can disrupt social systems.

The main contributions of this paper are: 1) a survey and discussion of prior research in the

area of information-theoretic modelling of deceptions, and in effects-based game and decision

theoretic representations of deception; 2) the introduction of a more exact formulation of the

information-theoretic Corruptionmodel based on information-theoretic similarity; 3) map-

ping the information-theoretic models of deception into the decision theoretic model of

Greenberg, and the derived game theoretic model of Li and Cruz; 4) introducing a new and

general theoretical framework for modelling deception, combining information, game and

decision-theoretic models; 5) demonstrating the use of the general framework by simulating

two aspects of the “Fake News” problem using the Iterated Prisoner’s Dilemma game; 6) by

analysis of simulation results, showing the high sensitivity of deceptions to the cost incurred

Information-theoretic models of deception
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by deceivers, and how even a very small number of deceiving agents can produce a large effect

in a population.

The importance of the first four contributions is that they provide a systematic and coher-

ent method for representing and modelling deceptions, which can be employed in simulations

of social and other systems subjected to deception attacks. The importance of the fifth contri-

bution is a model of how deceptions work in social media, validating the qualitative observa-

tion of the importance of costs against payoffs in deceptions, both problems that to date have

been poorly understood [47].

Methods

The four information theoretic deception models

The information-theoretic models of deception are derived from two important ideas in infor-

mation theory, specifically Shannon’s idea of channel capacity and the notion of information-

theoretic similarity between two messages. A brief outline of these two concepts is included in

Appendix 1.

In the Borden-Kopp model of deception [48], four information-theoretic models are

defined, Degradation, Corruption, Denial and Subversion, each of which is a specific form of

altering the victim’s perception.

Two of these models involve manipulation of terms in Shannon’s channel capacity equa-

tion, one model involves manipulation of similarity, and one model involves the manipulation

of internal information processing methods, effectively by altering some internal algorithm or

process in the victim system.

The different labels employed for the models in early publications reflect the different paths

Borden and Kopp followed in identifying the model initially, and should be properly consid-

ered as descriptive mnemonics for identifying the respective models. We do not use the labels

employed by Bell and Whaley [3, 5]. Abbreviated labels based on Borden’s nomenclature for

the first three models are employed in this paper, as Borden’s model conflates the Denial and

Subversionmodels under Denial [42].

A player can apply any number of the four models, concurrently, or separately, to change

the opponent’s perceptions to gain an advantage [49].

The Degradation deception model conceals or hides information in noise, or other back-

ground messages, to introduce uncertainty or a false perception in a competing player’s belief.

This model exists in overt (active) and covert (passive) forms. In the overt form, the deceiver

produces the noise signal with sufficient magnitude that it prevents the victim from reliably

recognising arriving information, but alerting the victim to the fact that it is being attacked

[35, 39].

In the covert form, the deceiver aims to make the message indistinguishable from the back-

ground noise of the environment.

An overt Degradation deception amounts to manipulating the noise term in Shannon’s

capacity equation, such that N� S and in turn C! 0, while a covert Degradation deception

amounts to manipulating the signal term in Shannon’s capacity equation, such that S� N and

in turn C! 0.

Camouflage, concealment and hiding are covert forms of this model. Flooding a victim

with non-sensical, redundant or irrelevant data to hide actual facts are overt forms of this

model.

The Corruption deception model produces a false belief by replacing a real message with a

similar, but false message, contrived to be very difficult to distinguish from a real message. The

Information-theoretic models of deception
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false message thus mimics a real message. Successful corruption is inherently covert, as the vic-

tim remains unaware that the information is misleading [35, 39].

A Corruption deception amounts to fabricating a deceptive message sufficiently similar to a

real message, that the victim cannot recognise the difference, so S! 1 inside the victim’s cog-

nitive system, where S is information-theoretic similarity. Any deception in which a falsehood

is contrived to mimic a truth is represented by this model. An improved formulation based on

information-theoretic similarity is described in Appendix 1.

The Denial deception model increases uncertainty by preventing the victim from collecting

information by disrupting or damaging the means employed to collect information. This

model is always overt, as the victim is aware that the means has been denied, either in a tempo-

rary or persistent manner [35, 39]. A Denial deception amounts to manipulating the band-

width term in Shannon’s capacity equation, such thatW! 0, yielding in turn C! 0.

A card player seating himself in front of a brightly lit window, so that his opponent cannot

easily read any tells, would be an instance of this model. Denial of service attacks in the cyber

domain are another instance of this model.

The Subversionmodel involves actions where the victim’s information processing method

or algorithm is altered to the advantage of the deceiver. This model is commonly employed

for deceptions, but also is employed by parasites to compromise the basic objectives pursued

by the victim. Most known instances of Subversion are combined with an initial Corruption
attack to first insert the self-destructive message into the victim’s cognitive or decision cycle

[39].

Some of the best illustrations of Subversion are political or commercial deceptions using

“spin”, where the victim is encouraged to change the manner in which they interpret a mes-

sage, to the advantage of the deceiver. It is important to note that Denial via Subversion can be

employed for purposes outside the scope of altering perceptions.

Fig 1 depicts the relationships between the deception models and the components of system

they are employed to compromise.

Fig 2 depicts the respective relationships between the deception models, when employed to

produce deception effects.

Earlier studies have shown the ubiquity of these models in all domains where information

is employed to gain a competitive advantage. A large number of empirical instances of known

deceptions across the domains of social systems, cyber and biology were tested against this

model, and invariably found to map into one of the four models, or some combination of

these [37, 38, 40, 42, 46, 50].

The four canonical models have a number of interesting properties. The first of these is

analogous to atomicity, in the sense that since each involves manipulation of different parame-

ters, there can be no simpler models for a player to employ [49].

The second interesting property is analogous to orthogonality, and arises because these

models can be applied separately, or in arbitary combinations, by an attacker. The latter leads

inevitably to compound deception models, where the victim might be subjected to multiple

serial and parallel deception attacks, the intent of which is to drive the victim into a pre-deter-

mined internal state desired by the attacker. A compound model can then be modelled as a

directed graph, in which states of belief in the victim are represented as vertices, and decep-

tions which change the state of belief as arcs in the graph [37].

An integrated framework for modelling deception

The central problems in games with deceptions arise from how the deception alters the vic-

tim’s beliefs, and how this in turn alters the victim’s decisions. The alteration of a belief is the

Information-theoretic models of deception
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effect produced by a deception. The information-theoretic models of deception map the

deception into an effect.

Greenberg studied the problem of how deceptions impact players’ decisions in games. In

Greenberg’s model a rational player will make the choice that maximises payoff, according to

the subjective probabilities of payoffs for specific actions. These probabilities are derived from

observations and prior beliefs, either or both of which may have been altered by a deception

[23].

What the information-theoretic model of deception shows is that a player must make deci-

sions when interpreting perceived inputs, before these inputs can be incorporated into the sub-

jective model of the game, to estimate payoffs and risks, and to make decisions in the game.

Decisions about perceived inputs are typically embedded in the perceptual and information

processing mechanisms of the player, the behaviours of which are non-ideal and may or may

not be readily altered by the player.

Fig 1. The means of executing the four information-theoretic deception models. The Degradation, andDenial deceptions attack

the means of collecting information, which are the communication or perceptual channels. Corruption and Subversion attack the

means of perception or processing, respectively.

https://doi.org/10.1371/journal.pone.0207383.g001

Information-theoretic models of deception
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All four information-theoretic deception models are designed to defeat the mechanisms

used by a player to develop correct or reasonable beliefs, which are subsequently employed to

construct a payoff matrix for a decision, with the caveat that a Subversion deception may also

alter the manner in which a player makes a decision, or acts upon the decision, as it may also

alter utilities or decision algorithms.

