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Abstract

The presence of motion artefacts in ECG signals can cause misleading interpretation of car-

diovascular status. Recently, reducing the motion artefact from ECG signal has gained the

interest of many researchers. Due to the overlapping nature of the motion artefact with the

ECG signal, it is difficult to reduce motion artefact without distorting the original ECG signal.

However, the application of an adaptive noise canceler has shown that it is effective in

reducing motion artefacts if the appropriate noise reference that is correlated with the noise

in the ECG signal is available. Unfortunately, the noise reference is not always correlated

with motion artefact. Consequently, filtering with such a noise reference may lead to con-

taminating the ECG signal. In this paper, a two-stage filtering motion artefact reduction algo-

rithm is proposed. In the algorithm, two methods are proposed, each of which works in one

stage. The weighted adaptive noise filtering method (WAF) is proposed for the first stage.

The acceleration derivative is used as motion artefact reference and the Pearson correlation

coefficient between acceleration and ECG signal is used as a weighting factor. In the sec-

ond stage, a recursive Hampel filter-based estimation method (RHFBE) is proposed for esti-

mating the ECG signal segments, based on the spatial correlation of the ECG segment

component that is obtained from successive ECG signals. Real-World dataset is used to

evaluate the effectiveness of the proposed methods compared to the conventional adaptive

filter. The results show a promising enhancement in terms of reducing motion artefacts from

the ECG signals recorded by a cost-effective single lead ECG sensor during several activi-

ties of different subjects.

Introduction

An electrocardiogram (ECG) is a technique for diagnosis of cardiovascular diseases [1], and

the ECG signal carries vital information about many cardiovascular disorders. It also can be
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used for diagnosing obstructive sleep apnoea, evaluating therapeutic drugs, and physiological

monitoring. Early diagnosis of cardiovascular disease is necessary for the countermeasures

and the remedial actions needed to save the patients. However, late diagnosis or misinterpreta-

tion of such information can lead to wrong medical decisions. Real-time monitoring or near

to real-time monitoring is important for many patients who require long-term monitoring. A

portable ECG device is beneficial for ambulatory monitoring, such as when monitoring the

effect of drugs on the cardiac activities or post-surgical patients and during human normal

activities [2]. The purpose of ambulatory monitoring is to capture the cardiac activity of the

heart taking place while the user (subject) is performing all kinds of routine physical activities.

However, the signals from most of the mobile (or wearable) ECG electrodes are generally cor-

rupted by several types of noise, such as electromagnetic interference, muscle artefacts, base-

line wander, and motion artefacts [3–7]. ECG noise reduction needs different strategies for

different sources. Most of these noises can be effectively removed in real time by the applica-

tion of digital filters. However, motion artefacts are difficult to remove without affecting the

ECG signal itself.

Motion artefact is reported as the most difficult kind of noise to eliminate from ECG sig-

nals. The reason for this is that the spectrum of the motion artefact completely overlaps that of

the ECG signal. In addition, its morphology resembles that of the P, QRS, and T waves [2].

Therefore, accurate rhythm assessment will be difficult to detect due to its similarity with the

motion artefact. In addition, motion artefacts will cause a high false positive for some cardio-

vascular diseases, such as arterial fibrillation assessment in automatic healthcare systems [8].

Moreover, motion artefacts may also lead to misinterpretation of important information about

a subject’s health status [5].

A motion artefact is a result of the change in the impedance between the skin and the elec-

trode, which causes a transient change in the baseline signal [3]. The change in the baseline

could be slow or quick depending on the severity of the electrode’s relative movement with the

skin. For example, the skin under the electrode expands or shrink according to the weather

condition which causes a reduction in the magnitude of the skin potential and thus the occur-

rence of the motion artefact. Besides, the electrode may slide due to the sweating causing the

electrode loss the contact with the skin which led to the appearance of the motion artefact.

Moreover, the subject’s motion can morphologically damage the ECG signal due to the elec-

trode displacement (loose contact and slide) and the physical condition of the skin, such as

dryness and wetness. For example, the electrode may be displaced from the skin due to the

subject of sweating or skin stretching. If the skin stretches, the potential between the skin and

electrode changes, causing transient ECG change [5, 9, 10]. In many cases, the spectrum of the

motion artefact overlaps with the ECG signal when the subject is walking or moving. Thus, it

is very difficult to remove the motion artefacts from an ECG signal [11].

Reducing motion artefacts has been the subject of several studies, in the context of Digital

Signal Processing (DSP) such as Discrete Wavelet Transform (DWT) [12–14], Adaptive Digi-

tal Filtering (ADF) [2, 10, 15], and the statistical procedures such as Independent or Principal

Component Analysis (ICA or PCA) [16–18]. However, these techniques have shortcomings

that make them unsuitable for the mobile ECG environment and its expected types of noise.

Independent component analysis (ICA) has shown some advantages for reducing motion arte-

fact noises. However, ICA needs many leads in which the sources of noise are independent

from the ECG source but correlated with each other. These conditions may be rarely met in

reality during portable ECG recording because motion artefact noise seems to be dependent

on the electrode coverage area. The impedance has spatial distribution on the skin, thus ICA

can solve the issue only partially. Similarly, the adaptive noise cancelling approach has received

attention from researchers, due to its effectiveness in removing motion artefacts if a noise
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reference is available. However, the existing studies assume that the noise in the ECG signal

correlates directly with the movement [19–21], which is not really accurate in resembling

motion artefact noise. Electrode motion does not necessarily have a high correlation with the

body movement, because the body could move while the electrode is still attached to the body,

and thus the change in the skin impedance does not necessarily result from electrode

movement.

In this paper, a two-stage filtering algorithm is proposed. In the first stage of the proposed

algorithm, a weighted adaptive noise cancelling method (WAF) is proposed. The acceleration

of the electrode is used as noise reference, while the correlation between the acceleration and

the recorded ECG is used as an updating weight factor. The acceleration signals were recorded

using triaxial accelerometer integrated with the ECG electrode. The noise reference intensity is

modified accordingly to the correlation with the acceleration. Thus, the impact of the adaptive

noise cancelling algorithm on the ECG signal is decreased during low correlation conditions.

In the second stage, a statistical -based filter is used for estimating the potential ECG signal.

The recursive Hampel filter-based estimation method (RHFBE) is proposed for estimating the

ECG structure. The Hampel filter [22] is used due to its robustness against outliers. The ECG

signal is segmented i.e. each cardiac cycle, namely, P-QRS-T is separated in one segment. Thus

a set of successive segments is used for the estimation, based on the Hampel filter, which is

considered a conditional median-based filter. The results show a potential enhancement in the

reduction of the motion noise from ECG signals recorded during a subject’s normal activities

using Holter recording. The performance of the proposed algorithm is compared to the adap-

tive noise cancelling, which is widely suggested for motion artefact removal in many studies.

The main contributions in this research are summarized as follow.

1. A two-stage motion artefact filtering algorithm is proposed to address the issue of adaptive

noise filter due to the occasional and variable correlation between acceleration and ECG

signal. A new filtering concept has been introduced which is the one-lead based spatial cor-

relation between the successive ECG cycles (P-QRS-T segments). While the successive ECG

cycles have similar characteristics, the motion artefact is random in the successive cardio-

vascular cycle. Therefore, the spatial correlation between the successive P-QRS-T segments

has been exploited to remove the motion artefact.

2. A Weighted Adaptive noise Filtering method (WAF) is proposed to address the impact of

the occasional and low correlation between the ECG and the acceleration signal on the fil-

tered ECG signal. The effectiveness of the proposed method over the conventional adaptive

filter method has been shown.

3. A R-peak Annotation and Signal Segmentation method (RAS) is proposed that use effective

QRS detection algorithms to detect and annotate the R-peak. It worth mentioning that the

use of the adaptive filter prior to the proposed segmentation method improves the QRS

detection accuracy [23]. Moreover, the detection of the R-peak is simpler than detecting

and removing the motion artefact. Thus, QRS detection algorithm is used as a pre-step

before removing the motion artefact in some studies such as in [24]. Therefore, a QRS

detection algorithm is applied on the output of the proposed weighted adapted filter and

used as preprocessing step before applying the spatial filter in the next phase of the pro-

posed algorithm.

