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Abstract

We present a novel intensity-gradient based algorithm specifically designed for nanometer-

segmentation of cell membrane contours obtained with high-resolution optical microscopy

combined with high-velocity digital imaging. The algorithm relies on the image oversampling

performance and computational power of graphical processing units (GPUs). Both, syn-

thetic and experimental data are used to quantify the sub-pixel precision of the algorithm,

whose analytic performance results comparatively higher than in previous methods. Results

from the synthetic data indicate that the spatial precision of the presented algorithm is only

limited by the signal-to-noise ratio (SNR) of the contour image. We emphasize on the appli-

cation of the new algorithm to membrane fluctuations (flickering) in eukaryotic cells, bacteria

and giant vesicle models. The method shows promising applicability in several fields of cel-

lular biology and medical imaging for nanometer-precise boundary-determination and

mechanical fingerprinting of cellular membranes in optical microscopy images. Our imple-

mentation of this high-precision flicker spectroscopy contour tracking algorithm (HiPFSTA)

is provided as open-source at www.github.com/michaelmell/hipfsta.

Introduction

Quantitative imaging is progressively empowering the analytic toolbox of cellular biology with

high-performance observational facilities accessing new biophysical markers resolved in space

and time [1,2]. Optical microscopy imaging combined with computational technologies are

opening translational promise as provide the integrative biologist with unprecedented mines of

data to be exploited in high-performance analytic approaches, which are allowing to gain fur-

ther insight beyond conventional imaging with immunofluorescence [3]. Fluctuation spectros-

copy with optical contrast microscopes is a simple, yet powerful biophysical method to probe

non-invasively mechanical properties of biological cells by imaging the shape fluctuations of

the cell membrane contour [4]. When applied to living cells undergoing metabolically-driven
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(non-equilibrium) fluctuations, the fluctuation method has allowed for getting new insights

into cell mechanics, particularly in studies with red blood cells, hereinafter RBCs [5–12]. The

performance of contour-segmentation algorithms for tracking membrane fluctuations from

video-microscopy images has always played a crucial role in the advance of this technique by

enabling a more precise determination of the cell contour-position [13]. Accordingly, various

segmentation methods have been proposed with contrast imaging [7,13–21], which were

accompanied by technological advances in digital image processing and computational power.

The contour-segmentation algorithm we present here harnesses the computational power of

general purpose graphics processing units (GPGPU) having recently become available to signifi-

cantly improve on current segmentation methods in the sub-pixel performance of nanometer

resolution. The super-localization software here proposed may enable observation of novel

dynamical phenomena in cell biology and may allow for significantly more precise results that

could be exploited efficiently in cell phenotyping approaches useful in biomedical contexts. The

new algorithm is potentially implementable to more sophisticated optical settings [1], including

diffraction phase microscopy (DMP) [22] and phase-contrast modes in digital holographic

microscopy (DHM) [23]. These adaptations could push quantitative imaging further into novel

software developments that take advantage of the enhanced contour detection provided by our

new method.

Technically speaking, the new segmentation algorithm analyzes optically contrasted (either

bright-field or phase-contrast) microscopy images of cells possessing a characteristic halo at

the cell boundary. The so-called “halo effect” is nonlinearly tied to the coherence of the illumi-

nation and the optical contrast of the sample [24], and provides an exploitable framework for

image formation in different contrast modes under varying degrees of coherence [25,26]. This

contrast halo consists of an intensity minimum and maximum, which encodes the information

on the membrane position as the result of a mismatch in the refractive indices of the medium

inside and outside the cell (see Fig 1A and 1B). Early segmentation algorithms used the inten-

sity maximum of the halo to determine the location of the cell-contour [14,16,19,27]. However,

it was later pointed out by Döbereiner [18] and Pécréaux [13] that the location of the interface

is actually placed at the maximal gradient of the halo intensity [28] and this has become the

preferred method for the membrane localization [13,16–18,20,21]. Pécréaux and cols. [13]

proposed the currently widespread segmentation algorithm, where the interface location is

defined by the intercept of a linear fit to the intensity profile at the contour halo and the aver-

age background intensity (see Fig 1B). This linear fit is performed to the pixel-intensity values

along three of the four principle directions of the pixel-grid (2x parallel, 2x diagonal) to calcu-

late the final position from their weighted average [13]. In the Pécréaux’ algorithm segmenta-

tion is performed sequentially along the contour using a number of different conditions to

determine the segmentation direction. More recently, new segmentation methods have been

proposed to locate the contour positions by directly determining the maximum of the intensity

gradient [20,21]. In particular, Usenik et al. [21] used interpolation to calculate the image

intensity along radial directions starting from the center of the contour. The contour position

is determined by the intensity gradient maximum along each individual line (see Fig 1(C)). By

calculating an updated barycenter of the contour, the process is repeated for each image until

the center of the contour converges to a fixed position. This allows the individual refinement

of each contour-coordinate, an improvement that is not possible using previous methods.

However, the direct usage of the numerical gradient in the Usenik’s method has drawbacks,

since it amplifies image noise. Therefore, those authors use Gaussian image filter to reduce

noise, which should be expected to reduce resolution [21].

To overcome the limitations of these two algorithms, our proposed method combines ideas

from both, putting substantial emphasis on image oversampling as an original characteristic of
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the proposed method. In Pécréaux’ method each point in the contour is determined from the

precedent one, which introduces an evident bias that makes that method especially sensible to

the choice of the initial condition. To increase the robustness of our algorithm, we follow the

Usenik’s method for which each contour coordinate Pi is refined independently at a fixed con-

tour angle ϕi over various iterations per image. Motivated by Pécréaux, our method deter-

mines each contour coordinate Pi from the weighted sum of a large number of linear fits over

a range of local angles φj centered on the contour normal ni of the intensity halo. In our pro-

posed method, the positions for performing the linear fits become independent of the pixel-

grid by interpolating pixel-intensities, which overcomes a subtle, but significant issue with

Pécréaux’ method that is related with the fixed positions of the centers of the pixels. These

mutual improvements have allowed us to generate a new hybrid algorithm, more robust and

precise than the previous ones, which enhances the accuracy of the segmentation method

down to 2nm spatial precision in determining changes in the position of the contour halo. The

new algorithm has been implemented with movies of dynamic fluctuations recorded by digital

video-microscopy with high-velocity cameras at short exposition times (shorter than millisec-

ond). This allows an ultrafast readout of the contour fluctuations (up to several tents kHz)

that, applied to cell membranes, allows imaging the instantaneous snapshots necessary for

probing the shape fluctuations of the cell membrane. A typical imaging session left less than

one-second, the time necessary to record all the data required to perform the time-average

involved in a statistically relevant fluctuation spectrum and to detect the time correlations due

to the intrinsic dynamics of the fluctuation modes of membrane deformation. Further mathe-

matical treatment of these membrane fluctuations, especially by Fourier analysis, makes possi-

ble a deep understanding of membrane mechanics in terms of usual elasticity models [29]. All

these improvements empower the proposed method with a significantly higher performance

than previous ones, particularly in terms of enhanced spatiotemporal accuracy that allows

resolving the membrane fluctuations with a higher precision not only in amplitude but also in

spatial and time resolution, both in real and reciprocal domains. Such a breakthrough in seg-

mentation performance should be crucial to approach new problems of cell mechanics where

membrane fluctuations can be exploited as a relevant observable. Imaging membrane fluctua-

tions could thus become an excellent observational method for non-invasive and non-stressing

probing the mechanical phenotypic traits of cellular membranes where the intrinsic rigidity of

the cytoskeleton necessarily imposes low amplitudes and short correlation times and distances

of the membrane fluctuations.