The covert Degradationmodel is intended to transform a game of complete information

into a game of incomplete information, by hiding facts, options or possible strategies from the

victim.

The overt Degradation and Denialmodels are intended to introduce uncertainty into the

victim’s decision process, to reduce the quality of the victim’s subjective probability estimates

of payoffs or risks for specific actions. The victim knows that a deception is under way, but

degraded or denied information produces uncertainty.

Fig 2. The effects of the four information-theoretic deception models. The deception effect of increased uncertainty is produced

by the overt form ofDegradation, and by Denial. False beliefs resulting from false interpretation or false perception are produced by

the covert form of Degradation, Corruption and Subversion.

https://doi.org/10.1371/journal.pone.0207383.g002

Information-theoretic models of deception
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The Corruptionmodel, and many instances of the Subversionmodel, are intended to intro-

duce false beliefs by replacing facts, options or possible strategies with contrived alternatives,

to the advantage of the attacker.

Seamless integration of the four information-theoretic deception models into the estab-

lished game theoretic and decision theoretic constructs employed to model incomplete infor-

mation, uncertainty, and false information, does present some practical challenges, mostly due

to the immense diversity empirically observed in complex compound deceptions, the chal-

lenges of mapping perceptual models into subjective probabilities, but also due to the diverse

foci in game and decision theoretic models, which may be oriented to understanding the strat-

egies available, the specific decision, utility, payoff and risk models, or the possible equilibrium

states, or lack thereof.

Fig 3 depicts the integrated framework for modelling deceptions. The deceptions produce

effects, and these effects are employed as inputs to game or decision models.

Mapping the greenberg model. The study of deception in decision theory by Greenberg

focusses on the effect of deception on players’ subjective probabilities in a decision matrix, and

how this alters respective expected utilities or payoffs for specific alternatives or outcomes, but

constrains the discussion of specific deceptions to a short qualitative survey, reflecting the foci

of the study, and identifying the distinction between “false signals” and “noise”, which are

effects that can be mapped directly into the four information-theoretic models [22].

The information-theoretic covert Degradation, Corruption and Subversionmodels map

directly into Greenberg’s False Signalmodel, which captures the perceptual effects of these

deception models, although conflating false perceptions and false interpretations into “false

messages”. The overt Degradation and Denialmodels map directly into Greenberg’s Noise
model, introducing the perceptual effects of uncertainty.

The information-theoretic models and Greenberg’s decision theoretic model are wholly

coherent, through common albeit conflated deception effects in the Greenberg model. The

principal challenge, identified by Greenberg, is in determining or estimating the changes to

victim’s subjective probabilities resulting from the effects of the deception. That is inevitable,

as such determinations or estimations reflect the specific manner in which a victim perceives

and interprets the environment. In other words, how different kinds of deception affect differ-

ent kinds of victim is an empirical problem.

Mapping the Li and Cruz model. The more recent study of deception by Li and Cruz

defines two forms of deception, labelled “passive deception”, in which uncertainty is intro-

duced by noise or randomisation, and “active deception”, in which a deceiver will “generate

deceptive signals of high fidelity containing biased information to mislead its opponent” [14].

This work is a game theoretic remapping of Greenberg’s decision theoretic model, rigor-

ously identifying constraints and conditions, and impacts on game strategies. The “passive”

and “active” deception classifications directly map into the effects-based classifications used

by Greenberg, and are thus equally coherent with the information-theoretic model, but also

conflate false perceptions and false interpretations into false messages, labelled as “active

deception”.

Mapping Bennett’s hypergame. Previous work studied how the four information-theo-

retic deception models can be integrated into Bennett’s hypergame, as this model provides a

mechanism to capture the subjective perceptions and understanding of a complex game, as

seen by the respective players [49]. We employed Bennett’s ordinal form, accepting that in

some situations, a cardinal representation of preferences, favoured by Vane, may be more use-

ful [15, 51, 52].

Applying the information-theoretic deception models to a second level Bennett hypergame

yielded interesting results. The overt Degradation and Denialmodels introduced uncertainties

Information-theoretic models of deception
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into the perception of the opposing player’s subgame. The covert Degradation deception

mapped into the strategic surprise variants of the hypergame, where opposing player strategies

were hidden. False perceptions and interpretations induced by passive Degradation, Corrup-
tion and Subversion altered player’s understanding of the opponent’s subgame, and the oppo-

nent’s preferences [49].

We found that Bennett’s hypergame was the construct that provided the most flexibility in

capturing the richness of the information-theoretic deception models. The multiple channel

Normandy Invasion deception, commonly used as an example in hypergame studies, provides

good illustrations of the information-theoretic deception models in multiple areas [53].

Fig 3. Deception framework. The mapping of deception models into deception effects for use in game and decision

models. This mapping provides an integrated framework for modelling deceptions.

https://doi.org/10.1371/journal.pone.0207383.g003
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Experimental modelling of the “fake news” problem

The term “fake news” is the most widely accepted label for the empirically observed problem

of the mass distribution of deceptive content across mostly digital media. Wardle aptly

describes this term as unhelpful, as its conflates misinformation and disinformation of various

forms in various media. The “Misinformation Matrix” defined by Wardle respectively maps

seven means and eight motives for the production and distribution of misinformation, based

on empirical observation of social and mass media “fake news” [47].

Lazer et al defined “fake news” as “fabricated information that mimics news media

content in form but not in organizational process or intent.” and observe that “Fake news

overlaps with other information disorders, such as misinformation (false or misleading

information) and disinformation (false information that is purposely spread to deceive peo-

ple).” [54]

Campan et al defined “fake news” in a manner closer to Wardle, mapping it into categories

of clickbait, propaganda, commentary/opinion, and humour/satire, dividing it further intomis-
information, where the propagating party is unaware of the falsehood, and disinformation,

where the falsehood is known to be false [55].

Notably, the motives for “fake news” production and distribution always involve some

profit or gain by the players involved, be it monetary, political, ideological or psychological.

Misinformation is mostly employed to produce specific effects in the victim audience.

Many instances fall under the common label of “clickbait”, the sole aim of which is generat-

ing monetary profit from web based advertising, regardless of other collateral damage effects

inflicted on the hapless audience, such as producing a state of confusion. The deception is

focussed on attracting attention and promoting or compelling further distribution of the mis-

information, typically via social media.

Much more interesting are instances where the aim is political, ideological, or psychologi-

cal, as the gain sought by an attacker is a change of perception or belief in the victim audience.

Paul and Matthews explore this specific problem in a case study, and observe for that instance

that producing confusion in the audience is now a common aim, counter to the past practice

in political influence operations, “which traditionally emphasize the importance of truth, cred-

ibility, and the avoidance of contradiction”, the latter intended to introduce coherent beliefs in

a victim audience aligned with the political or ideological agenda of the attacker [56]. The tra-

ditional practice is well studied, and has been previously mapped into the information-theo-

retic models [37, 38].

As the works of Wardle, Paul and Matthews, Lazer et al, and Campan et al show, the

deceptions employed in “fake news” are predominantly of types that are represented by the

Degradation and Corruption information theoretic models, with some of the more traditional

propaganda constructs employing the Subversion information theoretic model. This is entirely

consistent with earlier analysis by Kopp, studying empirical instances of political and commer-

cial deceptions, where these three deception models were found to be most commonly used

[37, 38].