4. A novel spatial filter is proposed namely the recursive Hampel filter-based estimation

method (RHFBE) which assumes that the motion artefact in the new P-QRS-T segment is

far from the median of the successive P-QRS-T segments. Hampel filter is a robust statisti-

cal filter for removing outliers thus it is considered effective and efficient for real-time
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applications [22]. The difference between Hampel filter and the conventional median filter

is that Hampel filter can be considered as a conditional median-based filter which replaces

only the outlier sample which exceeds specific threshold called absolute median deviation,

while median filter replaces all the samples by the median. Thus, the conventional median

filter cause filter out some disease patterns. Consequently, the analyst fails to detect certain

diseases cases. Meanwhile, Hampel filter can preserve the information as it only replaces

the outlier that is far enough from the median. The effectiveness of the Hampel filter based

algorithms over the conventional adaptive filter based algorithm has been shown.

The rest of the paper is organized as follows. In section two, the related work is discussed.

In Section three, the preliminary information that needed for the design of the proposed algo-

rithm is briefly described. The proposed algorithm is explained in Section four. The perfor-

mance evaluation and results are discussed in Section five and six, respectively. The

conclusions are drawn in Section seven.

Related work

Traditional digital signal processing filters such as band-pass filter, and Discrete Wavelet

Transform (DWT) [12–14] are useless for removing motion artefacts from a contaminated

ECG signal, due to the overlapping of the motion artefact with the desired ECG signal [25, 26].

According to [27] the bandwidth of a motion artefact is less than 5 Hz and that it can be filtered

through oversampling, such as 2 KHz, for better time resolution. However, the use of a conven-

tional digital filter such as a stop-band or high pass filter can remove a portion of the ECG signal

such as P or T waves. Many alternative techniques have been proposed for cancelling motion

artefacts, such as Independent Component Analysis (ICA) [28–32], Empirical Mode Decompo-

sition (EMD) [8, 33–36] and Adaptive Noise Cancelling [2, 21, 37–40]. ICA assumes that the

ECG and motion artefact sources are independent. Accordingly, blind separation is applied for

separating the noise from the ECG. This relation is true between ECG and motion artefacts;

however, ICA also assumes that all ECG channel signals are contaminated from the same source

of noise i.e. there is only one source of motion artefact that affects all ECG channels. This

assumption is not accurate, due to the spatial distribution of the skin impedance under the elec-

trode sensors. Moreover, ICA is rarely suggested for mobile ECG recording due to the resource

limitations of mobile ECG. Empirical Mode Decomposition (EMD) is another effective way for

reducing motion artefact noise. However, it is difficult to identify which empirical member

needs to be removed from the signal decomposition. Adaptive Noise Cancelling (ANC) has

received increasing attention from researchers in the last few years [3, 4, 39–42] due to its suit-

ability for real-time environments. Moreover, an adaptive filter is effective if the reference signal

for the noise is available with high correlation with the noise in the ECG signal.

In the field of adaptive noise cancelling, [2] proposed an adaptive Recursive filter for

motion artefact noise cancellation (ANC) in which the reference signal is an impulse train

coincident with the QRS complexes. However, they reported that the proposed filter can

reduce the motion artefact only if the motion artefact is stationary and coincident with the

QRS complex. Thus, the motion artefact which affected the QRS complex part was removed,

while the motion artefact that impacted the other parts of the ECG signal has not been treated.

Moreover, they also reported that using the impulse train as reference distorts the P wave and

T wave part in the ECG.

Tong et al., [15] proposed an adaptive filter that utilized the electrode motion as the refer-

ence of the motion artefact. Two types of sensors were used, namely an anisotropic magneto

resistive sensor (AMR) and a three-axis accelerometer sensor (ACC), to measure the electrode

motion to be used as the reference of the motion artefact. The authors reported that the ACC
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sensor produced better results than AMR, for two possible reasons: (i) ACC gives measure-

ments for three dimensions, whereas AMR provides only two dimensions, and (ii) the ACC

measurement modelled the electrode motion more accurately than the AMR measurement

model. Although the use of electrode motion as a reference for noise is considered effective for

clinical recording, it is very difficult to remove the motion artefact in mobile ECG due to vigor-

ous movement by the subject.

Yoon et al., in [19] used the difference between two types of ECG electrodes, namely Ag/

AgCl and e-textile, as a desired motion artefact signal, while a 3-axis accelerometer sensor was

used as the reference for the motion artefact. The adaptive filter was used to accurately estimate

the motion artefact noise. The output of the filter was subtracted from the e-textile electrode

records. However, it is not clear why two types of ECG were used for representing the desired

signal of the motion artefact. In addition, there are no details provided about the effectiveness

of the proposed filtering method.

Liu in [3] proposed an adaptive filter where a triaxle accelerometer was used as the motion

artefact noise signal and reported that the performance of the filters was directly related to the

correlation of the reference signal with the noise in the ECG data. However, the author also

reported that some elements of the ECG signal, such as P-waves and T-waves, were totally con-

taminated. In addition, it can be noted that the most part of the noise still presented in the fil-

tered signal.

Zhang et al., in [42] investigated the use of the adaptive filter for reducing the motion arte-

fact in wearable ECG electrodes during exercise. The triaxle accelerometer (ACC) was used as

input to three gradient adaptive Laguerre lattice (GALL) filters to estimate the motion artefact.

The outputs of the GALL filters were combined using a time-varying unforced Kalman filter.

The authors concluded that the accelerometer as a reference signal cannot effectively reduce

motion artefacts, due to the weak linear correlation between ACC and ECG noise.

Lee et al, in [8] used empirical mode decomposition for detecting motion artefacts in ECG

data collected by a Holter recorder. The detection algorithm used the statistics of the square of

the first-order intrinsic mode function to detect the corrupted portion of the ECG. The aim of

the algorithm was to decrease the false positive of an automated atrial fibrillation detection sys-

tem. The noise-contaminated ECG segments were ignored.

Kirst et al, in [25] proposed an algorithm for removing motion artefacts using discrete

wavelet transform (DWT) for long-term monitoring. Considering subject comfort and skin

tolerance, textile-based dry electrodes were used for data recording. The signal of the skin

impedance sensor was compared to the signal of the acceleration sensor. The results of the

comparison confirmed that ACC has low correlation with the disturbed ECG sequence, while

electrode-skin impedance has a higher correlation. As the change in the impedance between

the electrode and the skin is the origin of motion artefacts, the authors used electrode-skin

impedance as a second channel for reducing motion artefacts. One important point that can

be noted in their experiment is that ACC could also be correlated with the ECG itself, and not

the noise in the ECG. Meanwhile, the skin-impedance has low correlation with the desired

ECG. The proposed algorithm utilized the signal of a skin-impedance sensor to identify which

portion of the signal was contaminated by the motion artefact. Four-level wavelets were

applied on both the ECG and impedance signals. If one of the four-level signals of the imped-

ance signal exceeded a predefined threshold, the corresponding sample on the ECG signal was

set to zero (zeroing). The filtered signal was obtained by reconstructing the modified signals.

The reported algorithm was validated using a QRS detection algorithm specificity. The authors

reported that the artefact region may be destroyed due to wrong threshold selection.

It is common practice to measure the electrode-skin impedance prior to ECG recording

[43]. However, if the current electrode-skin impedance mismatches the prior measurements,
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then the recorded signal will be corrupted by a motion artefact. Degen et al., in [43] proposed

a method to monitor the skin stretch through optical stretch sensors. The motion artefact was

removed through an adaptive noise canceler. However, the effectiveness of the proposed

method has not yet been tested on real motion artefacts; only an artificial motion artefact was

used for the evaluation.

Hughes and John in [9] investigated the impact of the skin-stretching on the impedance of

different skin layers. It was revealed that the skin-impedance decreased from the outside to the

inside. Moreover, the outside electrode-skin impedance was found to be dependent on the

subject’s skin while this dependency decreases in the inner layers of the skin. The inner skin

layers have more connectivity and less response to the skin stretching. However, in mobile

ECG it is not feasible to strip away the skin in order to prevent the motion artefact resulting

from skin stretching. Besides, the use of electrode-tissue impedance sensor is not comfortable

by the users due to the needs of implanting the electrode under the subject’s skin.

Existing motion artefact solutions either cannot totally remove the motion artefact or they

lead to significantly changing the ECG morphology. The application of adaptive noise filtering

is the most reported solution for motion artefact reduction. However, an adaptive filter needs

a reference signal that is highly correlated with the noise in the ECG signal and not with the

ECG information. If the correlation is weak, the resultant filtering signal can be wrong. Both

ECG and motion artefacts are difficult to obtain in reality and they have also time-variant

characteristics; therefore they are not easy to estimate in practice. However, the advantage of

using adaptive filters is that the reference signal is not necessary. The motion artefact filtered

signal is only suitable for detecting the QRS complex or arrhythmia. ANC cannot totally

remove the noise, as it is difficult to find a highly correlated noise reference. In contrast, the

presence of uncorrelated noise in the reference signal degrades the performance of the ANC.