Fig 1. Phase contrast causes an intensity gradient at the location of the RBC membrane. (A) Bright-field image of a RBC. (B) Intensity

profile along the black line in (A). The vertical line indicates the contour-position as found with the method described in [13]. The background

intensity and fit are also indicated (horizontal and diagonal line). (C) Intensity-gradient of (B). The vertical line indicates the maximum. The

noise in the image cause two maxima at the peak, which makes localizing the absolute peak value difficult without filtering.

https://doi.org/10.1371/journal.pone.0207376.g001
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Method

Microscopy hardware

To observe the surrounding border of a cell, or of a lipid vesicle, we take advantage of wide-

field transillumination video-microscopy [30]. Transillumination techniques require two

lenses, condenser and objective, both used to focus the light on each side of the sample. In an

inverted bright-field (BF) microscope, the sample is transilluminated from above by focusing

light (with the condenser) on the entire field of view where the object to observe is placed. The

resulting BF image is formed after the light has been transmitted through the sample and col-

lected with the objective lens from its focal plane. Then, the image is recorded on a video cam-

era. Because of the transmittance difference between the object interior and the outer medium,

an Airy pattern due to edge-diffraction is produced at the border of the object. Consequently,

when the BF image is formed, the object appears surrounded by a brighter “halo”, which

delimits the contour of the border [31]. BF images of our biological samples tend to have low

contrast, because vesicles and most cells are not strongly light-absorbing, however additional

contrast can be gained in the phase-contrast mode [30]. In a Phase Contrast (PhC) micro-

scope, phase shifts produced in light passing through a transparent specimen with contrasted

optical densities are converted to brightness changes in the image. PhC is based on refractive

index differences [32], indeed optical edges between regions with different refractive indices

cause light to refract in an amount (phase-shift) that depends on how much the refractive

index changes. Most simply, PhC microscopes generate an image by comparing how much

phase-shift is produced at each location in the sample relative to how much light is not phase-

shifted. Physically, this construction occurs via interference between refracted (phase-shifted)

and non-refracted light beams. The PhC microscope is fitted with a special condenser and a

phase-contrast objective, which contain both phase rings to control phase contrast. PhC

images may be made to appear dark against a bright background (positive contrast) or bright

against a dark background (negative contrast). The borders of images are surrounded by a

characteristic phase-contrast “halo”. Both, BF and PhC techniques are highly sensitive and

compatible with the short exposure times involved with high frame rate recording.

The proposed contour-segmentation algorithm has been conceived to work with halo-

edged contrasted microscopy images, indeed it can be interoperable with images obtainable

from different transillumination modes used to generate optical contrast. Because the halo

contrast is tied to the coherence of the illumination, it can be controlled by the aperture of the

condenser. Here, we use indifferently both, BF and PhC images, although images from other

contrast modes, such as dark-field, differential interference contrast (DIC) and cross-polarized

microscopy are intrinsically different to typical halo-contrasted images, they could be also ana-

lyzed by introducing changes in the parameters that determine the definition of the contrast

profile in the proposed algorithm.

In this work, microscopy images are obtained with an inverted microscopy (Nikon Eclipse

80i), which is equipped with high-performance objectives with all possible aberrations,

included chromatic, sufficiently minimized. The BF mode is implemented at wide-field illumi-

nation with white light from a mercury lamp, and an apochromatic bright-field objective

(x100, 1.45 N.A.). The PhC mode is implemented with a condenser equipped with an annular

phase plate that focusses the illuminating light from a cold-light LED source (150mW max) in

the sample, and an apochromatic phase-contrast objective (x100, 1.45 N.A.). The optical sys-

tem is equipped with auto-focus, which allows for automatic correction of eventual image

defocusing once the equatorial-plane of the contour object has been defined. The microscopy

images are continuously recorded with high-dynamical range digital camera (Photron FAS-

TCAM SA-3). This camera has a CMOS sensor allowing for very high sample rates through
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the parallel and independent read-out of each individual pixel. Each pixel possesses separated

electronics for converting the accumulated charge in a pixel into a digital signal. As a result,

each pixel possesses different electronic characteristics regarding its read-out noise and dark-

current. The whole setup is mechanically isolated by placing on top of an anti-vibration table

(Integrity 1VCS, Newport).

Software: Algorithm description

Image preprocessing. Because a CMOS high-velocity camera with an in-parallel pixel-

grid readout is used, the contrast images possess embedded a pixel-grid structure, which if not

corrected, can affect the segmentation results. Furthermore, aberrations in the optical path can

lead to artifacts in the image that can affect the segmentation result. To correct both artifacts

we perform a background-correction of each movie frame before segmentation. For this we

record and average over a large number of dark-field images Dd as well as a large number of

empty (“flat”) frames Ff (usually ~1000 frames each). The dark-field images are recorded once

for the given exposure-time and serve to correct the cameras dark-current. The flat-fields are

recorded previous to and for each measurement (each movie), since their image intensity

needs to match that of the measurement as close as possible. The corrected frame Ifinali is then

obtained from Ii by performing the following operation for each pixel:

If inali ¼
Ii � hDdid
hFf � hDdidif

We perform the averaging over hDdid and hFfif in order to minimize any noise introduced

when performing the correction above.

Contour determination. Coordinates. The segmentation algorithm uses both Cartesian

Pi and polar (ϕi,Ri) coordinates relative to the contour center O to represent the i = 0. . .N − 1

contour coordinates (see Table 1 for parameter values) that define the N contour sites. Addi-

tionally, it uses the contour normal ni which is calculated from the halo gradient at every con-

tour site i. To perform its work, the algorithm uses the P0i, n
0
i, and O0 of the previous iteration

(indicated by the prime) and uses them as the starting points to determine the Pi, ni and O in

the following iteration. This allows the positions contour sites i to be refined independently of

each other in an iterative manner, as we will describe below. Initial segmentation of the first

image is performed sequentially, since no previous coordinates P0i are available. It is initiated

by providing an approximate starting point P0i = 0 on the halo and an approximate contour

center O0. The point P0i = 0 is then refined once to obtain the refined coordinate Pi = 0 or (ϕi = 0,

Ri = 0). The radius Ri is then used as the starting point (ϕi+1,Ri) to calculate the following coor-

dinate P0i = 1, which then is again refined to obtain Pi = 1. This is then continued for all N con-

tour angles, which are fixed to the values ϕi = (2π/N) × i. After initial segmentation is

completed, the algorithm writes the obtained coordinate set Pi and O to P0i and O0 to use them

as the input for the following segmentation iteration. From then on, all contour sites i are

Table 1. Parameter values used for imaging and tracking RBCs.

N F M finterp nfit

2048 π/4 64 20 px-1 100

nbkgr LY Δshift Δcoord Δcenter

400 400 10 px 0.01 px 0.01 px

Parameter values used for imaging and tracking RBCs to obtain the results presented in this paper.

https://doi.org/10.1371/journal.pone.0207376.t001
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determined independently of each other by using the P0i; n
0
i and O0 of the previous iteration,

even when switching from on video image to the next.

Pixel grid. The pixel size determines the maximal resolution for sampling image intensities

from phase contrast halo. Without interpolation of image pixels, the processing of image

intensities by an algorithm will therefore be confined to the location of pixels within the pixel

grid. In particular, fitting of the halos intensity is then confined to the center position of indi-

vidual pixels and can only be performed parallel and diagonal to the pixel-grid. However, for

any closed contour the maximal gradient of the halo will point into every possible angular

direction of the image, including direction not commensurate with those of the pixel grid.