Digital media with their inherent capability to amplify “fake news” traffic volumes add an

additional dimension, as they facilitate “saturation” or “flooding” attacks, in which the victim

is inundated with deceptive message traffic, possible via multiple channels. This type of decep-

tion attack was found to have multiple effects. Where the victim is unable to cope with the

volume of messages, the effect becomes that of a Denial attack as the channel is effectively dis-

abled; where the victim is able to cope with the volume of messages, the attack becomes an

instance of overt Degradation where the deceptive messages are not coherent in content, and

Corruption or Subversion where they are coherent in content [38].

Information-theoretic models of deception
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Which of the four deceptions and respective effects are produced in the victim of a “satura-

tion” or “flooding” attack depends on how the victim processes information. Does the victim

ignore messages beyond some volume? Does the victim attempt to infer message veracity from

the respective quantities of messages, employing the argumentum ad populum fallacy, and fall

for a Corruption or Subversion attack? Does the victim simply become confused, suffering the

effect of a Degradation attack?

To fully address the problem of “saturation” or “flooding” attacks in digital media requires

a more complex model for a participant, in which different information processing schemas

are employed to capture different types of “fake news” victim. However, each victim type will

suffer effects defined by one or more of the four deception models, and therefore even a sim-

pler study of the kind we conducted will provide some useful insights into the effects of such

attacks.

Digital media are also characterised by message forwarding, such as “retweeting” or “shar-

ing”, where victims of a deceptive message propagate the message to others, a model that fits

the definition of a Chained Compound Attack, in which the party propagating the message

becomes a proxy for the attacking party, knowingly or not [38].

To date most modelling effort dealing with messaging in social media has focussed on the

diffusion of messages, mostly employing epidemiological models. Nekovee et al applied this

approach to random and scale-free networks, relating propagation to network topologies [57].

A empirical study by Jin et al, using the SEIZ model developed by Bettencourt et al from the

earlier SIR model, showed excellent agreement with Twitter social media traffic [58, 59]. Isea

and Lonngren extended the SEIZ model to describe rumour propagation [60]. Zhao et al have

studied other variations of the SIR model in rumour spreading [61–63]. More recently, Mussu-

meci and Coelhoa applied the SIR model to study the propagation of news [64].

Zubiaga et al studied empirically the behaviour patterns of social media users propagating

rumours, showing that false rumours persisted longer due to the difficulty in debunking them,

and showing that prevalent behaviour was to propagate rumours regardless of veracity [65].

The characteristic of the epidemiological models is that they capture diffusion behaviour,

but are not intended to model the underlying mechanisms that determine the behaviour of the

population, as an agent-based model is intended to do. For instance, in the SEIZ model, agents

in a population can be susceptible or infected, and parameters in the model determine the rate

at which the infected will infect the susceptible and the message diffuse through the agent popu-

lation. In the SEIZ model, the population size remains unchanged, but the size of the compart-
ments of the population comprising susceptible or infected agents change over time. The model

cannot capture the internal causes for agents in the population to propagate a message as it

was derived from epidemiology models intended to describe the dynamics of an infection,

where infectious pathogens implicitly propagate themselves.

Recent studies by Petrov et al and Mikhailov et al used differential models to study the

effects of propaganda on populations divided into groups choosing opposing viewpoints [66,

67], while Conover et al showed how intensive cooperation is central to the activity of online

political communities [68].

Not well studied to date is the effect of “fake news” on cooperation in such communities.

Political debate and voter choices often reflect consensus within a population on the suitability

of competing political alternatives. Traditional political propaganda aims to alter beliefs, rein-

forcing consensus in supporters, and seducing the undecided and opposed, mostly employing

Corruption and Subversion deceptions [37, 38]. Even less studied is the effect of political propa-

ganda contrived to create confusion and thus uncertainty, using the Degradation deception.

The effects of such confusion were recently explored by Flynn et al, who showed that misper-

ceptions aligned with prior beliefs or agendas were more often accepted [10].
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Comprehensive modelling of the whole gamut of effects empirically observed in “fake

news”, especially in a contemporary digital environment, is a major challenge, due to the diver-

sity of these effects, the presence of simple and compound deceptions, and the potential for dif-

ferent propagation topologies and social media participant behaviours.

Our experimental modelling explored the effects of the Degradation and Corruption decep-

tions on populations, emulating the two styles of political propaganda currently prevalent in

social media. The experimental platform was an evolutionary Iterated Prisoner’s Dilemma

(IPD) simulation, in which agents can evolve a range of well known IPD strategies, and con-

strained models of deception. The IPD was chosen specifically as it is widely understood,

providing a good basis for comparisons and interpretation of results, and because it captures

relative performance of cooperative and uncooperative strategies well [69, 70].

There are few studies that explore the effects of deceptions in populations using evolution-

ary simulations. Számadó et at in their study of the effects of deceptive messaging in an evolu-

tionary simulation, employed a variant of Ohtsuki’s donor-recipient reciprocity model. This

model is not an IPD, and randomly pairs donors and recipients, who can cooperate, defect or

punish. Dishonest signalling was employed to manipulate victim perceptions of player reputa-

tions, in which good or bad reputations could be misrepresented as the opposite. In terms of

the information theoretic models, this misrepresentation maps into the Corruption deception.

Our experiment on the effects of Corruption differs in a number of respects, primarily in the

use of a different game, and in the inability of players to identify other players by past reputa-

tions, as in our model players remember only their own experienced outcomes, and not the

identity of the past opponents who produced them [71, 72].

A particular focus in our modelling was to assess the impact of the cost of deceptions on

population behaviours, as this reflects a real world scenario, where the effectiveness of a decep-

tion may be improved by increased effort while incurring increased costs. We did not model

variable deception effectiveness as a function of cost.

Experimental design for agent based modelling of the “fake news” problem

The two series of experiments we conducted show the emulation of behaviours observed

empirically in social media, by using an agent based IPD simulation with random pairing, but

also show that information-theoretic models of deception can be employed in simulations to

good effect.

The first experiment was designed to show that even a small fraction of agents in a popula-

tion that conducts Degradation deceptions that introduce uncertainty can disrupt cooperation

across a much larger population of agents, while also exploring the cost dependencies of these

behaviours.

The second experiment was designed to show that in a population where agents conducting

the Corruption deception are allowed to evolve and invade the population, this agent behaviour

follows very similar diffusion behaviour within the population to that observed by Jin et al,

Mussumeci et al and others in social media propagation of messages, while also exploring the

cost dependencies of these behaviours.

Both experiments were thus designed to capture the propagation and amplification of

deceptive messages, the effect of deceptive messages on an actively engaged population that is

mutually interacting, and to explore sensitivity to the cost of deceptions.

The simulation was implemented using Netlogo turtles as agents [73]. We ran this simula-

tion with a population of 50 agents, that is of the proper order of magnitude for Dunbar’s

number in social media populations [74].
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This is significant insofar as debates in social media typically involve smaller groups, with

very much larger numbers of passive participants observing the debate. Campan et al studied

“fake news” distribution mechanisms and identified a recurring practice pre-dating the digital

social media, in which producers of fake news content target highly engaged and visible groups

or individuals, who then become proxies that distribute the deceptive messages, thus imple-

menting a Chained Compound Attack [55], [38].

Our initial assessment was that providing a population size of the order of Dunbar’s num-

ber should produce representative results for the social media context explored, as Dunbar’s

number provides a reasonable bound on the size of a highly engaged and visible group in social

media.