In this paper, a two-stage filtering algorithm is proposed for reducing motion artefacts

from ECG signals recorded during normal subject activities. In each stage, a different filtering

method is proposed. The first stage is to use the concept of an adaptive noise filter with acceler-

ation as a reference and propose weighted adaptive noise filtering. The difference between this

method and the existing adaptive noise filters is that the cross-correlation coefficient between

the ECG and acceleration is used for modifying the adaptive filter weights. The noise is multi-

plied by a factor which is the cross-correlation coefficient between the raw ECG signal and the

estimated noise signal through Least Mean Square (LMS) algorithm. Thus, the impact of the

false reference signal is reduced, which lead to better resamples of the motion artefact. In the

second filtering stage, a recursive Hampel filter-based estimation method (RHFBE) is pro-

posed to further reduce the remaining motion artefact from the ECG signal which has low cor-

relation with the acceleration signal. The Hampel filter is proposed for three main reasons.

Firstly, the morphology of the ECG signals changes slowly with time, such that the successive

ECG cycles have similar characteristics. Secondly, the motion artefact has a random impact on

the ECG signal elements, i.e. the motion artefact is not repetitive in each cardiovascular cycle;

therefore, the contaminated portion can be shown as an outlier with respect to the successive

segments. Thirdly, the Hampel filter is a statistical filter outlier that is robust and thus it is con-

sidered efficient and effective for real-time applications. The Hampel filter is found to be fit for

such a situation. Both the adaptive noise canceler and the Hampel filter are efficient and can

work in real time.

Preliminary

In this section, the preliminary information is presented in order to drive the proposed motion

artefact reducing algorithm.
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Adaptive filter (AF)

The adaptive filter (AF) or the adaptive noise canceller (ANC) [37] is a filter for removing the

noise from a signal that is contaminated with additive noise. It can take a reference input noise

that is correlated with noise in the original signal in order to subtract the noise from the con-

taminated signal. Fig 1 illustrates the concept of ANC.

As shown in Fig 1, an adaptive noise filter requires two inputs: primary and reference. Let

the primary input of the filter be the ECG signal (secg+ma = secg+nma) that is contaminated by

the motion artefact while the reference is the noise signal (nr). The output of the adaptive filter

is the estimated noise ðn0maÞ and the residual of the difference between the ECG signal is

ε ¼ secgþma � n0ma ¼ secg þ nma � n0ma, then:

ε2 ¼ ðsecgÞ
2
þ 2 � secgðnma � n0maÞ þ ðnma � n0maÞ

2
ð1Þ

By taking the mean of the square error of the equation above,

E½ε2� ¼ E½ðsecgÞ
2
� þ E½2 � secgðnma � n0maÞ� þ E½ðnma � n0maÞ

2
� ð2Þ

Because the signal secg and noise ðnma � n0maÞ are uncorrelated, therefore,

E½ε2� ¼ E½ðsecgÞ
2
� þ E½ðnma � n0maÞ

2
� ð3Þ

To minimize the mean square error, the least mean square (LMS) algorithm can be used.

The LMS tries to adaptively adjust the filter coefficient so that nma can be resampled by n0ma;
and thus the square error difference ðnma � n0maÞ

2
is minimized. Let Wk = [w1(k),w2(k),w3(k),. . .,

wn(k)], where Wk is a vector which contains the filter’s coefficients at the time epoch k. The

LMS algorithm can be written as follows:

Wkþ1 ¼Wk þ 2mεkxrðkÞ ð4Þ

where xr(k) is the reference noise and Xr(k) = [xr1(k),xr2(k),xr3(k),. . .,xrn(k)], εk is the filtered clean

signal and εk ¼ secgþma � n0ma and μ is the learning parameter, which can be calculated accord-

ing to the following equation,

mk ¼
b

kxrðkÞk þ c
ð5Þ

where β is normalized step size (0<β<2), and c is a small positive constant that prevents μk
from taking large value when xr(k) is near zero. The estimated noise, n0maðkÞ is calculated with

Fig 1. Adaptive noise filter concept.

https://doi.org/10.1371/journal.pone.0207176.g001
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the following expression

n0maðkÞ ¼WðkÞXrðkÞ ð6Þ

where W(k) is a vector which contains the filter’s coefficient, and Xr(k) is the reference noise.

Hampel filter (HF)

The Hampel identifier is regarded as one of the most robust and efficient outlier identifiers

[22]. The Hampel filter is based on a moving window for detecting outliers in a time series.

Usually, HF is used as a robust alternative to the outlier sensitive z-score (three-sigma rule).

Hampel replaces the mean and the standard deviation by the median and median absolute

deviation (MAD) which are outlier-resistant parameters. The difference between HF and

other median filters is that HF uses a scaling factor that takes the distribution of the data into

account, while the other median filters use a constant threshold.

Given a sequence Xk = [x1,x2,. . .xl] with sliding window l at time epoch k, the median and

MAD can be calculated as follows

;k ¼ medianðXkÞ ð7Þ

φk ¼ 1:4826 �medianðxk � ;kÞ ð8Þ

After replacing the mean and the standard deviation by the median and MAD, the modified

rule is written as follows:

jxkþ1 � ;kj � ms � φk ð9Þ

The HF identifier declares that xk+1 is an outlier and replaces it with the median ;k if it is

located away from the mσ
th times the standard deviation.

Detection of the QRS-complex

The QRS complexes in an electrocardiogram represent the depolarization phenomenon of the

ventricles and yield useful information about their behaviour. Detecting the QRS complex is a

very common procedure for analyzing ECG signals in healthcare systems. It is the first step in

the automatic ECG processing algorithms. Real-time QRS complex detection is essential for

monitoring of patients in critical heart condition. Therefore, many researchers in the

QRS-Complex detection have focused on increasing the performance in terms of detection

accuracy and computational complexity of the detection. The scope of this study is limited at

utilizing one of the existing real-time QRS detection algorithms to label the R-peak locations

in the ECG signal in order to accomplish accurate segmentation of the QRS complexes.

QRS complex detection is considered simple task and can be done efficiently for clinical

ECG recording. Many effective techniques have been proposed for QRS detection algorithms,

including using neural networks [4], the hidden Markov model (HMM), and wavelet trans-

form (WT) [44]. Unfortunately, these techniques are inefficient for low-cost portable ECG and

long-term monitoring as their use will consume more energy. However, detecting the QRS

complex in mobile ECG is more challenging due to the number of disturbance sources, such

as radio-based noises, subjects’ movement, and weather conditions, as well as the limited num-

ber of leads used for the recording. Hence, QRS detection in mobile ECG has been widely

studied, and many complex and effective methods exist in the literature. The majority of the

reported techniques are highly accurate, even under a harsh recording environment. However,

most of these techniques work offline and also consume a considerable amount of resources,
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such as memory, computational time, and power. Fortunately, due to the dominant feature of

the R-peak in the QRS complex, it can be distinctly recognized from its sharp edges and high

amplitude. The high slope of the QRS complex motivates the employment of the temporal

derivative of the ECG signal for QRS detection. Many methods have been proposed for real-

time requirements, such as those proposed by authors in [33, 34], which showed their effec-

tiveness and efficiency in detecting the QRS complex under different recording conditions in

real time. Friesen et al, studied the noise sensitivity of nine different QRS detection algorithms

[45]. In their study, the QRS detection algorithms were applied on ECG signals corrupted with

many synthesized noise types. The study showed that algorithms based on amplitude and

slope had the highest performance in terms of QRS detection accuracy. Therefore, QRS detec-

tion algorithms could be used as a preprocessing step for further improving the quality of the

ECG signals [24]. Accordingly, the Pan and Tompkins QRS detection algorithm which is pre-

sented in [46] is selected for the segmentation phase in this study prior to spatial filtering using

Hampel filter. Pan and Tompkins algorithm which operates according to the slope, amplitude

and width, is the most reported accurate QRS detection method in the literature [35]. The

results showed the sensitivity (SE) of this algorithm was of 99.75% with a positive predictive

value (PPV) of 99.54%. However, any other efficient and effective QRS complex, such that of

Pandit et al [47] and Kin and Chin [48] can also be used.

The proposed algorithm

The aim of this section is to explain the proposed algorithm. The main goal of the algorithm is

to reduce the motion artefact of an ECG signal acquired through portable or mobile ECG

while a subject performs normal activities. The proposed algorithm consists of five modules, as

shown in Fig 2. They are Bandpass Filter with an ECG normalization module, the Adaptive

Baseline Wander Reduction Filter module (ABWRF), the Weighted Adaptive Noise Filter

(WANF) module, the R-Peak Annotation and Segmentation Algorithm (RPASA) module, and

the Hampel Filter-Based Estimation (RHFBE) module which contain both HFBE and the

Recursive Hampel Filter-Based Estimation.