Without interpolation, the rectangular geometry of the pixel grid therefore represents a signifi-

cant limitation to algorithms that are based on intensity gradients or the fitting of pixel intensi-

ties. Pécréaux and cols. handled this limitation by calculating local contour coordinates along

three of the four pixel-grid directions, while excluding the direction closest to the contours

tangent (see Fig 7 in ref. [13]). Each local contour coordinate is obtained by fitting a line to the

halo intensity and calculating its intercept point with the background intensity at the outside

contour region, which is calculated as an averaged value along the radial direction. To mini-

mize mapping errors due to optical heterogeneities, only single cells that remain isolated from

each other are considered. The final contour coordinate at a given pixel position is then

defined by the weighted average of these local contour coordinate, where each direction is

weighted by the corresponding slope of the intensity gradient in that direction. Consequently,

the direction that is closest to the contour normal will be counted most since in that direction

the slope will be the steepest. In our algorithm, we incorporate the concept of using weighted

averages of different directions but use a more sophisticated sampling technique to find the

direction and amplitude of the maximal normal gradient.

Image sampling and gradient fits. By interpolating and resampling the pixel intensities of

the image during segmentation, we are neither limited to the discrete pixel positions nor the

diagonal and parallel directions of the pixel grid. Instead, using the contour coordinate P0i
from the previous segmentation iteration as the base-point, we determine a local contour posi-

tions pj for a range of angles φj (j = 0. . .M − 1) (see Fig 2A) by fitting a line to the halo intensity

and calculating its intercept with the background intensity similarly to Pécréaux’ method. The

angle range F of φj is centered on the contour normal n0j of the previous iteration (see Eq (2)).

The intensity values that are used for the calculations are obtained by interpolating the pixel

intensities along a line in each direction φj.

Fig 2. The new algorithm uses oversampling of the intensity gradient to determine the membrane position with sub-pixel

precision. (A) Illustration of the local angles φj and their position on the halo. (B) Determination of local coordinate pj in a given

direction φj. The fit is performed between the intensity minimum and maximum indicated by the arrows. This corresponds to

Method 1 explained in the text. Note that the fit position (horizontal arrow) lies in-between the positions and intensity values of

the individual pixels (black squares). This is made possible by the linear interpolation. The background intensity is determined just

outside the halo. (C) Fit slopes as a function of the local angle. The maximum is perpendicular to the halo.

https://doi.org/10.1371/journal.pone.0207376.g002
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The gradient fit in the direction φj is determined by performing a linear fit to the intensity

using the equation yj = mj x + bj. By using an oversampling factor finterp (see Table 1), we are

able to finely adjust the location along the intensity profile at which the linear fit is performed.

As we will see in the analysis section, this is important to avoid pixel artifacts. The background

intensity hIji is calculated from a line in the direction of φj just outside the halo of the phase

contrast image by averaging over nbkgr interpolated intensity values (see Fig 2B). We determine

the background intensity in this manner and not centered about P0i (like Pécréaux does),

because many cells, including RBCs, cause substantial light absorption and other image inho-

mogeneities, so that the light intensities inside are modified.

Contour vector-coordinates. The local contour positions pj in the direction of each angle

φj are then given by the intercept of the fitted straight with the background intensity

xj ¼
hIji � bj

mj

using the expressions

pj ¼ P0i þ xjej;

where ej is the unit vector in the direction of the local angle φj. Finally, the updated contour

coordinate Pi in the direction of ϕi is determined by calculating the weighted mean of the pj
using their corresponding inclines mj as weights:

Pi ¼

P
jpjmj
P

jmj
ð1Þ

The updated contour normal ni is calculated similarly through the weighted mean of the

unit vectors ej weighted by their corresponding gradient slopes mj (indicated as black arrows

in Fig 2A):

ni ¼

P
jejmj

j
P

jejmjj
ð2Þ

Since we perform this operation during various iterations for each video image, the algo-

rithm iteratively finds the optimal contour position Pi and normal ni, about which the final

directions φj, at which we sample, are distributed symmetrically.

Coordinate sanity check. After each segmentation iteration, the algorithm checks the

contour coordinates Pi for any spurious outliers that could have been tracked incorrectly. This

is important as the contour center in each iteration is determined as the weighted sum of Pi,
which is weighted by the distance dsi between them (see below). If a contour coordinate Pi is a

strong outlier and far from its neighboring coordinates Pi−1 and Pi+1, this can cause the center

to jump and potentially lead to the failure of the algorithm. To avoid this, each coordinate Pi
from the current iteration is compared to its value of the previous iteration P0i. If the distance

between the two is larger than the tolerance Δshift, then the value of Pi and the contour normal

ni is replaced with the linear interpolation of its closest neighboring coordinates that were

tracked correctly, so that:

if : jPi � P0ij > Dshift

then set : Pi ¼
Pi� α � Piþβ

aþ b
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and calculate the normal vector as:

ni ¼
ni� a þ niþb

α þ β

.�
�
�
ni� a þ niþb

α þ β

�
�
�

Here i − α and i + β are the indices of the closest neighboring coordinates that were tracked

correctly. Note, that the value of Δcoord–shift needs to be chosen as function of the frequency at

which the video is recorded, since for lower frequencies the movement of an object contour

will likely be larger between consecutive movie frames.

Calculation of center coordinate. The updated contour center O for the following seg-

mentation iteration is calculated after the coordinates were checked and possibly corrected.

Following Pécréaux the center is calculated as the weighted mean of the contour coordinates

Pi

O ¼
XN� 1

i¼0

Pi
dsi þ dsiþ1

2

where the weighting factors dsi are the distances between adjacent contour points:

dsi ¼ jPi � Pi� 1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xi� 1Þ
2
þ ðyi � yi� 1Þ

2

q

Calculating the contour center in this way, we weight coordinates that are farther apart (e.g.

for fixed contour-angles farther from the center) more strongly than closely spaced coordi-

nates. This makes the algorithm converge more rapidly to the optimal center of the contour

than the barycenter of the points Pi would.

Coordinate interpolation. Because we determine the contour coordinates Pi through the

weighted mean of the local coordinates pj, the contour coordinates Pi could start to “wander”

away from their originally intended location at the desired angle ϕi. This can happen especially

when, either the weighting factors mj or the local coordinates pj, are unevenly distributed tan-

gentially to the contour. To correct this undesirable effect, the contour coordinates are updated

after each segmentation iteration, using linear interpolation, to determine their position at the

desired angle ϕi. Briefly, we first denote the coordinate value of Pi directly after averaging over

its local coordinates pj with ~P i at contour angle ~�i; then, we determine the intercept between

the straight yi ¼ ae�i þ O and the contour-segment ~P i� 1
~P i through which it passes, where e�i

is the unit-vector in the direction of the desired angle ϕi and O is the updated contour center.

Finally, this result yields the final position Pi. To determine the line-segment ~P i� 1
~P i through

which yi passes, we determine the two adjacent contour coordinates ~P i� 1 and ~P i with corre-

sponding angles ~�i� 1 and ~�i, so that ~� i� 1 < �i �
~�i. The contour coordinates are then updated

with the interpolated coordinates and written to P0i as input for the following iteration. Note

that we do not interpolate the value of ni, since we hope the contour normal to converge to its

correct value by itself over the course of the iterations. Furthermore, the linear interpolation

does not represent a loss in precision, since it only pins the position of each coordinate to its

desired contour angle ϕi, but we still let the coordinate converge to its optimal position at that

angle.