As the results of both experiments using this constrained population size demonstrated

behaviours empirically observed in much larger real world environments, we considered that

the additional effort in migrating the simulation to an environment compatible with much

larger population sizes was not easily justified. It would be easily justified for more complex

experiments capturing deceptive message propagation in complex and constrained network

topologies. Given both the diversity and variability of social media and other environments

subject to “fake news” attacks, the generality of the results will depend on how closely the envi-

ronment resembles the types we compare our results against.

As the simulation is very computationally intensive, the population size of 50 required 14

days of computation time on the fastest four core processor available at that time, specifically

an overclocked Core i7-6700K. Considerable effort was invested in profiling the performance

of the simulation, which was constrained to four concurrent simulation runs. This effort

showed that the Netlogo runtime environment Java Virtual Machine represented a serious

performance bottleneck.

Because the computation time of the simulation scales with the square of the population

size, simulating fully sized populations representative of real world social media environments

in reasonable time was not feasible, without a different simulation environment that is suitable

for a large parallel processing platform.

Agent reproduction in this simulation employs a two-point crossover at random locations,

followed by a probabilistic mutation using an evolved mutation probability initially common

to all agents.

In each generation, we remove the two agents with the lowest score from the population.

We then select an agent probabilistically weighted on score and breed this agent with another

randomly selected agent to produce two new offspring that replace the previously removed

agents. This bounds the diffusion rate of invading strategies into a population.

The cumulative score determines agent fitness, and whether the agent will reproduce or die

out. Agent fitness is a useful measure of effectiveness in modelling this problem area, as its

effect can be mapped on to the popularity of “fake news” messages. If they are popular they

propagate better thus increasing exposure of the victim audience to the deceptive message.

We employed the extant internal Netlogo turtle prisoner’s dilemma game that employs

non-negative payoffs, which satisfy the prisoner’s dilemma condition of T> R> P> S, and

can be remapped into the donation game parameters b, b − c:

• Temptation (b): T = 5

• Reward (b − c): R = 3

• Punishment: P = 1

• Sucker: S = 0
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As the simulation employs a cumulative score as a measure of agent fitness, a form with

non-negative payoffs is convenient as the fitness value is non-negative. We did not assess

alternative values of Temptation and Reward in this simulation, as N such parameterizations

would have increased required computational effort N-fold. Moreover, other parameteriza-

tions in the IPD would deny simple comparisons against earlier modelling using the default

Netlogo IPD parameters.

The agent population was initialised with seven well known IPD strategies, specifically TFT,
TF2T, Pavlov, Always Cooperate, Always Defect, Random and Probabilistic. The mix of strate-

gies was intentional, to explore how the deceptions impacted susceptible strategies. In part this

approach was also employed to provide control cases as some strategies, such as Always Coop-
erate and Always Defect will not be impacted by deceptions.

Each agent has memory to retain a history of three previous opponent moves, employed to

determine its next move, given its evolved strategy.

The strategies differ in how they examine their history to select the next move. Always
Defect, Always Cooperate and Random ignore the previous moves of the game. Tit for Tat
considers only the opponent’s previous move. Tit for Two Tats considers the two previous

observed moves. Pavlov considers the opponents’ previous move and the player’s previous

move. Probabilistic considers all the previous moves of past opponents, choosing to defect or

cooperate with equal probabilities to previously encountered opponents.

The cooperative strategies of most interest consider only the previous or two previous

opponent moves, therefore additional depth in the history would not provide a benefit.

This was confirmed by experimentation with early variants of the simulation that showed

that increasing the depth of the memory to more moves, specifically four and five, did not

appreciably alter results, but did increase simulation execution time appreciably, due to the

high average frequency of operations involving alteration of agent memory. Therefore the

final simulation was run with agents remembering only three previous moves, as this was

assessed to provide sufficient sensitivity to deception effects in reasonable computation

time.

For the experiments we report here, we ran the simulations in both sets of experiments for

5001 time steps. To provide control cases, some simulations were run in the first experiment

with an initial population of deceiving agents, and some were allowed to evolve deceptions.

Simulation agents and globals. Each agent has defined characteristics:

• A mutation probability

• An inherited S strategy

• An inherited D deception method, or none, initially set by parameter

• A history showing the last three opponents’ moves

• A cumulative score

Additional parameters are buried in the code as global variables, since we had little need to

adjust them once reasonable values were found. These include the cost of a deception that we

parametrised, the Gaussian variance for mutation, and initial population size.

We detail simulation parametrisation and outputs in S1 Appendix.

Integration of the deception models. Of the four possible deception models, three are

feasible in the IPD. The information theoretic Denialmodel is inherently incompatible with

the IPD, as players employing information theoretic Denial signal their uncooperative intent

to victims implicitly, rendering the method ineffective, as the victim will always know it should

defect.
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The Subversion deception results in the victim’s strategy being changed permanently to

Always Cooperate and is not explored in this study, due to the additional complexity of design-

ing a simulation that first primes a victim population by the use of Corruption to make it sus-

ceptible to a Subversion deception, which is the most common pattern observed empirically in

social systems [37].

Deceptions involving large scale “flooding” or “saturation” attacks against a population are

also not explored in this study. This was due to the inherent incompatibility of the information

theoretic Denialmodel with the IPD game, and the previously discussed complexity of model-

ling the variability in effects upon a victim population, that may encompass Denial, Degrada-
tion, Corruption and Subversion. The experiments we did conduct do capture the effects of

Degradation and Corruption deceptions that may arise in a “flooding” or “saturation” attack,

but without a model that captures the statistically variable population fractions susceptible to

the effects of the respective deception types.

As agents do not signal individual identities to other agents, an agent cannot associate a spe-

cific history of prior use of a deception method with another agent. A deception operates on

a victim agent by altering the victim agent’s history or strategy before the IPD is played in a

manner that captures the effect of that deception method, while the victim agent’s actual payoff

reflects the actual strategy of the attacking agent. The attacking agent’s payoff is the game pay-

off less the Cost of the deception employed. Agents that deceive will perform the deception on

every iteration of the game.

• Degradation replaces the three most recent moves in the victim agent’s observed history of

its opponents with random moves

• Corruption overwrites Defectmoves in the victim agent’s observed history of its opponents

with Cooperates

• Denial prevents the victim agent from observing the attacker’s move for a single round, but

was not employed in these simulations

• Subversion will set the victim agent’s strategy permanently to Always Cooperate

In practice a deception may or may not produce an effect, compared to a situation where

neither player is deceiving. The deception is successful if the payoff is greater than the payoff

without a deception, and unsuccessful otherwise. Whether a deception produces an effect or

not, the deceiving player always incurs the cost of the deception, which is subtracted from the

deceiving agent’s payoff. This reflects the reality that unsuccessful deceptions are inherently

damaging to the deceiver, and deceptions with weak or no effect may also do more damage to

a deceiver than a play without a deception.

We addressed this by the use of the following model:

• No Deception: Player A and Player B do not deceive, unaltered IPD strategy outcomes are

employed

• Deception by Player A: Player A is a deceiver, Player B is a non-deceiver, player A

deceives and plays its IPD strategy (we record success or failure of deception), while

for player B, the IPD strategy outcome is determined by the effect of the deception on its

IPD strategy

• Deception by Player B: Player B is a deceiver, Player A is a non-deceiver, player B

deceives and plays its IPD strategy (we record success or failure of deception), while

for player A, the IPD strategy outcome is determined by the effect of the deception on its

IPD strategy
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• Mutual Deception: Both players A and B are deceivers. We calculate the respective payoffs

for both players without deceptions and save the payoffs in a temporary variable. We apply

the respective deceptions to the memories of both players, and then calculate the respective

payoffs for both players with deceptions. We use the saved payoff values in the temporary

variables to calculate the success or failure of the respective deceptions.