Pre-processing module

The pre-processing phase consists of two parts, the Butterworth band-pass filter for removing

high frequencies followed by notch filter for eliminating the 50/60Hz power line interference,

and the adaptive noise canceller for removing baseline wandering. Industrial environment can

be a source of radiation generated by high voltage power lines, transformers, welders, electric

motors, induction furnaces, degaussing coils, etc. Thus, in the first part, the ECG signals are

digitally filtered with a zero-phase Butterworth IIR bandpass filter (0.05–130 Hz). The notch

filter is used as stopband to suppress the 50/60Hz power line interference.

The second part uses the adaptive baseline wandering reduction filter (ABWRF) proposed

by [2]. The concept of reducing the baseline wander noise from the ECG signal involves

removing the DC component from the ECG signal. Therefore, adaptive noise cancelling with

one weight is considered effective for removing such noise from the signal. The reference

input of the ABWRF is set to a constant with a value of one.

Weighted adaptive filtering module (WAF)

The goal of the adaptive filter is to adapt the filter coefficient in order to estimate the motion

artefact in the ECG signal. This filter is designed based on a conventional noise canceller

(ANC) namely the adaptive filter (AF). The AF is modified to include the correlation between

the noise reference and the ECG signal as a weight for adjusting the amount of filtering
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according to the correlation. Thus, the impact of the uncorrelated noise is reduced and a better

ECG signal is obtained.

To prevent formation of incorrect n0maðkÞ, the cross-correlation vector between the accelera-

tion signal (nr) and the ECG signal (secg_ma) ρ(k) = [ρ1(k),ρ2(k),ρ3(k),. . .,ρn(k)] is multiplied by the

weights to reduce the impact of uncorrelated noise from disturbing the original signal, as fol-

lows:

rk ¼

Pm
i¼1
ðnrðiÞ � mðnrÞÞðsecg maðiÞ � mðsecg maÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm� 1

i¼1
ðnrðiÞ � mðnrÞÞ

2Pm
k¼1
ðsecg maðiÞ � mðsecg maÞÞ

2
q ð10Þ

n0maðkÞ ¼WðkÞrðkÞXrðkÞ

A triaxial accelerometer is attached to the ECG electrode and used as noise reference,

namely the component of the triaxial record vector is compounded to on value so-called Signal

Vector Magnitude (SVM). Similar to many previous research such as in [36, 37], the absolute

value of the acceleration vector (SVM) is used as reference because its contain the change in

the acceleration in the three directions and it can represent the acceleration signal at any

Fig 2. Block diagram of the proposed motion artefact reduction algorithm.

https://doi.org/10.1371/journal.pone.0207176.g002
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direction. SVM is calculated as follows.

nr ¼ ACCSVM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acc2

x þ acc2
y þ acc2

y

q
ð11Þ

where nr is the noise reference and ACCSVM is the SVM value of the recorded accelerations in

the three axes, x, y and z, respectively.

R-peak Annotation and Signal Segmentation Algorithm Module (RASA)

The output of the WAF algorithm is buffered. For each time epoch k, the QRS detection algo-

rithm is then used to annotate the buffered signal. An indexing vector is created to mark the

location of the QRS complex, namely the R spike, by setting the location to one. A window

started at the R peak signal is then used for signal segmentation. The R-peak is selected in the

beginning of the window inorder to address the issue of the irregulare heartbeat signal

(Arrhythmia). A complete segment containing the P-QRS-T signal with fixed length is sepa-

rated and stored in the matrix which contains L time-sequences as follows:

Bufferkðl;wÞ ¼

Sðk� l=2Þ Sðk1� l=2þ1Þ � � � SðkÞ � � � Sðkþl=2Þ

Sðk1� l=2Þ Sðk2� l=2þ1Þ � � � Sðk1� lÞ � � � Sðk1þl=2Þ

Sðk2� l=2Þ Sðk3� l=2þ1Þ � � � Sðk2� lÞ � � � Sðk2þl=2Þ

..

. ..
. ..

. ..
. ..

. ..
.

: : : : : :

Sðkw� l=2Þ Sðkw� l=2þ1Þ � � � Sðkw� lÞ � � � Sðkwþl=2Þ

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

where k is the time epoch of complete P-QRS-T signal, which is the moment when the R peak

occurred, w is the number of signals that were taken into account from successive ECG signals,

and l is the length of the complete P-QRS-T ECG signal (it is also refered to buffer width in

this paper). w is set according to the amount of time that the signal is stationary. With the

assumption of an uncorrelated noise signal, w may be selected according to the interquartile

range IQR length of each column in the Bufferk(l,w). IQR is a measure of variability which is the

difference between the first and the third quartile of each column in the Bufferk(l,w). If all IQRs
are small, this is an indication of a precise signal, so a small buffer size (w) is enough to esti-

mate the correct ECG signal. Meanwhile, if the IQRs are large, then this is an indication of

imprecise ECG signals; thus a larger buffer size, w, should be used. If a corresponding change

occurs in RR length, then, with large IQR, this indicates that a motion artefact is present in the

signal.

To capture the change in the ECG signal, the buffer size w should be updated online,

accordingly. The use of relative entropy, also called the Kullback−Leibler divergence, is sug-

gested to compare the probability density function of two windows that are taken from the fil-

tered ECG signal. If the relative entropy is zero or near zero, then buffer size should not be

decreased until the initial buffer size. Otherwise it should be in,creased until the entropy

becomes a small value, as illustrated in Fig 3. For calculating the relative entropy, p(x) and q(x)

are two probability distributions of a discrete random variable x. The relative entropy with

respect to q can be obtained as follows:

d p; qð Þ ¼
Xn

k¼1

pklog2

pk
qk

� �

ð12Þ

The duration of the signal can vary according to the heartbeat rate information. In this
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paper, l is estimated from the information stored in the Bufferk(l,w) as follows. Since the mini-

mum duration of a single P-QRS-T signal is around 0.14 seconds when the heartbeats rate

reaches 300 per minute and the maximum duration of a single P-QRS-T around 1.2 seconds

when heartbeat rate falls to 50 per minute [47], the maximum value of l is 0.14 and the mini-

mum value is 1.2. Meanwhile, l is estimated by subtracting two successive QRS peaks.

Although the buffer width l is adjusted automatically in this paper, the maximum and mini-

mum values are used as a cutoff threshold to avoid taking a wrong P-QRS-T length. This values

can be adjusted manually by the physician or the user based on information obtained through

medical examination. For example, athletes may have heartbeat rate around 38, thus, the maxi-

mum value should be adjusted to be 1.58 seconds. In case of undetected QRS complex, the l
takes the pervious value. The algorithm in Fig 3 summarizes the steps of the second stage ECG

filtering which include: the R-peak Annotation and Signal Segmentation Algorithm and

invoke the Hampel filter estimation algorithm. Meanwhile, Table 1 describes the symbols used

in the algorithm.

Fig 3. Hampel filter based estimation.

https://doi.org/10.1371/journal.pone.0207176.g003

Table 1. List of the symbols used.

Symbol Description

W Filtering Window Size

r Index of detected R−peak
L(r) Number of samples between the current R−peak and the preceding one

k Current time index

ECG Buffered of previous ECG signal

YðW�lmaxÞ W ECG signals stored on W rows with length lmax
L,lmax, lmin L vector contains lengths of all P−T elements in the buffer, length, lmax is length of the

longest P−QRS_−T and lmin is the length of the shortest P−T
bSð1�lminÞ, dECGk

Matrix of the estimated ECG signal samples

dECGk� m:k;
dECGk� 2m:k� m

The estimated signal during the time interval, k−m until k, where m is the integer that

indicates the period of time the ECG is stationary.

https://doi.org/10.1371/journal.pone.0207176.t001
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Hampel Filter-Based Estimation Module (HFBE)

The idea behind suggesting Hampel filter for removing motion artefacts in the ECG is that the

successive ECG segments have a repetitive structure while the motion artefact is random in

each segment. Thus, the Hampel filter can recover the original ECG structure from a noise

contaminated one. The Hampel filter needs four important parameters to perform the estima-

tion: the median ;k, the median absolute deviation (MAD) δk, Hampel filter upper bound

HUBk, and Hampel filter lower bound HLBk. The Hampel filter’s parameters are calculated as

follows.