Segmentation termination. To determine when to terminate the segmentation process of

an image, the algorithm uses two conditions for the contour coordinates Pi and the contour

center O. After each iteration it checks whether the positions of the Pi and O have changed

more than a user-defined tolerance Δcoord and Δcenter respectively. Thus, segmentation of an
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image is finished, when the following conditions are met:

jO � O0j < Dcenter and jPi � P0ij < Dcoord 8 i�N;

where again P0i and O0 are the corresponding values from the previous iteration. Furthermore,

the algorithm will terminate the segmentation process of an image after a user-defined, maxi-

mum number of segmentation iterations Nmax, if the convergence condition was not achieved

previously. Note that Δcoord does not correspond to the segmentation precision δ1σ of the algo-

rithm, which is discussed further below. Δcoord usually has a significantly lower value than δ1σ,

since it is the convergence criterion for an individual image only, while δ1σ is the result of coor-

dinate fluctuations between images caused by their finite SNR. In case after maximal iterations

the convergence criterion is not raised with a given image, the algorithm will restart the seg-

mentation with the next image using the contour coordinates obtained in the former, although

not converged. In practice, this does not pose a big problem, since only very few images (0 up

to 10, maximum, among several tens thousands of frames in a movie) do not converge. If the

criterion is continually not met, when the tolerance is increased, then the image material is

considered o insufficient quality.

Refinement of linear fit position. To avoid artifacts that can arise from performing the

linear fit at a location away from where the gradient is the largest, the algorithm determines for

each local direction φj at each Pi the position at which mj is maximal. Two methods were con-

ceived for doing this:

Method 1 For each direction φj we determine the location of the intensity minimum Imin

and maximum Imax of the halo and situates the center position for the linear fit at the location

in-between the two extremes, where the intensity value is similar to Icenter = Imin + (Imax −
Imin)/2. On the programming level this is done by finding the maximum and minimum values

in the array Yj holding the intensity values of each direction φj and then determining the index

ιcen of the intensity value that comes closes to the value of Icenter. The linear fit is then per-

formed over the index-range [ιcen − finterp � nfit/2,ιcen + finterp � nfit/2] of Yj, where nfit is the

length over which the linear fit is done (in [px]) and finterp is the number of how many points

will be interpolated for each pixel.

Method 2 In this case the algorithm performs a direct search on Yj for the array-index ιcen

at which the incline is maximal. It does this by performing linear fits centered at array-indexes

ι over the range [LY − finterp � Nι/2,LY + finterp � Nι/2], where LY is the length of the array Yj con-

taining the intensity values (LY is the same for all φj), Nι is the user-defined search range and

again finterp is the integer of how many points will be interpolated for each pixel. This refined

search is performed for each local direction φj.
Combined with the various segmentation iterations performed for each movie frame, both

methods converge to the position where the intensity gradient is maximal. For images of

quasi-circular cell contours, both of the described methods were found to give very similar seg-

mentation performance for the final algorithm and will therefore not be treated separately in

the following discussion. However, the second method has a significant advantage in cases,

where the halo of the optical image is not pronounced, such as bright-field image recordings

of RBC ghosts or of giant unilamellar vesicles (GUVs), which both exhibit poor contrast. In

these cases, the first method can fail to correctly determine the position of the Imin and Imax,

rendering the algorithm unusable. The second method is much more robust in these cases. A

trade-off, however, is that it is more compute intensive due to the much higher number of lin-

ear fits being performed. This results in longer segmentation times. For dense cells, such as

RBCs, which provide phase contrast images with high contrast, the first method is therefore

usually preferred whose segmentation performance will be analyzed in the following sections.
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Implementation on GPU. The described algorithm was designed to be parallelizable in

order to be run on consumer general purpose graphics processing units (GPGPUs). All opera-

tion for the local angles φj, such as the pixel interpolations, linear fits and intercept calculations

are run in parallel for all contour coordinates Pi, so that all values pj,i, ej,i and mj,i are deter-

mined independently of each other during each iteration. The obtained results are then

reduced to obtain Pi and ni using Eqs (1) and (2). A flow chart of the algorithm is shown in Fig

3, where the region inside the dashed rectangle represents the highly parallelizable section.

This design makes the algorithm ideally suited for acceleration on GPUs. Furthermore, since

GPUs are specially designed to handle graphics, they possess dedicated hardware units for per-

forming the bi-linear interpolation of the pixel intensities, which greatly accelerates this

operation.

The algorithm was implemented using the Open Compute Language (OpenCL), making

the code portable and executable on GPUs from different vendors and also conventional

CPUs. Comparing the execution time of our implementation on an AMD Radeon HD 7970 to

that of an Intel Xeon 5760, we registered a 100 × speed-up on GPU with respect to the CPU

version of the algorithm, when imaging RBCs using the segmentation parameters listed in

Table 1. Our implementation of this high-precision flicker spectroscopy contour tracking algo-

rithm (HiPFSTA) has been made publicly available at: www.github.com/michaelmell/hipfsta

Analysis of an individual image with five segmentation iterations takes roughly 0.1s. It

depends on the number of iterations per image, which for RBCs is usually 3 to 5 iterations

using the listed parameter values. Therefore, execution on the GPU enables the processing of

movies recorded with the FASTCAM SA-3 in a reasonable time of ~2.2hours (for 8 � 104

movie frames of a 40s video recorded at 2000FPS). On the CPU mentioned above this would

not be feasible.

Analysis of segmentation performance

Tracked object examples

In its current form, the algorithm can be applied to spherical and non-spherical objects, which

fulfill two requirements: 1) They exhibit a sufficiently strong contrast halo necessary for the

algorithm to function correctly. 2) It is possible to uniquely assign an individual radius value

Ri to a corresponding angle ϕi, when describing the contour in polar coordinates. The second

requirement is the result of the interpolation used to fix the angular position ϕi of the contour

coordinates and could be relieved by conceiving a different method. The segmentation algo-

rithm has so far been successfully applied to various objects including RBCs, E. coli, GUVs and

lymphocytes for which we show example images overlaid with their tracked contour in Fig 4.

All images where obtained using bright-field microscope setup except for the image of E. coli,
which was obtained using a phase-contrast objective. As we will see in the next section, the seg-

mentation precision crucially depends on the optical contrast afforded by the object.

Real-space

Our segmentation algorithm has been developed to overcome the shortcomings detected in

the previous algorithm proposed in Ref. [13], for which we have found that the discretization

of the pixel-grid leads to artifacts in the final contour coordinates in the algorithm. The reason

for those artifacts is that the initial position for performing the linear fit is confined to the coor-

dinates of the pixel-grid, i.e. the pixel centers, which determine the coordinates of every point

in the halo. When the position of the halo moves against the pixel-grid, this will gradually

change the position at which the linear fit is performed and therefore affect the incline m of

the fitted line as the fit-position draws closer to the intensity minimum or maximum of the
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halo. This is illustrated in Fig 5A, where we show three fits at different positions of the intensity

profile of the halo. Fitting close to the maximum or minimum alters the incline and conse-

quently the final, tracked contour coordinate. While in reality fitting should not occur this

close to the extremes, this effect is still appreciable. Fig 5B shows the effect of this on the

tracked contour of a synthetic phase-contrast image of a smooth, structureless circle, where the

solid red line represents the position of the phase boundary of the circle used for the image

synthesis (see Methods). For illustration purposes, this synthetic dataset does not contain any

noise and thus has an infinity signal-to-noise ratio (SNR =1; see Methods). The dashed black

line and the black squares show the pixel position used for fitting in Pécréaux’ algorithm and

the tracked contour coordinates. The white diamonds represent the tracked contour coordi-

nates from our algorithm. As can be seen, the contour coordinates calculated from that algo-

rithm move slightly in the opposite direction, when “jumps” in the pixel positions occur. This

occurs whenever the pixel position, about which the linear fit is performed, “jumps” trans-

versely to the halo and thus produces a slight change in the incline of the fitted straight m as

illustrated in Fig 5A. Thus, although the image does not contain any noise, the algorithm itself

causes artifacts in the final contour.