Common empirically observed instances of mutual deceptions often show outcomes where

neither player gained from the deception, as both suffered reduced payoffs resulting from

opponents’ deceptions.

We provide a more detailed description of this model, and examples in S2 Appendix.

In all the experiments reported here, means are reported for sets of 30 runs with common

simulation parameters, with variation due only to the seed used for the pseudo-random num-

ber generator. We employed the internal Netlogo new-seed function that produces a seed

within a range of -2147483648 to 2147483647. In initial simulation testing, we verified simula-

tion repeatability across multiple host platform types by fixing the seed value.

We used Netlogo’s Behavior Space facility to systematically vary the simulation parameters,

such as cost of deceptions across sets of runs. Cost of deceptions is an important parameter, as

deceptions that on average yield poor outcomes and high costs reduce the fitness of agents.

Experiments on the effects of degradation

The purpose of this set of experiments was to establish whether a small population of players

introducing uncertainty into the memories of a large population of non-deceiving players

could significantly alter the frequency of cooperative behaviours in the non-deceiving popula-

tion. This experiment was in effect intended to explore the impact of confusing “fake news”

being injected into a community of voters, who are intending to vote a particular way, and

thus cooperate in public discourse by agreeing with each other to reinforce their subjective

certainty in a particular voting choice. The introduction of confusing “fake news” has been

claimed to produce dischord and increase the degree of uncertainty in voters making up their

minds [56].

The problem of noise disrupting the TFT strategy, first described by Molander, has been

well studied, but has been previously framed as a result of memory errors or decision errors,

which are not correlated with player intent [75–77].

Our hypothesis was that the use of the Degradation deception to increase the level of uncer-

tainty in decisions across a population of players using cooperative strategies such as TFT and

TF2T would produce identical effects to the well studied problem of noise being injected into

the decisions of agents employing strategies such as TFT. The experiment was intended to not

only demonstrate this behaviour, but also provide measures of sensitivity to deception cost,

the impact of the size of the population that is employing the Degradation deception, and the

effect on strategies other than TFT and TF2T.

In defining this experiment, we considered the mapping of strategies in the simulation to

the respective roles deceivers and victims of deceptions play in social media interactions. The

behaviours of highly “polarised” participants will map into the Always Defect strategy, while

the behaviours of consensus seeking participants will map into strategies such as Always Coop-
erate, and variants of Tit-For-Tat.

We parametrised cost across a range of values (0.05, 0.1, 0.15, 0.2, 0.25, 0.3), as earlier cali-

bration runs of the simulation indicated that Degradation costs in excess of 0.2 were not sus-

tainable in this simulation.

The populations for all simulations in this experiment were initialised with cooperative

strategies, i.e. Tit for Tat, Tit for 2 Tats, Always Cooperate, Pavlov or Probabilistic, so we could
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observe non-cooperative strategies, i.e. Always Defect and Random, evolving and invading the

population if their fitness permits this to occur. An agent playing any strategy can employ

deception, with the consequence that strategies for which concurrent deception on average

reduces payoffs will be unable to become established in the population due to reduced fitness.

Experiments on the effects of corruption

The purpose of this set of experiments was to establish the manner in which a population of

agents performing Corruption deceptions, given some cost, would expand into a larger popula-

tion of agents that are not deceiving. This experiment was in effect intended to emulate the dif-

fusion of “fake news” in social media, for a population of agents that can derive a payoff from

the deception.

The “fake news” problem is characterised by agents who propagate a message to gain an

implicit reward, for instance by subjective gratification, or an explicit reward by advertising

revenues. If the message is not “liked” or not propagated further by “retweeting”, the agent

does not earn a reward [47].

This represents, as noted earlier, an instance of the Chained Compound Attack in which

the entity propagating the confusing message becomes a proxy for the entity conducting the

deception. A victim of a deception becomes a proxy of the deceiver the instant this victim

propagates the deceptive message, and whether the deception is actually believed by the victim

might not matter.

Our evolutionary simulation cannot propagate a pathogen or a belief, but agents can pro-

duce offspring that propagate characteristic properties, comprising a combination of a strategy

and the use or otherwise of a deception. Notionally this is a remapping of the problem of a

population shifting between states into a birth-death process representation, in which deaths

and offspring are used to represent a state change as occurs in an epidemiological model such

as SEIZ. This permits capture of the diffusion behaviour observed in epidemiological models.

Unlike the SIR and SEIZ epidemiological models, the IPD simulation provides control of a

wider range of parameters, especially the payoffs and costs to players in the population.

This is important as in social systems, imperatives for propagating a message, false or true,

derive from payoffs to the players. Fitness to produce offspring becomes a proxy variable to

capture the transition from uninfected to infected states in an epidemiological model. We

were especially interested in the sensitivity of this simulation to the cost of the deception, given

its importance in social systems.

To test the simulation results for the characteristic diffusion behaviours previously observed

in social media message propagation we devised an algorithm to fit a differential epidemiologi-

cal model akin to SIR [59, 61–64].

This model describes the dynamics in terms of only the population fractions exhibiting spe-

cific behaviours si of the entire agent population, in the manner of compartments in epidemio-

logical models. Each population is assumed large enough that si is continous.

For a locally conserved population of identifiable agents, the birth, death, immigration, and

emigration rates are set to zero. And conversions form a point process with a constant rate. Let

βjk be the per capita rate of spontaneous conversion from trait i to trait j and μijk the per capita

per meeting rate from j to k induced by a meeting with i.

_sk ¼
X

j
bjksj þ

X

ij
mijksisj

Given time series data [sk]t where t is a discrete time of a discrete simulation. There is also

½_sk�t and [si sj]t for each i, and j. The problem of model fitting is to determine ½_sk�t as a linear

combination of the [sk]t and [si sj]t. Givenm agent behaviours there arem distinct [sk] and
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m(m+ 1)/2 distinct [si sj]. Place these in a matrix F. Let U = FT F, almost always non singular,

and V ¼ FT½_s�, the optimal parameters are A ¼ U � 1V ¼ ðFTFÞ� 1FT½_s�, and the differential

estimation is E ¼ FTA ¼ FTðFTFÞ� 1FT½_s�.
Population decays were also fitted, to compare as a control case against other work on

decay transients in social media traffic [78].

We include a more detailed discussion of the fitting method in S4 Appendix.

Results

Simulation results for experiments on degradation

Figs A-N in S3 Appendix show the evolution over time of the average populations of agents

playing IPD strategies, parametrised by cost.

In assessing the equilibrium behaviours observed in an evolving population with a mix of

different strategies, we employ the dynamical outcome descriptions employed by Le and Boyd

in their study of evolutionary dynamics in a continuous IPD, noting that their simulations

employed a population of 8,000—10,000 agents for 1,000 to 3,000 generations, while we

employed a population of 50 agents for 5000 generations [79]. Le and Boyd identify four

dynamical outcomes, labeled as stable cooperative equilibrium, cyclical polymorphism, stable
polymorphism, and collapse to a non-cooperative equilibrium.