Hample Filter Paramters

;kðiÞ ¼ medianðSðk:k� w;lÞÞ

dkðiÞ ¼ 1:4826�medianfjSðk:k� w;lÞ � ;kðiÞjg

HUBkðiÞ ¼ ;kðiÞ þm� dkðiÞ

HLBkðiÞ ¼ ;kðiÞ � m� dkðiÞ

ð13Þ

8
>>>>>><

>>>>>>:

where k is the time epoch of the complete ECG signal and i is one sample of the ECG segment,

w the buffer size (in terms of number of the ECGs segments in the buffer), and l is the length

of the ECG segment.

The filter response is given by:

hðSkðnÞÞ ¼ bSkðnÞ ¼

(
SkðnÞ HLBkðnÞ � jSkðnÞj � HUBkðnÞ

;kðnÞ otherwise
ð14Þ

Therefore, the estimated signal will be as follows:

bSk ¼ ½bSkð1Þ bSkð2Þ bSkð3Þ � � � bSkðNÞ �

Fig 4 shows a Hampel filter-based function that takes the buffer content as input and

returns the filtered signal.

The input of the Hampel filter can be written as vector containing the complete ECG signal

(P-QRS-T) that represents a cardiac cycle of the ECG signal as follows:

Sk ¼ Sk� l
2
; Sk� l

2
þ1; . . . Sk; . . . ; Skþ l

2
� 1; Skþ l

2

h i
ð15Þ

while the output of the Hampel filter, bSk, is a vector resulting after applying the Hampel filter

function in Fig 4. Recursive Hampel filter is performed based on replacing the sequence of the

Fig 4. Hampel filter-based estimation.

https://doi.org/10.1371/journal.pone.0207176.g004
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old filtered data by the output of the Hampel filter estimation sequence, as follows:

bSk ¼ bSk� l
2
;bSk� l

2
þ1; . . .bSk; . . . ;bSkþ l

2
� 1;
bSkþ l

2

h i
ð16Þ

Fig 5 illustrates the conceptual structure of the proposed idea. The ECG segmentation and

buffering are shown in Fig 5(A), while the Hampel-based filtering is shown in Fig 5(B).

Performance evaluation

The effectiveness of the proposed algorithms was evaluated in the Matlab environment. The

Mobile HEALTH (MHEALTH) dataset [11, 49] were used to evaluate the proposed algorithm.

MHEALTH dataset comprises body motion and vital signals recordings from ten healthy sub-

jects while performing daily activities (e.g., sitting, walking) and exercise activities (e.g.,

cycling, frontal elevation of arms, and Knees bending). The ECG electrodes were placed on the

subjects’ chest (with 2-lead ECG), right wrist and left ankle and attached by using elastic straps

while the acceleration sensors were placed on the central location on the chest near to the ECG

electrodes. The proposed algorithm was evaluated using data collected from the ECG electrode

that was placed on the chest. Similarly, the used acceleration data by the adaptive filter were

collected form the acceleration sensors which was placed on the chest near to the ECG elec-

trode. The information was recorded from ten healthy subjects while performing twelve differ-

ent physical activities, as illustrated in Table 2. Shimmer2 [BUR10] wearable sensors were used

for the recordings. All sensing modalities were recorded at a sampling rate of 50 Hz, which is

considered sufficient for capturing human activity. MHEALTH dataset is found to generalize

to common activities of the daily living such as sitting, walking and running, the intensity of

the actions while performing the activities and their execution speed or dynamicity. The data

were recorded in an out-of-lab environment with no constraints on the way these must be

Fig 5. Conceptual structure of hampel filter-based filtering.

https://doi.org/10.1371/journal.pone.0207176.g005

Table 2. MHEALTH datasets.

Code Physical Activity Duration Code Physical Activity Duration

L1 Standing still 1 min L7 Frontal elevation of arms 20X

L2 Sitting and relaxing 1 min L8 Knees bending (crouching) 20X

L3 Lying down 1 min L9 Cycling 1 min

L4 Walking 1 min L10 Jogging 1 min

L5 Climbing stairs 1 min L11 Running 1 min

L6 Waist bends forward 20X L12 Jump front & back 20X

https://doi.org/10.1371/journal.pone.0207176.t002
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executed, with the exception that the subject should try their best when executing them. The

datasets have been used for building many mobile-based health applications, such as in [12,

50]. MHEALTH is freely available online and can be downloaded from the following link

“https://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset” which was last retrieved on

5-June 2018.

As the MHEALTH dataset contains different activities, the reference P-QRS-T segment can

be used for the evaluation which can be obtained when subject’s activity is low, such as stand-

ing still, sitting and relaxing, and lying down. However, due to the non-stationary nature of

the ECG signal recorded during relaxing, this cannot be used to evaluate the ECG signal dur-

ing running or jogging. Therefore, a ground truth ECG reference signal is unavailable for the

evaluation. In addition, the absence of a ground truth motion artefact noise reference makes it

difficult to evaluate the effectiveness using signal to noise ratio (SNR). In addition, QRS com-

plex detection is not a reasonable measure for evaluating motion artefact reduction methods

because of the presence of highly accurate QRS detection methods that can accurately detect

the QRS complex even if there is a motion artefact or poor ECG signals are used. Therefore, in

order to evaluate the effectiveness of the proposed method, the morphological change in the

ECG is recorded and evaluated.

Experimental results and discussion

In this section, the results of the proposed filtering algorithms are presented and organized in

three subsections as follows. In the first subsection, analysis of the correlation between the

ECG and the acceleration signal is conducted. Then, the proposed weighted adaptive filtering

method (WAF) is evaluated and compared to the conventional adaptive filter (AF) method.

Finally, the Hampel based filtering algorithms (HFBE and the Recursive Hampel filter

RHFBE) are evaluated and compared to the AF and WAF algorithms.

Analysis of the relationships between acceleration and motion artefact. In this section,

the correlation between the motion artefact contaminated ECG signal and the acceleration sig-

nal has been studied. Fig 6 shows the correlation coefficient at different lags. Four acceleration

signals were studied as follows, the acceleration in the longitudinal direction (X-acc), the accel-

eration in latitude direction (Y-acc), the acceleration in the altitude direction (Z-acc), and the

absolute value of the acceleration vector (Signal Vector Magnitude or SVM for short). SVM is

the absolute total value of the acceleration in all directions, so that has been used to summarize

the correlation between the ECG and the acceleration [36, 37]. It can be noticed from Fig 6(A),

6(B) and 6(C) that the correlation slightly changes according to the activity types. For example,

when the subject is sitting and relaxing the correlation is lower than 0.1 and, when the subject

is walking or running the correlation insignificantly increases lower than 0.5. This low correla-

tion makes the improvement gained by the adaptive filtering is not so promising if the acceler-

ation signal is used as a reference in the adaptive filters.

To further study the correlation in more details, Fig 7 shows the detailed explanation of the

correlation between the acceleration signals and the ECG signal at lag zero. The x-axis repre-

sents the sample index while the corresponding y-axis represents the normalized value of the

ECG signal and the correlation coefficient between the raw ECG signal and the acceleration

signals. It can be seen in Fig 7(A) that correlation is lower than 0.2 with the signals that were

recorded while the person is sitting. Meanwhile, there is an occasional and low correlation

among the signals that were recorded while the subject is walking or running as shown in Fig 7

(B) and 7(C), respectively. By looking at the shaded areas in Fig 7(B), in the first shaded area

from the left, the signal was slightly contaminated by motion artifact, and the correlation is

around 0.4. Meanwhile, in the second shaded area, the correlation is about 0.1 with the ECG
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signal was slightly affected by the motion artifact. The similar random behavior of the correla-

tion can be noticed in Fig 7(C). Based on this analysis, it can be concluded that the correlation

between the acceleration signal and the ECG signal is weak and not necessarily linear, it occurs

occasionally and randomly according to the electrode displacement status from the subject

skin. Therefore, it is expected that the adaptive filter with the acceleration signal as the refer-

ence will not adequately improve the quality of the motion artifact contaminated signal. More

Fig 6. The correlation between the acceleration signals and the ECG signal at different lags.

https://doi.org/10.1371/journal.pone.0207176.g006

Fig 7. The correlation between the ECG signal and the acceleration signal.

https://doi.org/10.1371/journal.pone.0207176.g007
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seriously, due to the random correlation between the ECG and the acceleration signal, the con-

ventional adaptive filtering may introduce more noise in the signal due to this random correla-

tion. The detailed performance evaluation of the adaptive filtering with the acceleration signal

as a reference has been discussed in the next section.