Fig 3. Flow-chart of the segmentation algorithm illustrating the steps that are taken in processing the movie. The section indicated by

the red rectangle indicates the embarrassingly parallel part of the algorithm, which can easily be adapted for parallel processing on a GPU.

https://doi.org/10.1371/journal.pone.0207376.g003

Fig 4. Examples of microscopic objects that have successfully been tracked using our new segmentation

algorithm. The obtained contour is indicated by the black line that is overlaid on each image. All images were

recorded with bright-field light-microscopy, except for the E. coli, which was recorded using a phase-contrast objective

(100x, NA1.45).

https://doi.org/10.1371/journal.pone.0207376.g004
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Although this effect is subtle, it can lead to misinterpretations when analyzing the contour

coordinates in real-space. This is evident when comparing time series of the contour radii R
(ϕi,tn) at a fixed angle ϕi as produced either by the algorithm in Ref. [13] or by our algorithm

for an artificial lipid vesicle. The distribution of R(ϕi,tn) from the former algorithm exhibits

maxima and minima, which are spaced approximately 1px apart as shown in Fig 6A. This

Fig 5. Image pixilation causes jitter in the positions obtained with the classical algorithm. (A) Illustration of how

fitting at an offset from the gradient maximum affects the obtained fit-slope and results in a deviation in the final

coordinate. (B) Comparison of the reference contour and the contour coordinates obtained from the previous method

[13], and our refined algorithm here described. The artifact described in (A) leads to transverse shifts in the final

position (black squares), whenever the pixel-position about which the fit is performed (dashed line) shifts transversely

to the contour. The red line represents reference position of the circle used in the synthesis of the image with SNR =

1, which is shown in the inset indicating the shown area with a white rectangle. The tracked coordinates obtained

from the new algorithm (white diamonds) follow the reference position precisely.

https://doi.org/10.1371/journal.pone.0207376.g005

Fig 6. Comparison of the radius fluctuation time-series obtained from a measurement of a POPC GUV using

Pécréaux’ algorithm (A) and our algorithm (B). The artifacts from imprecise fitting leads to various maxima in the

displacement-distributions spaced 1px apart. This artifact is not present when using our new method.

https://doi.org/10.1371/journal.pone.0207376.g006
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behavior is the direct consequence of the artifact due to pixelation described above (with pixe-

lation we refer to the discretization of the continuous image into the discrete pixel grid). It is

the reason we take great care to optimize the fit-location in our algorithm (see Refinement of

linear fit position) and is not observed in the radius time series obtained from the same data-

set using the new segmentation algorithm shown in Fig 6B.

In order to quantify the precision of the new algorithm experimentally, we recorded and

tracked movies of dried RBCs, which are used as static reference objects. The dried RBC are

well suited as reference fluctuation-less objects, since they exhibit a similar level of contrast

and halo-shape as living RBCs. Additionally we synthesized computer-generated phase con-

trast images as proposed by Usenik[21]. To determine the segmentation precision, we measure

the variability of the contour coordinates obtained with our algorithm. For this, we calculate

the distance δi,n between corresponding coordinates at the same contour angle ϕi from conse-

cutive frames n − 1 and n, so that δi,n = |Pi,n − Pi,n−1|. Since the contours in the recorded image

of dried RBC and the synthetic images are static, this gives us information on how much the

contour position varies between frames due to the finite precision of the algorithm. We then

calculate the distribution P of the inter-coordinate distances δi,n and define its standard-devia-

tion 1σ as the segmentation precision δ1σ. Note that since δ1σ is obtained from the differences

of coordinates pairs its value is expected to be
ffiffiffi
2
p
� larger than the error of the individual

coordinates. The reason we determine the segmentation precision in this manner and not

using the radius fluctuation hh(t)2i = h(R(t) − hR(t)i)2i over the whole time-series, is because

our method will not be affected by slight shifts in focus or vibrations of the experimental setup,

which can occur on time-scales of various seconds. The positional accuracy can be estimated

theoretically by determining the error in the x-position σx of the intercept between the linear

regression of the intensity gradient with slope m and the average image intensity hIi. This

straight forward calculation yields (see SM):

sx ¼
sI
m

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

U
þ

1

T

r

ð3Þ

with standard deviation σI of the image intensity and the slope m of the intensity halo. The pro-

portionality constant
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=U þ 1=T

p
depends on the number of fitted values U and averaged

intensity values T. Note that σx does not correspond directly to δ1σ. As mentioned above δ1σ is
ffiffiffi
2
p
� larger than the coordinate error, which in turn are the weighted average of M fits in the

directions of the local angles φj, each of which possess a different error σx due to different

slopes m (see Fig 2(C)). However, the proportionality δ1σ/ σI/m should remain unchanged,

since the directions with largest slope m will dominated the weighted sum. To test the theoreti-

cal estimate, we determine the segmentation precision for images with different signal-to-

noise ratios (SNR) and contrast levels (different m) using synthetic images (see Methods). The

segmentation precision δ1σ is inversely proportional to the image SNR, δ1σ/ 1/SNR as can be

seen in Fig 7A. After renormalizing the abscissa to σI/m all data points fall onto single line con-

firming δ1σ = σI/m � K with proportionality constant K. We can compare the value of K to that

of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=U þ 1=T

p
to obtain an estimate of the precision improvement due to the weighted aver-

ages (see Eq (1)) compared to a single fit. Although each fit consists of nfit data-points (see

Table 1) the number of independent pixel values being fit is actually U = nfit/finterp = 5. Accord-

ingly, T = nbkgr/finterp = 20 for the number of independent pixel values being averaged for the

background intensity. We therefore have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=U þ 1=T

p
¼ 0:5. From Fig 7B, we obtain the

proportionality constant K = 0.54. Taking into account the factor
ffiffiffi
2
p

from calculating δ1σ, we

estimate an improvement of 0:5=ð0:54=
ffiffiffi
2
p
Þ ¼ 1:31.
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From Eq (3) it follows that we can improve segmentation precision by increasing the SNR

of the image through higher illumination intensity or longer exposure times. Furthermore, the

amount of contrast produced at the object boundary plays a crucial role in determining how

precise the algorithm is able to track its contour, since it determines m. Moreover, since m and

σI are easily obtained from a single image, this allows for simple estimation of the expected seg-

mentation precision. Table 2 lists the data shown in Fig 7. As indicated, we achieve a positional

accuracy δ1σ of 0.01px to 0.03px for SNR-values of 127 to 84 corresponding to typical experi-

mental frame rates of 1500 to 3000fps. For our setup with an effective pixel-size of 50nm this

translates into a positional accuracy of below 0.9nm to 1.25nm for dried RBCs specimens. We

also estimated the precision for RBCs and GUVs in buffer, which exhibit a lower contrast and

therefore lower value for m. We find 0.05px and 0.3px respectively using values for m taken

from bright field microscopy observations. For completeness we also include the value of

d1s=
ffiffiffi
2
p

, which is expected to represent the error an individual coordinate, instead of their dif-

ference. For a RBC in buffer, we estimate a value of d1s=
ffiffiffi
2
p
¼ 0:04px corresponding to

1.85nm.