Other than a set of early simulation test runs intended as a control, the simulations were

all initialised with an equal mix of cooperative strategies, allowing the exploitative All Defect
strategy to randomly evolve and invade the population. There were no significant differences

between the simulations initialised with a population of deceiving agents, and simulations

initialised without deceiving agents. S1 Appendix presents data for simulations initialised

without deceiving agents.

The first set of plotted data show the average sub-populations of agents, grouping them into

six sub-populations, determined by the use of IPD strategy and the use or non-use of the Deg-
radation deception, with the Random strategy as a control. These sub-populations may be

broadly described as either cooperative or exploitative, based upon their use or otherwise of a

cooperative IPD strategy. Where a combination of a strategy and deception yields on average a

low fitness, that combination extinguishes itself very quickly. Examples for a cost of 0.05 and

0.3 are shown in Figs 4 and 5 respectively.

The observed equilibrium behaviours fit the stable polymorphism identified by Le and

Boyd, with an initial population of non-deceiving agents playing cooperative strategies invaded

by a mix of deceiving and non-deceiving exploitative agents, with a stable but noisy equilib-

rium becoming established between 500 and 2,000 generations.

There is no evidence of periodicity in the equilibrium leading to the cyclical polymorphism,

or a trend within the 5000 generation interval to a state of collapse to a non-cooperative equilib-
rium, but the stability of the equilibrium is continuously challenged by the random invasion of

a small population of deceiving agents.

The results show in a convincing manner that agents using Degradation paired with the

Always Defect strategy will successfully invade the population, and remain in the population

long term, even through deceiving agents using Degradation struggle. The population size of

such agents progressively declines, due to competition with agents that play the exploitative

Always Defect strategy without deception, as the latter do not incur the cost of the deception.

The small population of deceiving players is nevertheless able to disrupt the cooperative play-

ers, significantly reducing their numbers in the population, depicted in Fig 6.

These results are significant in two ways. The first is that even a very small population of

exploitative deceivers that inject uncertainty in decision-making into a large population
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produce a major advantage for all players of exploitative strategies, that dominate the popula-

tion while the cost of deception is low. The second is that deceiving exploitative agents suffer

a significant disadvantage in fitness against non-deceiving exploitative agents who incur no

costs.

Put simply, even very small and transient populations of exploitative deceiving agents drive

cooperating agents out of the population, allowing them to be displaced by agents playing

exploitative strategies, while damaging the overall fitness of the population by reducing the

fraction of cooperating agents. This result has implications beyond the “fake news” problem,

and is discussed later in this paper.

This experiment also included a Cost of C = 0 where deceiving agents do not suffer a disad-

vantage against non-deceiving agents. In this unique situation, plotted in Figs A and B in S3

Appendix, the deceiving agents playing the exploitative All Defect strategy invade the popula-

tion and displace most strategies, other than non-deceiving All Defect in just over 2600 genera-

tions, producing a collapse to a non-cooperative equilibrium.

This experiment also displayed pronounced dependency of the size of the population

exploiting the effects of the deception on the the cost of deception, depicted in Fig 7.

Simulation results for experiments on corruption

Figs A-I in S4 Appendix show that the diffusion behaviour closely resembles the behaviour

observed with differential epidemiological models such as SIR. The fit was remarkably good.

This was determined using the differential model, where integrating E obtained compartment

Fig 4. Population map for degradation experiments at low cost. Population map, with grouped cooperative and exploitative strategies, for

Cost = 0.05.

https://doi.org/10.1371/journal.pone.0207383.g004
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estimates that were conserved to 4 decimal places, a measure of the quality of the model, and

behaviour that was very similar to the simulation, including decay transients. The general

behaviour observed accurately emulates initial diffusion, followed by a decay transient, in

repeated patterns as observed in social media, with each cycle of diffusion and decay corre-

sponding to the release and propagation of a popular item of “fake news”.

No differently than in the previous experiment, the short duration effect of a deception is

to produce a persistent impact on the population ratios. Agents playing exploitative strategies

dominate the population for many generations following the transient presence of the decep-

tion, until cooperative strategies recover due to higher average fitness and displace the exploit-

ative strategies. This shows the disruptive effect of a popular deception as observed empirically

in social media debates. At some point the population of agents using the Corruption deception

reappears, and the cycle is repeated again, as shown in Figs 8 and 9.

Similar behaviour was observed by Számadó et al in modelling deceptive messaging in a

game of indirect reciprocity with cooperation, defection and punishment [72].

While the dependency on cost was pronounced as in the previous experiment, observed

behaviour showed a weak initial cost dependency, followed by an abrupt and stronger depen-

dency above a cost threshold, that for this simulation and its parameters occured at a cost of

around 0.9, refer Fig 10. At higher costs, the population using the Corruption deception cannot

gain a foothold in the population, and behavior is dominated by the conventional contest

between populations playing cooperative and exploitative strategies.

For comparison with the experiment exploring the Degradation deception, we include

evolving average population data for this experiment, displayed in Figs A-L in S5 Appendix.

Fig 5. Population map for degradation experiments at high cost. Population map, with grouped cooperative and exploitative strategies, for

Cost = 0.3.

https://doi.org/10.1371/journal.pone.0207383.g005
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The equilibrium behaviours observed again mostly fit the stable polymorphism identified by Le

and Boyd, with an initial population of non-deceiving agents playing cooperative strategies

invaded by a mix of deceiving and non-deceiving exploitative agents, with a very similar stable

but noisy equilibrium becoming established between 500 and 2,000 generations.

An interesting comparison is the effectiveness of Corruption, that deterministically changes

the victim belief, against Degradation, that randomly alters victim belief. The evolving average

population data shows that Corruption produces larger populations of exploitative agents over

a much wider range of costs. This behaviour reflects empirically observed effects in propa-

ganda and the preference for Corruption over Degradation in propaganda predating the digital

age [37, 38].

Notably, this experiment included a Cost of C = 0 where deceiving agents do not suffer a

disadvantage against non-deceiving agents. In this unique situation, plotted in Fig A in S5

Appendix, the deceiving agents playing the exploitative All Defect strategy invade the popula-

tion and displace most strategies, other than non-deceiving All Defect in just over 500 genera-

tions, producing a collapse to a non-cooperative equilibrium.

Discussion

The primary aim of the experiments was to demonstrate that information-theoretic models of

deception were useful for more than simple taxonomical analysis of deceptions, and to

Fig 6. Cost dependency of deceiver population size. Fraction of population deceiving and playing exploitative IPD strategies versus the cost of deception, between

2000 and 5000 generations.

https://doi.org/10.1371/journal.pone.0207383.g006
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determine whether an IPD simulation using agents equipped to produce deception effects

could be usefully employed as a tool for modelling the effects of “fake news” in social systems

such as social media. A secondary aim was to assess the effect of the cost of deceptions.

Analysis of simulation results showed remarkably good agreement with empirically

observed behaviours in social media, despite a number of simplifying assumptions employed

in the design of the simulation and the experiments. The ability of the simulation to capture

accurately both transient short term and persistent behaviours observed empirically in social

media was not expected, as we assumed that simplifications in the model could cause the simu-

lations to depart from empirical observations of real world systems.

To the knowledge of the authors, the cost of deploying deceptions in social media has never

been studied in any detail. The results showed strong cost dependencies for both experiments,

albeit different in form.

Importantly, the cost to agents of performing either Degradation or Corruption deceptions

strongly determined persistence of populations benefiting from deception, or whether decep-

tion was able to even establish itself in the population.