Evaluating the weighted adaptive filter method. In this section, the effectiveness of the

adaptive filtering methods is studied. The results obtained by applying the proposed weighted

adaptive filter to different ECG signal recorded while the subject performing different activities

are discussed and compared to the conventional adaptive filter. Figs 8 and 9(A), 9(B), 9(C) and

9(D) shows comparison between the adaptive filter (AF) with the proposed weighted adaptive

filter (WAF) while the subject performing two types of activities, walking, in Fig 6, and run-

ning, in Fig 9. The raw ECG signal is shown in Figs 8 and 9(A), the output of the pre-process-

ing is shown in Figs 8 and 9(B), while the output of the conventional adaptive noise filter (AF)

Fig 8. Filtering results using the ECG signal recorded during walking.

https://doi.org/10.1371/journal.pone.0207176.g008

Fig 9. Filtering results using the ECG signal recorded during running.

https://doi.org/10.1371/journal.pone.0207176.g009
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is shown in Figs 8 and 9(C) and the output of the proposed filter (WAF) is shown in Figs 8 and

9(D). As shown in Figs 8 and 9(A), the raw ECG signal is very noisy, due to the presence of the

motion artefact in the signal. Due to the overlapping nature of the motion artefact, it is still

present in the ECG presented in Figs 8 and 9(B), even after pre-processing using conventional

digital filtering of noise and the adaptive baseline noise cancelling (AF). As illestrated in Figs 8

and 9(C), the results of the adaptive noise filter with acceleration as a reference show that there

is no sign of enhancement, due to the weak correlation between the noise and the ECG. More-

over, the weak correlation of the noise and the ECG leads to wrongly adapt the filter’s coeffi-

cient and thus produce incorrect estimations of the motion artefact. Accordingly, the

acceleration signal misleads the adaptive noise filter and thus produces the wrong filtering out-

put. This is clear when comparing the circles in Figs 8 and 9(B) with the circles in Figs 8 and 9

(C). In contrast, the distortion of the signal is reduced using the proposed Weighted Adaptive

Noise Filter (WAF), as shown in the circles in Figs 8 and 9(D). The cause behind the distortion

in the ECG signal is that the acceleration signal has low correlation with the noise in the ECG

and higher correlation with ECG signal itself. This prevents the adaptive filter from reaching

optimal convergence, and thus poor estimation of the motion artefact.

To quantitatively evaluate the performance of the adaptive filter algorithms regarding the

motion artefact reduction, the power ratio (PR) is used as an indication for the improvement

of the quality of the motion artifact contaminated ECG signals [42, 51]. PR is the ratio between

the power of the primary input signal (the motion artifact contaminated signal) and that of the

desired signal (the output signal of the adaptive filter) and it can be expressed as follows.

PR ¼
EðjPsecgj

2
Þ

EðjPdecgj
2
Þ

ð17Þ

Where E(|Psecg|2) represents the power value of the raw ECG signal before the filter, E(|

Pdecg|2) is the power value of the desired signal (after filteration). In adaptive filter, the error

signal is the desired information i.e. the filtered ECG signal. Table 3 shows the power ratio of

both the proposed weighted adaptive filter algorithm (WAF) and the conventional Adaptive

Filter (AF). In most cases, PR_WAF is higher than PR_AF because the WAF modifies the orig-

inal signal according to the correlation coefficient value. Meanwhile, AF continuously adjusts

Table 3. Performance statistics of the adaptive filtering algorithms at different activity levels.

Activity Level\Adaptive Filter AF WAF

Standing still 0.83 0.98

Sitting and relaxing 0.88 1.00

Lying down 0.88 1.01

Walking 0.84 0.99

Climbing stairs 0.80 0.99

Waist bends forward 0.87 1.00

Frontal elevation of arms 0.75 1.00

Knees bending (crouching) 0.83 1.00

Cycling 0.82 0.99

Jogging 0.87 1.00

Running 0.78 0.99

Jump front & back 0.83 0.98

Average 0.83 1.00

Standard Division 0.04 0.01

https://doi.org/10.1371/journal.pone.0207176.t003
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the signal even if their signal is not affected by the body movement. It is clear from Figs 8 and

9 when the segments presented in the oval shapes are compared. It can also be noticed in

Table 3 in which the power ratio of AF (PR-AF) is lower than one due to the random correla-

tion between the noise and the ECG which had lead AF to make an unnecessary modification

to the ECG signal. Also, it can be noted from Table 3 that the PR of the proposed algorithm

WAF is almost one because of the weak correlation between the noise and the acceleration sig-

nal. This weak correlation has led the proposed algorithm WAF to keep the original signal

from unnecessary modification (see also the segments presented in the oval shapes in Figs 8

and 9). This result suggests that the WAF is more effective than the AF filter in case of random

correlation between acceleration and the ECG signal. At least the proposed weighted adaptive

filter WAF preserves the original signal from being destoried through the random corelation

between the motion artefact and the acceleration, while the conventional adaptive filter AF

wrongly modifies the ECG signal. Consequently, the AF filter may lead to false analysis of the

cardiac.

In contrast to as the studies presented in [3, 4, 19, 40] which used the acceleration signal as

a reference for adaptive noise cancelling, it can be concluded that using the acceleration signal

as a reference for the adaptive filtering algorithms can not impressively improve the quality of

the motion artifact contaminated signals in the ECG signals recorded during normal activities

using wearable ECG sensor. This fact has also been noticed by Zhang et al. in [42]. However,

the author suggested that the failer of the adaptive filtering algorithm to improve the quality of

the motion artifact contaminated signal refers to the position of the acceleration sensor. It was

recommended that the acceleration sensors should be mounted in the ECG electrodes to cap-

ture the electrode movement. Although the acceleration sensors have been integrated into the

ECG electrodes in MHEALTH datasets, the improvement still low due to the low correlation

between the acceleration signal and the motion artifact portion in the ECG signal. The low cor-

relation is due to that the motion artifact in the ECG signal is mainly generated from the

expansion of the skin under the electrode which causes a change in the potential thus the noise

is created. Meanwhile, the acceleration signal is related to the physical movement, and it has

nothing to do with the possibility. That is, the noise signal and the acceleration signal are gen-

erated from different mechanisms which are not highly correlated [19–21, 42]. The correlation

is reliable only if the movement leads to displace or slide the electrode on the skin. Besides, the

physical movement is not necessarily always lead to supplant of the ECG electrode if the elec-

trode has been mounted well on the skin surface. Therefore, the adaptive filter which uses the

acceleration as a reference can not effectively improve the quality of the motion artifact con-

taminated ECG signals. This finding confirms our previous hypothesis in [52]. Next section

evaluate the performance of the proposed Hample filter based estimation.

Evaluating Hampel-Based filtering (HFBE and RHFBE). In this section, the effective-

ness of Hampel-based filtering is evaluated. The performance of the both HFBE and RHFBE

are studied and compared. Fig 10 gives quick insights into the effectiveness of the Hampel-

based filtering concept.

In Fig 10(A) and 10(B), the x-axis represents the time epochs while the y-axis represents the

ECG potential intensity. The solid line represents the ECG signal after applying the Hampel

based filter. Meanwhile, the dotted line represents the removed motion artefact signal which is

the difference between the signal before and after filtering (the removed portion from the orig-

inal signal). The highlighted region in the Fig 10 represents the portion of the signal that has a

motion artefact. Fig 10(A) illustrates the output filtered ECG signal using the proposed WAF

method, as well as the filtering residual (drawn as dots). As shown in the Fig, the residual of

the WAF is almost zero, which implies that the correlation between the motion noise reference

and ECG recording is very weak. Thus, WANC keeps the original signal without further

Electrocardiogram motion artefact reduction algorithm using WAF and RHFBE
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destruction. In Fig 10(B), the results of applying the HFBE method are presented. As shown in

the Fig 10, HFBE is effective for eliminating motion artefact.

Fig 11(A), 11(B), 11(C), 11(D) and 11(E) illustrate five ECG signals, as follows. Fig 11(A)

shows the raw ECG signal extracted from subject number 2 during knee bending exercise. Fig

11(B) represents the ECG signal after the pre-processing stage. It also shows the real-time cor-

relation coefficient between the ECG and the acceleration information. Fig 11(C) shows the

output of the adaptive noise cancelling algorithm (AF) after pre-processing and the accelera-

tion signal used as a reference. It also includes the estimation of the motion artefact noise that

is generated using the AF algorithm. Fig 11(D) shows the desired ECG signal after first stage

filtering using the proposed filtering WAF algorithm which works based on the correlation

between the motion artefact noise reference and the contaminated ECG signal. Fig 11(E) illus-

trates the output of the second filtering stage, namely using the HFBE algorithm. Finally, the

results of the recursive HFBE are presented in Fig 11(F).