The segmentation precisions for GUVs previously reported by Pécréaux [13] and Usenik

[21] are not exactly comparably to our results, since these authors used phase-contrast, instead

of bright field microscopy. We can however attempt to estimate the precision that we would

expect from our algorithm. From Eq (1) and Fig 1 we estimate an intensity-normalized m =

((Imax − Imin)/hIi)/npix = ((525 − 435)/480)/8px, where Imin and Imax are the minimum and

maximum intensity of the halo, hIi is the average and npix is the number of pixels in the gradi-

ent-range. For σI we estimate σI = 3/hIi = 0.007, assuming a standard deviation of 3 grey level

units. Using these values we obtain an estimated segmentation precision of δ1σ = 0.54 � σ/

m = 0.16px, which is comparable to the 0.1px-precission that Pécréaux claimed for his algo-

rithm [13]. Usenik et al. [21] claimed a precision of 26.9 to 34.1nm for their algorithm at a

pixel-size of 35nm. Therefore, their precision is not significantly below pixel-size and we expect

our algorithm to perform significantly better. However, the value for the latter case was achieved

at SNR = 23 dB, which for our SNR-definition corresponds to a very low SNR = 1023/20 = 14.13

(see Methods). Finally, for RBCs, the accuracy of our new software implementable with contrast

imaging is competitive with other sophisticated microscopy hardware such as the diffraction

Fig 7. Segmentation precision depends on image noise and the slope of the intensity gradient. (A) Segmentation precision

δ1σ versus 1/SNR for a dried RBC at different exposure times (‘�’) and for three synthetic datasets (‘□,� and Δ’) with different

level of contrasts/slopes m. The precision values from each dataset fall onto a straight determined by the contrast/slope m. (B)

After renormalizing x-axis to σi/m all values fall onto a straight y = 0.54 � x allowing for easy estimation of the segmentation

precision from the two known quantities σi and m. Note that the contrast/slope values are for to unit background intensity.

https://doi.org/10.1371/journal.pone.0207376.g007

Table 2. Values for the dried RBC datasets compared to RBCs and GUVs in buffer solution.

RBCdried RBCdried RBCdried RBCdried RBCdried RBCdried RBCbuffer GUV

FPS 1500 2000 3000 6000 10000 15000 2000 1500

SNR 127.3 106.8 83.9 55.2 40.1 30.4 101.5 137.9

m 0.2355 0.251 0.259 0.272 0.272 0.273 0.1 0.014

σI/m 0.033 0.037 0.046 0.067 0.092 0.120 0.097 0.517

δ1σ[px] 0.018 0.021 0.025 0.037 0.051 0.068 0.052� 0.279�

δ1σ/2½ [px] 0.013 0.015 0.018 0.026 0.036 0.048 0.037� 0.197�

Values for the dried RBC datasets shown in Fig 7 compared to typical values for measurements of RBCs and GUVs in buffer solution. The imaging precision δ1σ and

δ1σ/2½for the latter two cases was extrapolated from their values for σI/m using the equation δ1σ = 0.54 σI/m (indicated by �).

https://doi.org/10.1371/journal.pone.0207376.t002
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phase microscope [33] used by the authors of references [9,12,34], who report an accuracy of

3.3nm for the RBCs thickness-fluctuations due to the DPMs limited optical path stability

[22,33]. However, their experimental setup uses a 40× (NA0.65) oil-immersion objective with

400nm resolution. Since we use an oil-immersion objective with 100 × magnification (NA 1.4),

we should have better lateral resolution along the contour, which should translate into a diffrac-

tion-limited lateral resolution of around 200nm. The proposed method deals with the analysis

of the contrast halo, which has been implemented as a super-localization software that allows

contour segmentation at sub-pixel resolution with bright field/phase contrast images. However,

our super-localization method can be considered broader in scope, as potentially implementa-

ble with other optical settings no dealing with contrast halos. In dark-field, for instance, ampli-

tude dependent glows formed at the rim of the object are potentially detectable by our software.

Cells with sufficient optical contrast, such as RBCs, may be efficiently segmented using images

obtained upon a high scattering luminosity. Differential interference contrast (DIC) has no halo

yet, however, contour segmentation could be performed after image integration leading to suffi-

cient membrane contrast.

Fourier space analysis. To analyze the performance of our algorithm in Fourier space

and quantify the effect that limited segmentation accuracy has on, we calculate the spectra

obtained from the synthesized datasets. Calculation of the spectra is done as described by

Pécréaux [13]. Briefly, a tracked contour (Ri,ϕi) is transformed into a height-profile (hi,ϕi)
above and below a circular equilibrium radius R. The hi are then decomposed into their Fou-

rier components, n, which for the continuous case can be written as

hð�Þ ¼ R 1þ
X1

n¼1

an cosðn�Þ þ bn sinðn�Þ

" #

;

where R is the equilibrium radius of the contour. The spectrum is then given by the RMSD of

the modulus jcnj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
n þ b2

n

p
. The spectrum is then given by the RMSD of the modulus

jcnj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
n þ b2

n

p
. Here we use the normalization proposed by Pécréaux [13], so that absolute

values are directly comparable to his work. The final spectrum is then given by

hjunj
2
i ¼

phRi3

2
hjcnj

2
i � hjcnji

2
� �

;

where the wavenumber q relates to the mode number n through q = n/R.

Above a given wavenumber compatible with a minimal resolvable wavelength, the segmen-

tation algorithm in Ref. [13] produces a spectrum dominated by noise, which continues to

increase towards higher wavenumbers. The authors attribute this to the discrete detection of

the contour, which causes an increased floor noise as the wavelength of the mode becomes

smaller than 4 × pixel-size. He therefor argues that as a result of a such discretization there

exist two main limitation to his algorithm: 1) the amplitude precision orthogonal to the con-

tour, and 2) the sampling precision in parallel to the contour [13].

The spectra obtained for the synthetic spherical object with the new algorithm have a signifi-

cantly different shape than the one obtained from Pécréaux’ algorithm (see Figs 8 and 9).

Whereas our algorithm yields a spectral shape that is compatible with the pixel-grid structure,

the algorithm in Ref. [13], however, yields spurious amplitudes in the whole range of wavenum-

bers analyzed. Indeed, our algorithm computes lower amplitudes, which are compatible with

the level of noise artificially introduced for these ideal spherical objects. A representative exam-

ple is shown in Fig 8 and compared to the spectrum obtained from Pécréaux’ algorithm for a

synthesized dataset (SNR = 106.7). The shape of the fluctuation spectrum is reminiscent of a
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sinc-function, with its first minimum located roughly at the wavenumber qpix corresponding to

the size of 1px. This spectrum represents the spectral noise floor resulting from the finite SNR

of the synthesized images. It is the result of the noise of the individual pixels, whose influence

on the final spectrum is convoluted with the frequency response of the linear interpolation used

in the segmentation algorithm. A linear interpolation can be written as a convolution of the

sample values with triangular pulse [35], whose Fourier transform and thus frequency response

is proportional to a sinc2 function. It is this dependency of the form factor of static objects,

which causes the noise floor not to be evenly distributed across the spectrum, but to follow a

sinc-like shape corresponding to the structure form factor of noisy pixels. By changing the pixel

size in the synthesized images, we confirm the inverse scaling behavior expected for the pixel-

structure form factor (see Fig 9A). Note that it is therefore possible to change the shape of the

spectral noise floor by changing the effective pixel-size either experimentally or through binning

and other forms of digital image pre-processing, such as rescaling with bi-cubic interpolation.