Notably, in both experiments we observed the evolution of both types of behaviours

without priming the simulation with an initial population exhibiting Degradation and Corrup-
tion deceptions, demonstrating that such behaviours will evolve, invade and expand in a popu-

lation where conditions permit. We also observed that exploitative strategies benefited from

deceiving players without incurring costs, reflecting observed behaviours in social media.

Fig 7. Cost dependency of exploitative population size. Fraction of population playing exploitative IPD strategies versus the cost of deception, between 2000 and

5000 generations.

https://doi.org/10.1371/journal.pone.0207383.g007
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What the simulation shows has practical implications, as increasing the cost of social media

deceptions to deceiving players will reduce their ability to disrupt the population.

The cost of deception in a social system can be increased directly, by introducing penalties

for deceptions, or by inoculating the population against deceptions, forcing a deceiver to

employ more elaborate and expensive deceptions to achieve actual effects [80].

As yet, we have not modelled a situation where the increasing effectiveness of a deception

incurs an increasing or proportionate cost. Empirical observations show that mostly more

sophisticated deceptions require more effort and thus cost to execute, given some cognitive

capability in the victim to recognise a deception. The relationship between deception and the

cost to execute it is an empirical problem, as is the problem of how a victim might unmask a

deception. This problem more generally represents the well established problem of evolution-

ary arms races in deceptions and means of detecting these observed in biology [39].

The results showing the sensitivity of deception effect in a population on the cost of the

deception have implications beyond the immediately studied problem of “fake news” in social

media. The impact of deceptions on group behaviour, especially cooperation, will be a consid-

eration in the study of other social systems, and in evolutionary psychology.

Shame has been studied in IPD modelling as a mechanism to induce or maintain coopera-

tion in a social system, Declerck et al found that exploitative players cooperated when they

could not hide their greed [81]. Shaming exploitative players is a form of extrinsic cost

Fig 8. Comparison of transient and persistent population behaviours simulation run 101. Population map showing transient and persistent behaviours for

simulation run 101.

https://doi.org/10.1371/journal.pone.0207383.g008
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imposed upon an exploitative player to modify their behaviour. Degradation or Corruption
deceptions would permit such players to hide their greed and thus continue to play selfishly.

The agents we employed were not able to recognise failed attempts at deception, and punish

the deceiving agent by defecting. The agents were also unable to associate identities with spe-

cific opponents, denying the means of identifying a priori deceiving players. Many strategies

incorporating Retribution have been well studied in competitive IPD tournaments. The obvi-

ous drawback of Retribution alone as a mechanism to discourage deceptions is that it does

not punish successful deceivers, and thus cannot achieve the effect in facilitating cooperation

recently found by Kurokawa [82].

The problem of exactly how to best impose a cost on deceivers who disrupt cooperation is

essentially empirical, as the specific context will determine what means are feasible.

Sewell argues from the works of Dawkins and Trivers, that implicitly selfish players will

cooperate due to reciprocal altruism, and that displays of emotion can enable cooperation

[83–85]. There is ample empirical work in the humanities showing how emotion can also be

employed to support deceptions. Possibly more interesting is the manner in which deceptions

could be employed to faciliate reciprocal altruism and thus cooperation.

The results of our experiments also show consistency with some earlier work in biology.

This should not be surprising, given the generality of the information-theoretic models of

deception.

Fig 9. Comparison of transient and persistent population behaviours simulation run 148. Population map showing transient and persistent behaviours for

simulation run 148.

https://doi.org/10.1371/journal.pone.0207383.g009
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Spence’s seminal work, studying job market behaviours, laid the foundations of what is

termed honest signalling theory, in which signalling is represented as a game in which the signal-

ler and receiver incur costs from honest or dishonest signalling [86]. In Spence’s model, the cost

incurred to signal is employed by receivers as a measure of signaller fitness. Players incurring a

higher signalling cost are thus disadvantaged, assuming the signalling accurately reflects cost.

Biology researchers have studied the related problem of fitness signalling due to its impor-

tance in mate selection, with ongoing research following Zahavi’s initial work on the “handi-

cap principle”, whereby costly signals are employed to message fitness [87]. Grafen remapped

Zahavi’s model into a game theoretic representation, and incorporated Spence’s notion of a

disadvantage incurred by higher signalling cost [88, 89]. Considerable research effort has been

invested since then to determine the exact relationship between honest and deceptive signal-

ling, and cost of either [89–94].

A recurring theme in these arguments is the effect of cost upon deceptive signalling. Szá-

madó argued that “the honesty of communication is maintained by the potential cost of

cheating . . .” [93]. Higham argued that “. . . there must be a cost associated with cheating that

outweighs its benefits.” In our model costs are implicit in deceptive signalling, as effort must

be expended in producing the deceptive signal, in which regard it is identical to non-deceptive

signalling.

The information-theoretic modelling approach differs from models frequently used in

biology as it implicitly assumes a deception is imperfect, as it may or may not be successful in

changing the state of belief in the victim. Therefore, other than the special case of zero cost, any

cost incurred by a deception will impact the fitness of the deceiver, with severity determined by

Fig 10. Stability of diffusion behaviour versus the cost of deception. Fraction of population exhibiting stable diffusion behaviour versus the cost of

deception.

https://doi.org/10.1371/journal.pone.0207383.g010
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how frequently the deception fails, and the ratio of payoffs for successful versus unsuccessful

deceptions. Extant research in biology is focussed mostly on the question of payoffs, the infor-

mation-theoretic modelling approach indicates that the ability to better unmask deceptions will

also act as a disincentive to cheating, as we know from observation of social systems.

Czárán and Hoekstra simulated the quorum sensing problem in populations of bacteria,

where the organisms can cooperate or cheat, and costs were parametrised, with eight beha-

vioural strategies present in the population [92]. Their simulations showed frequently very

similar stable polymorphism behaviour to that observed in our experiments, with the popula-

tion being invaded by deceiving agents, and cost dependent stable equilibria being attained

between populations of cooperating and exploitative agents with different strategies.

Agents with the Liar genotype employ the Corruption deception, incurring a higher meta-

bolic cost than Ignorant agents, that are also exploitative and unable to cooperate. Notably,

Czárán and Hoekstra found similar equilibirum and non-equilibrium behaviours between

Liar and Ignorant populations, as we found between deceiving and non-deceiving agents play-

ing the Always Defect strategy. In both studies the lower cost incurred by the non-deceiving

exploiters resulted in the latter mostly displacing the former in the population.

Clearly, many opportunities exist to apply the information-theoretic deception modelling

framework and simulation methodology we describe in other problem areas, and previous

work in the biology domain supports this proposition.

Conclusion

The simulation results show, as observed empirically in social systems subjected to “fake news”

attacks, that even a very small population of deceivers that appear transiently can alter the

equilibrium of the population in favour of exploitative strategies, at the expense of cooperative

strategies. The results also show that the ability of a population of deceivers to establish itself

or remain present in a population is highly sensitive to the cost of the deception, as this cost

reduces the fitness of deceivers when competing against non-deceiving agents. The observed

fit of a differential model of the form of the SIR epidemiological model against diffusion

behaviours observed for agents exploiting the Corruption deception are very close to empiri-

cally observed behaviours in social media, when fitted to such epidemiological models.

We have therefore demonstrated, using an improved formulation of the information-theo-

retic models of deception, that agent based evolutionary simulations employing the IPD can

accurately capture the behaviours of a population subject to deception attacks using the Degra-
dation deception, that introduces uncertainty, and the Corruption deception, that introduces a

false perception. We have also demonstrated that the deceiving population diffuses into the

larger population in a realistic manner.