To simplify the explanation, four regions in Fig 11 are highlighted. In the first region, the P

and T wave positions are highlighted. As can be seen in Fig 11(A), the P and T wave’s are both

contaminated by the motion artefact that is appearing as an atrial fibrillation disorder. As

Fig 10. Filtering results using the ECG signal recorded during free movement.

https://doi.org/10.1371/journal.pone.0207176.g010

Fig 11. Filtering results using the ECG signal recorded during knee bending exercise.

https://doi.org/10.1371/journal.pone.0207176.g011
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shown in Fig 11(C) and 11(D), neither ANC nor WAF could remove the motion artefact.

However, both of the Hampel filter-based estimation algorithms (i.e. HFBE and RHFBE) show

their effectiveness in reducing the impact of motion artefacts on the ECG signal, as shown in

Fig 11(E) and 11(F). RHFBE motion artefact noise removal performs better than HFBE in

terms of better showing the structure of the ECG signal, as shown in Fig 11(F). Similarly, as

shown in Fig 11(A) and 11(B) in the second highlighted region, P and T-waves are corrupted

by different types of motion artefact. Again, neither of the adaptive filters (ANC and the pro-

posed WAF could remove the motion artefact noise, due to the weak correlation with the

acceleration signal. As can be observed in Fig 11(C) and 11(D), ANC has wrongly modified

the morphology of the P and T-waves while WAF retains the original noise. In contrast, both

HFBE and RHFBE have significantly reduced the impact of the motion artefact on the ECG

signal, as can be seen in Fig 11(E) and 11(F). In the third highlighted section, the QRS complex

is distorted but it is perfectly recovered by both HFBE and RHFBE. In the same way, the dis-

turbed P and T waves in the fourth highlighted region are recovered by HFBE and RHFBE. Fig

12 shows the performance of the Hampel filter based estimation on massive motion artefact

contaminated ECG signal. It is clear that the Hambel filter based estimation can accurately

improve the quality of the ECG signal even under high noise.

Table 4 shows the percentage of the removed motion artefact from the contaminated

P-QRS-T segments for the raw ECG records and after the treatment by the adaptive filters and

the proposed filters (WAF, HBE, and RHFBE). If any part of the P-QRS-T is corrupted then it

is counted as motion artefact contaminated segment. The motion artifact are manually

checked by an expert before and after the application of the tested filtering algorithms. The

results show that the amount of motion artefact differ based on the type of the activity per-

formed by the subject. For example, during the lying down or sitting and relaxing the percent-

age of the motion arefact is lower than 15% while it has increased to 100% during Jogging and

running. In terms of the percentage of motion artefact that have been removed by the tested

algorithms, the conventional adaptive filter fails to remove the motion artefact from many sig-

nals. More seriously, AF has introduced another noise to the original ECG signal (see the nega-

tive sign). Meanwhile, WAF has removed low percentage of the motion artefact while, it fails

to remove large portion of the motion artifact. The average achievement by the WAF is around

23±20%. This low achievement is due to the low direct correlation between the motion artifact

Fig 12. Example of treatment of heavey contaminated ECG signal.

https://doi.org/10.1371/journal.pone.0207176.g012
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signal and the acceleration signal. Both Hampel filter based estimation algorithms have per-

formed well with many activities, especially when the raw ECG signal is partially contaminated

by the motion artifact. For example, if the motion artifact around 15% of the total signal then

HFBE and RHFBE archives 100% removing of the motion artefact. However, with some activi-

ties even if the percentage of the motion artefact is low such as in Knee bending and Jump

front and back exercise (less than 20%), the improvement still not high (82%). This because

the motion artefact affect many subsequent P-QRS-T segments. It can be noticed from the

table, Hampel filter based estimation fails to remove the motion artefact during jogging and

running exercise. This is due to mean reasons as follows. The first, the performance of the QRS

detection algorithm during the heavy exercise and the second is the fact that the majority of

the subsequent P-QRS-T segments are contaminated by the noise. The reason behind decreas-

ing of the QRS detection could be due to the low quality of the recording ECG equipment. It

may not be attached well to the subject body. Fig 13(A) shows example of heavy contaminated

ECG signal which was recorded during jogging exercise. The second reason is due to that the

majority of the subsequent ECG segments are contaminated by the noise (as shown in Fig 13

(A)). However, The proposed Hampel filter based algorithm can still improve such signal

when the subject move from one activity to another such as from walking to jogging (as shown

Table 4. Percentage of the removed motion artefact from the raw signal.

Activity Artefact Percentage in the raw signal (%) (BEFORE) Percentage of Removed Motion Artefact (%)(AFTER)

AF WAF HFBE RHFBE

Standing still 9.68 -11.11 22.22 100 100

Sitting and relaxing 10.26 -50.00 25.00 100 100

Lying down 15.00 -33.33 0.00 100 100

Walking 14.81 -66.67 61.11 88.89 94.44

Climbing stairs 57.78 25.00 40.38 88.46 84.62

Waist bends forward 18.75 5.56 50.00 88.89 88.89

Frontal elevation of arms 41.67 2.50 37.50 90.00 85.00

Knees bending (crouching) 20.24 -11.76 5.88 82.35 82.35

Cycling 34.03 -22.45 28.57 85.71 91.84

Jogging 100.00 0.00 0.00 12.18 7.69

Running 100.00 0.00 0.00 13.33 8.67

Jump front & back 20.24 -11.76 5.88 82.35 82.35

Average -14.50 23.05 77.68 77.15

Standard Deviation 24.32 20.21 29.65 31.50

https://doi.org/10.1371/journal.pone.0207176.t004

Fig 13. Filtering results using the ECG signal recorded during walking following by jogging exercise.

https://doi.org/10.1371/journal.pone.0207176.g013
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in Fig 13(B) and 13(C). It can be concluded that Hampel filter based estimation is effective

only for the signals which are partially contaminated by the motion artefact that is the majority

of the P-QRS-T segments are partially affected by the noise as shown in Fig 12.

Table 5 shows the filtering performances, in terms of the power ratio, for the proposed algo-

rithms (WAF,HF, and RHF) and the adaptive filter (AF). As stated earlier, the PR of the adap-

tive filter is lower than one which indicate that the AF has increased the power of the original

signal due to the wrong adjustment of the adaptive filter parameters. Meanwhile, the proposed

WAF keep the power of the original signal due to the influence of the proposed weights on the

adaptive filter parameters. In case of Hampel filter based estimation, it can be noticed that the

power ratios are higher than one because of the removing of the noise signal from the original

ECG signal. Both HFBE and RHFBE perform well in terms of the power ratio improvement.

However, RHFBE has removed higher portion of the original signal comparing with the power

removed by the HFBE.

The performance of the proposed filtering methods was evaluated using QRS complex

detection algorithms namely the Pan and Tompkins algorithm. Pan and Tompkins algorithm

was proved to be the more effective compared with the state of the art R-peak detection algo-

rithms [47]. The QRS detection results consist of the true positive (TP), false positive (FP), and

false negative (FN). TP represents the total number of the QRS complexes that have been cor-

rectly detected. FP represents the total number of times the algorithm has wrongly detected

QRS complex. FN represents the total number of the QRS complex that has not been detected.

Three performance metrics have been used to quantify the improvement gain in the ECG sig-

nal namely, the sensitivity (SN), positive predictivity (PP), and the harmonic mean F-measure

as shown in Eqs (18), (19) and (20), respectively. SN represents the percentage of the correctly

detected QRS complex (heartbeats or the true positive rate or recall), while PP represents the

percentage of detected heartbeats that are actually true (precision). F-measure is the harmonic

mean which is used to measure the overall performance in the unbalanced datasets such as in

the ECG dataset where the number of positive instances is (the R-peak) less than the negative

instances. Table 5 shows the statistical results of the filtering performance in terms of the sensi-

tivity (SN), positive predictivity (PP), and the harmonic mean F-measure. The results in

Table 6 were obtained with respect to applying the filtering algorithms on an annotated copy

Table 5. Performance statistics of the tested algorithms at different activity levels.