Our findings lead us to a slightly different conclusion of the spectral increase of Pécréaux’

algorithm at large wavenumbers. Considering the Nyquist-Shannon sampling theorem the

theoretical cutoff for spatial frequencies that can still be resolved is qNy = N/(2 � R) [36]. For

Pécréaux’ algorithm with on average one contour coordinate point per pixel this should

approximately be the inverse of two times the wavenumber of the image pixel-size: qNy ~ qpix/

2. Modes with wavenumbers q> qNy should exhibit aliasing and therefor increase in spectral

amplitude. This is observed for synthetic datasets using our algorithm, when q> qNy = N/(2 �

R) = 2048/(2 � 61px) = 16.8px−1 (see SM). The fact that the cross-over wavenumber qc above

which noise starts dominating in Pécréaux’ algorithm is much smaller than qc = qpix/2, sug-

gests that the observed increase in spectral amplitude is primarily due to the artifacts in the

determined orthogonal contour positions (see Figs 5 and 6). These transverse artifacts due to

pixelation will increasingly affect the mode amplitudeswhen the modes’ wavenumbers become

Fig 8. Comparison of spectra obtained from the same dataset (SNR = 106.7) using the new and old algorithm. The

spectrum from the old algorithm increase at high q, since the pixilation artifact causes increased noise as the

wavelength draws closer to the pixel-size. The spectrum from the new algorithm exhibits a minimum at the location

corresponding to wavenumber qpix of a pixel.

https://doi.org/10.1371/journal.pone.0207376.g008
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similar to qpix. The new segmentation algorithm does not produce these artifacts in the trans-

verse coordinate, neither propagates errors along the longitudinal position in the contour, dif-

ferently to the previous method, which determines coordinates in a given point from the

formers. That method is thus prone to propagate possible errors to adjacent points in the con-

tour, which favors (in Fourier space) multiplicative deviations at high wavenumbers (q� qpx),
just in the region where it becomes inapplicable.

To better understand the effect of image noise on the resulting spectrum from our algo-

rithm, we synthesized various datasets at different SNRs. The synthetized images correspond

to ideal circular contours with a pixelation noise superposed. As expected, the noise floor

decreases with increasing SNR (see Fig 9A), which can be interpreted as the form-factor of the

Fig 9. Shape and level of the noise floor depends on the pixel size and SNR. (A) Illustration of the inverse scaling

behavior of the spectrum with pixel size. 1 × px corresponds to the experimental pixel size. The shape of the noise floor

is the result of the pixel-noise being convoluted with kernel from the linear interpolation. (B) Plot of the spectra

obtained for different SNRs. The noise floor decreases for higher (better) SNRs. At high SNRs (SNR� 104) it begins to

enter the noise due to numeric imprecision. Since this noise is independent of pixels, spectrum for SNR =1 is flat (red

line).

https://doi.org/10.1371/journal.pone.0207376.g009

Membrane fluctuation spectroscopy

PLOS ONE | https://doi.org/10.1371/journal.pone.0207376 December 6, 2018 19 / 26

https://doi.org/10.1371/journal.pone.0207376.g009
https://doi.org/10.1371/journal.pone.0207376


noisy pixel-grid; this is, in Fourier space, the convolution between an instrumental white noise

(the electronic noise introduced by the camera) with the linearly-interpolated square grid the

contour is embedded. At very high SNRs the numerical precision of the segmentation algo-

rithm itself becomes the limiting factor. Since it is independent of the images’ pixels, it results

in a q-independent noise floor in the spectrum that for SNR� 104 increasingly dominates the

high-q range of the spectral noise floor from pixel-noise, until it is the only noise component

at SNR =1. This suggests that the segmentation precision of our algorithm may experimen-

tally only be limited by the image SNR and in the future could be improved by using new low-

noise, digital imaging devices such as scientific CMOS (sCMOS) cameras [37].

Experimental fluctuation spectra. Although this work is almost focused in the descrip-

tion of the algorithmic aspects of our improved segmentation method, we will finish by dis-

cussing on its applicability to study the spectrum of the membrane fluctuations in real

fluctuating objects. Fig 10 compares the results obtained from our proposed algorithm with

Fig 10. Example flicker spectra of GUV and RBC datasets obtained with the classical and new segmentation

algorithms. Top panels: Instantaneous snapshot of a fluctuating GUV made of POPC (A) a healthy RBC undergoing flicker

motions (B). The microscopy images are taken with a CMOS camera in the PhC mode at the equatorial plane of the quasi-

spherical objects (see Methods for details), and correspond to one frame taken arbitrarily in a movie recorded at 6kfps.

Lower panels: Fourier space fluctuation spectra obtained from the statistical analysis of the membrane contour fluctuations.

Results from the proposed new contour-segmentation algorithm are compared with results from the classical algorithm

described in [13]. The pixelation form-factor, as empirically obtained from optically equivalent synthetic contours (non-

fluctuating but including similar noise than the CMOS camera), are plotted as dashed lines with the characteristic sinc-like

shape of a squared pixel grid. These lines represent the minimal floor noise corresponding to the instrumental

“fluctuations” due to the electronic noise of the CMOS camera implemented with the current optical configuration. The

wavenumber corresponding to a distance of one-pixel in Fourier space is plotted as a vertical dotted line labelled qpx = 2π/

px.

https://doi.org/10.1371/journal.pone.0207376.g010
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those from the Pecréaux’ method, in two very different cases: A) Thermal fluctuations in giant

unilamellar vesicles (GUVs) made of a very flexible, single lipid (POPC) bilayer membrane,

and a relatively low optical contrast between the vesicle lumen and the exterior. B) Membrane

fluctuations in healthy red blood cells (RBCs) with a complex lipid bilayer coupled to a rigid

spectrin skeleton. Due to the presence of high amounts of hemoglobin, and other cytoplasmic

proteins, the optical contrast is in this case much higher than with the former case of empty

GUVs. The upper images correspond to instantaneous photographs of the near-circular fluctu-

ating objects at the equatorial plane, and the lower plots represent the amplitude spectra of the

membrane fluctuations as decomposed in Fourier space (see section “Fourier space analysis”).

In the case of flexible GUVs, the amplitude of the shape fluctuations is large, which makes the

spectral amplitudes to be quite high, and resolvable, at low wavenumbers corresponding to dis-

tances larger than the pixel grid (qpix = 1.25 10−7 m-1). At q<< qpix both algorithms give

almost identical results, which indicates the mutual robustness of the two segmentation algo-

rithms to determine spatial correlations between membrane elements separated far beyond

one pixel. However, since the optical contrast is low in this case, hence the SNR quite low, then

the floor noise arising from contour pixelation is rather high, at q� qpix becoming of the same

order as the fluctuation amplitudes (see Fig 10A bottom). In that high-q regime (q> qpix), the

new algorithm calculates spectral amplitudes that correspond to the structure factor of the pix-

elized contour, which is nearly describable as a sinc-like function that can be considered the

floor noise intrinsic to the considered optical configuration (see Fig 9). However, the Pecréaux’

algorithm returns in this regime spurious values of the spectral amplitudes, which arise from

the sub-pixel artifacts described above. As a consequence, Pécréaux’ method is quite limited in

this sub-pixel regime, where the spectral amplitudes become chiefly determined by a high pixe-

lation noise, in this case dominated by the errors in discriminating the positions of very neigh-

boring points in the contour. Our method, however, is very robust in determining the contour

position independently of the radial direction chosen, which makes the segmentation uncer-

tainty independent of the lateral distance between two points along the contour. In our

method, consequently, the pixelation noise is just minimal, and stands at the value corre-

sponding to the instrumental noise of the image obtained from a given optical configuration.