We modelled only basic forms of the Degradation and Corruption deceptions, leaving more

complex compound deceptions, including the common combination of Corruption and Sub-
version unexplored. The recently proposed model of inoculating the population against decep-

tions was also not explored. These present opportunities for future research in this area.

Appendix

Applicable information theory concepts and an improved model of

corruption

Shannon’s model of information, and the transmission of information through a channel, is a

well proven representation, ubiquitous in modelling data transmission and storage, human

cognitive loads, as well as other information-centric problems [95, 96].
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The Shannon model is constructed around the assumption of two entities communicat-

ing symbols through a channel, the function of which is impaired by the effects of additive

white Gaussian noise (refer Fig 11). The symbols form an alphabet, which is assumed to be

known and understood by all entities using the channel. The effect of additive noise in the

channel is to change some symbols, thus introducing errors in transmission through the

channel.

The Shannon model makes two assumptions, which are important for the study of decep-

tion. The first and weaker constraint in practice, is that noise in the channel is assumed to be

Gaussian. The more important assumption is that the symbols forming an alphabet are under-

stood by both entities, although the model makes no assumptions about the meaning of the

messages encoded by the alphabet. The model assumes both entities have prior probability dis-

tributions for messages sent and received. We will show that deceptions may often involve

manipulation of the channel, or misrepresentation of the meaning of messages, the latter

involving manipulation of the alphabet.

Shannon’s model is quantitative, and centred on the idea of entropy. If a message contains

information, an entity receiving it and understanding it will experience a state change which

alters its level of uncertainty. The less likely the message, the greater its information content,

noting that the prior probabilities may be unique to each entity in the channel. In particular:

IðmÞ ¼ � log
2
pðmÞ

where I(m) is the information in messagem, and p(m) is the probability of the message.

In the context of deception, Shannon’s channel capacity theorem is much more useful. It

states that the capacity of a channel to carry information depends on the magnitude of the sig-

nal encoding the symbols, the magnitude of the interfering noise in the channel, and the band-

width of the channel:

C ¼W log
2

1þ
S
N

� �

The channel capacity theorem is defined in its basic form for a physical channel, with the

properties of capacity C in bits/s, bandwidth W in Hertz or cycles/s, and signal power S and

Fig 11. Shannon’s model for a communication channel. Shannon’s model for a communication channel, comprising a source,

transmitter, channel with noise source, receiver, and destination (Kopp, per Shannon, 1948).

https://doi.org/10.1371/journal.pone.0207383.g011
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noise power N in Watts, reflecting the definition of the theorem for a physical communication

channel. Actions by a transmitting entity to manipulate the terms in the capacity equation will,

in turn, manipulate the internal state of the receiving entity.

The application of models of deception based on the channel capacity theorem is now well

established in areas involving electrical transmission or detection of data [46]. This is because

the channel capacity theorem can be easily and directly mapped into widely used models in

this area.

In other systems, additional mappings to transform variables into a form suitable for the

capacity theorem model are required. An example might be a victim flooded with a large num-

ber of text documents, mostly containing repetitive or irrelevant content, intended to reduce

the “signal to noise ratio” seen by the victim. An applicable and context sensitive mapping into

Shannon’s S/N ratio must be performed to produce a quantitative measure, although this may

not be required if the intent is simply to understand how the deception alters a game, and per-

form ordinal ranking of outcome preferences.

Another important concept in information theory for understanding deception is that of

measures of similarity or difference, since similarity to or differences from a known message

may be used as a means of distinguishing valid from invalid messages, or as a means of decep-

tion, making a false message appear to be real. This is the basis for the model employed to

describe Corruption deceptions.

Measures of similarity or difference remain an area of active research in information theory,

and at this time a number of measures have been proposed, with varying degrees of generality.

For instance, Vitanyi and Li et al have proposed measures based on information distance,

while Lin proposed a similarity theorem that defines a measure of similarity by the ratios of

information [97–99].

Vitanyi’s measure of difference is presented as one example. How different Y is from X is

measured by the size K(Y|X) of the description of how to edit Y to turn it into X. If Y is the

same as X, then there is no editing and the difference is 0. Since the edits required to turn Y
into Xmight be different from those required to turn X into Y, the maximum is taken. How-

ever, this is divided by the maximum size of the edits K(X) and K(Y) required to construct X
and Y from scratch. So, difference is taken in proportion to the complexity of X and Y alone.

The precise formula used by Vitanyi is as follows:

DðX;YÞ ¼
KðXYÞ � minðKðXÞ;KðYÞÞ

maxðKðXÞ;KðYÞÞ
SðX;YÞ ¼ 1 � DðX;YÞ

Where S is similarity, D is difference, and K is the editing function applied to X, Y. Vitanyi

uses a theoretically optimal editing process. But, for practical purposes he suggests the use of

any common compression algorithm, such as ZIP. The typical compression algorithm is dic-

tionary based. It stores common words and phrases from X and writes the list of code num-

bers. If Y contains few words or phrases that do not already exist in X, then the compression of

XY will be only slightly larger than of X. Such an optimal process may or may not be realised

in practice, when a player attempts to determine similarity.

A number of other widely employed measures of similarity or difference exist and could be

applied here. For instance Kullback-Leibler divergence or relative entropy, or its second deriv-

ative, the Fisher information metric, are often employed to gauge differences between two

probability distributions [100, 101].
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Kullback-Leibler divergence is:

DKLðPjjQÞ ¼
X

X

PðXÞlog2ð
PðXÞ
QðXÞ

Þ

whereDKL(P||Q) is the KL divergence in bits, and P(X) andQ(X) are some distributions of ran-

dom variable X. If the distributions are not identical, divergence is non-zero:

DKLðPjjQÞ 6¼ 0, PðXÞ 6¼ QðXÞ

KL divergence is not symmetrical, but still provides a useful measure of difference. Mutual

information is also a useful means of establishing differences, and is of interest given its

implicit relationship with Shannon information. A common definition is [102]:

IðX;YÞ ¼
X

X

X

Y

PðX;YÞlog2ð
PðX;YÞ
PðXÞPðYÞ

Þ

Where P(X, Y) is the joint distribution, and P(X) and P(Y) are the respective distributions

for X, Y.

The empirical problem in modelling deceptions will often lie in determining how an

entity measures similarity, and which measure or metric best captures or approximates this

behaviour.

Shannon’s channel capacity, and information-theoretic measures of similarity are bounds,

respectively, on systems which transmit or compare messages. An actual non-ideal physical

system may not be capable of achieving these bounds, and may have a decision threshold well

below these bounds. As a result, a valid message may be lost in noise internal to the system, or

two similar messages might be interpreted to be identical, despite being very different in some

way.

Deceptions exploit these limitations of non-ideal systems. Put quantitatively:

Creceiver � Cobjective
SreceiverðA;BÞ 6¼ SobjectiveðA;BÞ

Where Creceiver is the channel capacity actually available to the victim, Cobjective the achievable

channel capacity, Sreceiver(A, B) the similarity between A and B as perceived by the receiver,

while Sobjective(A, B) is the objective similarity, assuming an actual objective or “ground truth”

rather than subjective probability distribution. Successful deceptions arise when the deceiver

manipulates the channel or message in a manner, which the receiver is unable recognise or

overcome, altering the receiver’s perception, and thus subjective probabilities. For simplicity,

we further assume that the outcome of a deception is a discrete state change in the receiver’s

perception, a reasonable assumption since in practice a successful deception typically captures

the receiver.
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