Activity AF WAF HFBE RHFBE

Standing still 0.83 0.98 1.23 1.19

Sitting and relaxing 0.88 1.00 1.13 1.15

Lying down 0.88 1.01 1.08 1.06

Walking 0.84 0.99 1.09 1.06

Climbing stairs 0.80 0.99 1.24 1.24

Waist bends forward 0.87 1.00 1.11 1.09

Frontal elevation of arms 0.75 1.00 1.30 1.36

Knees bending (crouching) 0.83 1.00 1.21 1.24

Cycling 0.82 0.99 1.40 1.42

Jogging 0.87 1.00 1.20 1.21

Running 0.78 0.99 1.54 1.79

Jump front & back 0.83 0.98 1.23 1.19

Average 0.83 1.00 1.23 1.25

Standard Division 0.04 0.01 0.14 0.20

https://doi.org/10.1371/journal.pone.0207176.t005
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of the MHEALTH dataset. The annotation is firstly performed using Pan and Tompkins QRS

detection algorithm [46], and then it has been manually corrected by a medical expert.

SN ¼
TP

TPþ FN
ð18Þ

PP ¼
TP

TP þ PN
ð19Þ

F � Measure ¼
2 � SN � PP
SN þ PP

ð20Þ

As illustrated in Table 6, concerning all tested filters, the QRS detection algorithm can accu-

rately detect the R-peak of the recorded ECG signals during different activities. Although the

results of applying the QRS detection algorithm on the raw ECG data reveals low performance

during some harsh excercise, it performed well after preprocessing. It can be seen that all the

proposed algorithms outperform the conventional adaptive filtering. On average, the overall

performance, regarding F-measure, of the proposed algorithms is around 85%±15% while the

adaptive filter AF archives 84±17. It can be seen that the proposed Hampel filter based estima-

tors namely HFBE and RHFBE performed better as compared to the adaptive filters. Although

the QRS detection algorithm can accurately detect the R-peak, it fails when the motion artifact

wholly corrupts the QRS complex patterns. The performance of all algorithms, regarding F-

measure, has been dropped to a low value during running and jogging exercises. The overall

performance of all tested filters drops to 50%. This is because the motion artefact contaminates

all the segments of the recorded ECG signals. Hampel filter based estimation assumes that the

majority of the neighboring QRS complex is accurate. However, when the incoming subse-

quent P-QRS-T segments are corrupted for a long time, the Hampel filter based algorithm will

not be useful. In most cases, the performance of the R-Peak detection algorithm is better with

the proposed Hampel filter algorithm in terms of correctly identifies the QRS locations and

the reduction of the false positive even during noises. It should be noticed that the evaluation

concerning QRS detection accuracy is partially evaluated the performance of the motion arte-

fact reduction algorithms. The reason is that this evaluation focuses on the QRS complex por-

tions of the ECG segments while the remaining portion will not be evaluated.

Moreover, the performance of the proposed algorithms is further evaluated in terms of

heartbeat rate estimation. Fig 14 illustrates the overall performance of the proposed methods

in terms of heartbeat rate estimation error. Human estimation is used as ground truth knowl-

edge, while QRS-based estimation is used as automatic estimation. The difference between

Fig 14. Summary of the performance during different forms of exercise.

https://doi.org/10.1371/journal.pone.0207176.g014
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human estimation and the QRS-based estimation is used as performance indicator. Heartbeat

rate (HBR) is estimated during each activity as follows:

Estimated Heart Beat Rate dðHBRÞ ¼
Number of Detected QRS
Activity Duration ðsÞ

ð21Þ

Meanwhile, the heartbeat rate estimation error (HBRE) is computed by subtracting the

actual human-based estimation from the estimated heartbeat rate, dHBR, using the QRS com-

plex algorithm.

As shown in Fig 14, each box plot summarizes the performance of one method applied on

12 different physical activities. When the median is near zero and the inter-quartile range

(IQR) is small, the accuracy and precision of the method is better. Thus, RHFBE and HFBE

methods show better performance than the adapted filter-based methods WANF, and ANF.

The heartbeat rate error median is zero for the RHBE while it is near to minus one in HFBE.

In addition, the IQR of the RHFBE is smaller than that of HFBE. Therefore, RHFBE has

achieved a better performance than the other proposed methods.

Fig 15 shows a detailed analysis of the QRS detection based evaluation. In Fig 15(A) and 15

(B), the QRS detection algorithm is applied to the raw data. The small circles in Fig 15(A) and

15(C), and the corresponding heavy intermittent vertical lines in Fig 15(B) and 15(D) repre-

sent the position of the R-peak in the QRS complex which is detected using Pan and Tompkins

QRS complex detection method. Fig 15(C) and 15(D) show the results of the application of the

QRS detection algorithm on the filtered signal, i.e., after applying the proposed Hampel filter-

based estimation method, namely HFBE and RHFBE. The heavy intermittent horizontal lines

in Fig 15(A) and 15(C) are the threshold of the adaptive filter (the lower line) and the signal

level threshold (the upper line). The highlighted areas are the positions where the Pan and

Tompkins methods make inaccurate detection of the QRS complex. This inaccuracy can be

noticed where the circles in Fig 15(A) and the intermittent lines in Fig 15(B) are congested.

However, after applying the proposed algorithm, the detection accuracy is improved. This

improvement is highlighted in Fig 15(C) and 15(D) where it is clear that the stuffed circles and

lines have been removed. The reason for this improvement is that the proposed HFBE and

RHFBE algorithms can accurately estimate the correct position of the R-peak during

Fig 15. The QRS complex detection accuracy before and after the filtering using the proposed methods.

https://doi.org/10.1371/journal.pone.0207176.g015
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segmentation process after the raw ECG signal had been filtered using the preprocessing mod-

ule described earlier.

In conclusion, statistically-based filtering such as the Hampel filter shows its advantage in

filtering ECG signals contaminated by motion artefact type noises. This method can be used

for filtering many signals that have repetitive structures, such as respiratory signals. The advan-

tage of the proposed Hampel filter-based method is that it is real-time realizable because it is

based on a statistical approach. The potential issue with the proposed method is that if the

QRS complex is totally contaminated, then the motion artefact in that particular ECG segment

will not be recovered. To remedy this issue, the occurrence of the ECG segment e.g. the R-

peak should be predicted by analyzing the the signal structure of the subsequent cardiac cycles.

This is a trivial task, due to the availability of knowledge about the maximum and minimum

length of two successive R-peaks (R-R interval). The task also is easier in the sinus rhythm sig-

nals rather than arrhythmia signal structures.

It should also be mentioned that the proposed Hampel filter based estimation works based

on the concept of adjusting the outliers samples in the recorded ECG signal through analyzing

the spatial correlation of the adjacent P-QRS-T segments. Moreover, the presence of a

P-QRS-T segment which is very different from its neighbor is an indication of motion artifact.

This concept is promising to differenciate the motion artefact from the cardiac diseases. Many

cardiac related diseases occur regularly in the subsequent P-QRS-T segments in the ECG.

Thus, Hampel filter based will perform well as long as all the neighboring segments have simi-

lar patterns. However, can Hampel filter based estimation differentiate between the motion

artifact and the abnormal ECG signal that contains irregular pattern such as in Premature ven-

tricular contraction? Theoretically, Hampel filter is a conditional median filter, i.e., if the cur-

rent P-QRS-T segments differ much from the adjacent segments, then Hampel filter will

adjust only the outlier portion of the segment. For example, if the ECG sample exceeded a par-

ticular threshold, namely the mth number of the median absolute deviation as illustrated in Eq

(13), then Hampel filter will replace it by the median of the neighboring signals. This threshold

can be manually adjusted by the experts to avoid removing disease pattern. A broad investiga-

tion should be carried on cardiac rhythm signals for different diseases. However, we have left

this issue for the future work.

Conclusion

Obtaining accurate ECG signals during a subject’s normal activities is recognized as one of the

major challenges in automatic health diagnosis applications. Adaptive filtering using noise as a

reference has received a great deal of attention from researchers in the last few years. Most of

the reported works used an accelerometer or gyroscope as noise reference in adaptive filtering

algorithms. However, this approach could not be effective, due to low correlation between the

noise and the acceleration signal. Adaptive noise cancelling using a low correlated noise refer-

ence causes the addition of more noise to the filtered signal, which leads to more filtering chal-

lenges. In this paper, we have proposed two filtering methods. The first method is based on

adaptive filtering algorithms by proposing a weighted adaptive noise cancelling method. The

correlation between the ECG and noise reference is used to degrade the impact of wrong

parameters. The second method is estimation of the ECG signal itself using a Hampel filter.

This method assumes that the recorded point that is contaminated with a motion artefact is

considered as an outlier with respect to the location of the same point in the successive ECG

segments. Thus, two-stage filtering using these two methods sequentially is carried out to solve

the issue of the motion artefact in the ECG signal. The results show promising reductions of

motion artefact noises from mobile ECGs during the subject’s different activities.
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