This situation becomes especially evident with RBC images (see Fig 10B), where the higher

optical contrast allows a higher SNR that translates into a much lower pixelation floor noise

than in less contrasted GUV membranes. For RBCs, and other real cells, the sinc-like structure

factor of the pixel grid is more than 10-fold lower than for GUVs, allowing for robust analysis

of the fluctuation amplitudes at much higher wavenumbers than the previous methods. A

notable advantage of the proposed algorithm, associated to its intrinsic robustness and low

uncertainty in lateral segmentation, is that the floor noise due to pixelation is completely rec-

ognizable and predictable, which allows for correct identification and eventual subtraction

from further deconvolution analysis. From the compared analysis above, it seems quite clear

that the proposed algorithm can bring improved measurements that result in newer, and

deeper, analyses than possible with former approaches.

Conclusion

We have developed a high-precision flicker spectroscopy contour tracking algorithm based on

an intensity-gradient segmentation schema (HiPFSTA, available open-source at www.github.

com/michaelmell/hipfsta), which is designed to run on graphical processing units and makes

extensive use of image-oversampling using the processing power of these processors. Segmen-

tation precision was tested using images of dried RBC and synthetic images and quantified in

real-space as well as Fourier space, relevant for flickering spectroscopy. The algorithm was
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shown to achieve segmentation precision down to 2nm for experimental images of dried RBCs

at SNRs of about 100, which corresponds to frames rate of 2000fps in our experimental setup

using a high-velocity CMOS camera (FASTCAM SA-3, Photron). The segmentation precision

was shown to depend on the optical contrast of the observed object and the SNR of the image.

Results from the spectra in Fourier space of synthetic images suggest that segmentation preci-

sion is mainly limited by the image SNR opening the possibility for future improvements to

the experimental setup with newly developed, low-noise scientific CMOS (sCMOS) sensors

[37].

The segmentation precision of our algorithm was found to be significantly better than that

reported for the previous methods by Usenik [21] and Pécréaux [13], who reported precisions

of 25 to 36nm for the position of the cell contour and an estimated 0.1px, respectively. The lat-

ter method was directly compared to our algorithm and found to exhibit significant segmenta-

tion artifacts, the source of which was concluded to be its partial dependence on the pixel grid.

These artifacts were also found to be the reason for the spurious increase in spectral amplitudes

in Fourier space towards high wavenumbers, which limited the observable q-range to the first

fifty modes in the previous method [13]. This artifact, and associated properties, are not exhib-

ited by the new algorithm, which can be practically extended up to much higher Fourier

modes (nmax� 1000), ranging in the microscopic domain (qmax� 0.3 nm-1), where the fluctu-

ation dynamics of the cytoskeleton elements can be probed over nanoscopic distances, d� 2π/

qmax� 20 nm. The robustness of the proposed algorithm is largely superior to previous

approaches to cell contour segmentation of microscopy images, in terms not only of transverse

accuracy (essential to exactly determine the amplitude of the fluctuations with sub-pixel preci-

sion) but also of lateral resolution (crucial to extend spatial Fourier analysis below sub-pixel

longitudinal distances). Our algorithm, and its implementation with GPU’s, has minimized

the number of computational artifacts associated to any sub-pixel interpolation, so under opti-

mal optical performance (high contrast and low camera noise), it is able to work within the

instrumental limit, which determines a perfectly detectable and analyzable floor noise. The

high precision of our optical microscopy method is comparable to the precision of much more

sophisticated methods, such as interferometric microscopy. Our method is complementary,

since their interferometric method gives a two-dimensional height map of the cell, while our

method yields the membrane displacement at the equatorial plane. Finally, the spatial preci-

sion and temporal sampling rate of our method is comparable to those reported for tracking

methods with optical traps. However, our method gives us access to the whole cell contour,

whereas optical traps are only able to probe single points of the membrane. Finally, the new

algorithm was shown to be usable for biological cells with different properties and shapes,

including RBC, E. coli and lymphocytes as well as biomimetic objects such as giant unilamellar

vesicles. It is expected that this method will allow for much more refined results, when applied

to RBC and other mechanically compliant cells, which may yield new insights into their cell-

mechanics using conventional optical contrast microscopy. The method is sufficiently robust

and versatile that is potentially adaptable to other optical modes and microscopy settings.

Materials and preparation methods

Microscope and camera

The experimental setup consisted of a Nikon Ti2000 microscope equipped with a 100 ×
(NA1.4) bright-field objective followed by additional 1.5 × and 2.25 × optical zooms giving a

total 337.5 × zoom. This optical system images onto a Photron FASTCAM SA-3 high-speed

digital camera with CMOS sensor capable of recording at 2000fps at full resolution of

1024 × 1024 pixels with a pixel-size of 17μm, yielding an effective pixel-size of (17μm/px)/
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337.5 = 50nm/px, which was confirmed experimentally. To reduce memory usage, the

required pixel-area was reduced to 256 × 256 pixels, when recording videos of RBCs.

Preparation of dried RBC

RBCs were extract using the finger pricking method from a voluntary, healthy donor. Approxi-

mately 20 − 30μL of blood was aspirated using a pipette and immediately diluted inside 1mL

solution containing phosphate buffered saline (Sigma-Aldrich, Germany), 5mM glucose (Rie-

del-de Haen, Seelze, Germany) and 1mg/mL bovine serum albumin (Sigma-Aldrich, Ger-

many). After extraction the blood is washed with a centrifuge (Mikro 120, Hettich, Germany)

(5 × 10 min, 2347.8G). After each centrifugation pass the supernatant is removed and the

remaining RBCs are resuspended in 1mL of centrifugation buffer. The RBCs were then incu-

bated for 2 h in a fixation buffer with the same composition as the centrifugation buffer with

an added 3% of glutaraldehyde (Sigma-Aldrich, Germany). After incubation, the buffer solvent

is exchanged with pure water (Milli-Q) after centrifugation (2 × 10 min, 2347.8G) and substi-

tution of the supernatant. Then, 80μL of the resulting RBC-containing solution is spread on a

cover-slide and dried in an oven at 40˚C.

Synthetic images were calculated following the method proposed by Usenik [21]. We con-

volute an image containing a circle consisting of 1’s on a background of 0’s with two Gaussians

of two different widths σ1 and σ2. The radius of the circle was chosen to be 61px, in order to

approximately corresponds to the radius of RBC as recorded with our experimental setup,

since 61px � 50nm/px = 3μm is roughly the radius of RBC. By subtracting the two resulting

images and choosing σ1 and σ2 accordingly, we obtain an image with a halo at the position of

the circle boundary, which is very similar to that of the experimentally obtained images of the

RBCs. Finally, white noise with a Gaussian amplitude distribution was added to the image pix-

els to simulate the image noise.

Signal-to-Noise Ratio of experimentally obtained images is determined by calculating

the averaged image intensity hIi and its standard deviation σI inside a feature-less ROIs after
the image corrections has been performed. The SNR definition we user here is then given

by SNR = hIi/σI. Note that this definition is different from the typical logarithmic definition

used by Usenik (Usenik et al., 2011), where SNRUsenik = 20 log[hIi/σI].
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