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Abstract

Correctly recognizing emotions is an essential skill to manage interpersonal relationships in

everyday life. Facial expression represents the most powerful mean to convey important

information on emotional and cognitive states during interactions with others. In this paper,

we analyze physiological responses triggered by an emotion recognition test, which requires

the processing of facial cues. In particular, we evaluate the modulation of several Heart

Rate Variability indices, collected during the Reading the Mind in the Eyes Test, accounting

for test difficulty (derived from a Rasch analysis), test performances, demographic and psy-

chological characteristics of the participants. The main idea is that emotion recognition is

associated with the Autonomic Nervous System and, as a consequence, with the Heart

Rate Variability. The principal goal of our study was to explore the complexity of the col-

lected measures and their possible interactions by applying a class of flexible models, i.e.,

the latent class mixed models. Actually, this modelling strategy allows for the identification

of clusters of subjects characterized by similar longitudinal trajectories. Both univariate and

multivariate latent class mixed models were used. In fact, while the interpretation of the

Heart Rate Variability indices is very difficult when considered individually, a joint evaluation

provides a better description of the Autonomic Nervous System state.

Introduction

The ability to correctly recognize own and others’ emotions has been acknowledged as crucial

for successful interaction with others. To assess the ability in understanding others’ mental

states, psychometric tools, affective picture database and facial expression database have been

developed (see for an overview, [1]) and used in combination with physiological monitoring

[2].

Cognitive stress triggered by emotion recognition task affects the Autonomic Nervous Sys-

tem (ANS) and, as a consequence, Heart Rate Variability (HRV).
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In this perspective, one can observe that HRV is a noninvasive marker reflecting the ANS

activity on the heart.

Starting from Porges’ polyvagal theory, which links ANS activity and successful social

engagement behaviors [3, 4], Quintana et al. (2012) [2] suggested the existence of a relation-

ship between the resting-state HRV and the performance on the Reading the Mind in the Eyes

Test (RMET, [5]), which is a basic emotion recognition task, widely used also in clinical con-

text [6, 7].

The results obtained by Quintana et al. (2012) were further explored in clinical and non

clinical samples by Shahrestani et al. (2014) [8]. The HRV is widely used in psychiatry as a

transdiagnostic marker [9]: this explains the recent push to establish neurobiological markers

of psychiatric illness for improving nosology [10]. Meta-analyses have established that individ-

uals with a range of psychiatric disorders have a reduced HRV [11–13]. Several studies have

evaluated the changes in the ANS during the RMET task in clinical samples [14–16]

The novelty of this work is to evaluate the impact of an emotion recognition task on physio-

logical response, during its completion, considering the effect and the difficulty of each stimu-

lus, while accounting for standard confounding clinical and psychological variables as in

Quintana et al. (2012).

In particular, we expect that a more difficult task in emotion recognition will activate a

stress response, i.e. an activation of the sympathetic nervous system branch of the ANS. A typi-

cal sign of such activation is the increase of HR values.

Since the focus is on physiological modifications over time, statistical models for longitudi-

nal data are needed. In particular, changes from baseline in HRV during the RMET test were

modeled by means of Latent Class Mixed Models (LCMMs, [17]). This modeling strategy

allows to manage non Gaussian continuous and ordinal outcomes. Differently from standard

Linear Mixed Effects models (LME), LCMMs account for heterogeneous profiles of the longi-

tudinal outcome, thus uncovering homogeneous subpopulations within a larger heteroge-

neous population.

In this work we applied flexible models to address two goals. First, we evaluate whether suc-

cessful emotion recognition elicits a physiological activation, while accounting for demo-

graphic/clinical characteristics and psychopathological traits. Second, we identify clusters of

subjects characterized by similar longitudinal trajectories.

Moreover, within the same framework, we jointly model biosignals, as multivariate

outcomes potentially underlying a common latent trait described as an “overall physiologi-

cal activation”. From a physiological perspective modeling several biosignals jointly,

instead of separately, provides an integrated view of the autonomic physiological response

pathway.

The paper is organized as follows. In the first part, sample description is provided along

with the illustration of the experimental sessions and the description of the collected psycho-

metric and physiological measures. Then, in the Methods Section, Rasch model and Latent

Class Mixed Models are described. Selected results and concluding remarks are finally

discussed.

Sample and experimental session description

The Reading the Mind in the Eyes Test (RMET) is an advanced test used to measure Theory of

Mind (ToM) abilities. In particular, it is suited to index emotion recognition aptitude. It con-

sists of 36 black and white images of the eye region of different faces, and participants are

asked to choose among four possible mental states to describe the person whose eyes are pic-

tured. It easily allows to evaluate the ability of accurately identifying others’ mental states.

Evaluating physiological responses during emotion recognition
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334 subjects taken from the general population completed a computerized version of the

original “pencil and paper” RMET test. Out of these, 174 were females and 160 were males,

with an average age of 30.2 years (sd = 10.34, range = 18-68ys). 91 subjects out of the 334 sub-

jects completed the online version of the RMET in a laboratory (44 females and 47 males, aver-

age age 26.78 years, ranging from 18 to 52ys). During the experimental session, physiological

reactivity has been monitored at rest and while completing RMET. Various indices of HRV,

skin conductance and blood volume pulse have been collected and derived. In this work, we

focus on HRV modulation induced by the emotion recognition task. In particular, biosignals

in the time-domain, e.g. mean and standard deviation of beat to beat (R-R) intervals and vari-

ous spectral indices of HRV, were extracted.

Experimental sessions were organized in the morning at 11 a.m. (±1 h) and in the afternoon

at 3 p.m (±1 h). Electrodes were placed in the non-dominant hand and forearms and physio-

logical baseline was recorded for 5 minutes (at rest). Biosignals were measured, amplified, and

recorded using Procomp InfinityTM (Thougth Technology, USA). After baseline measure-

ment, RMET was administered: RMET items, i.e., 1 trial + 36 target pictures, were shown on a

monitor according to the original sequence. Before showing each new stimulus, a slide with a

fixation point was displayed for 3 seconds. Immediately after the presentation of the stimulus

and the selection of the emotional state conveyed by the eyes, a black slide appeared and

remained on the screen for 5 seconds before the fixation point slide.

Several self-report questionnaires for the assessment of anxiety, depression severity, alex-

ithymia and the presence of psychopathological traits related to obsessive-compulsive or eating

disorders have been also administered once completing the test. These factors have been

showed to have an impact on physiological activation [18–22].

In particular, the State-Trait Anxiety Inventory (STAY-Y, [23]) has been administered to

measure trait (STAI-1) and state anxiety (STAI-2). Anxiety Sensitivity (AS) construct was

assessed by means of the Anxiety Sensitivity Index (ASI, [24]). Depression severity was evalu-

ated by means of the Beck Depression Inventory (BDI-II, [25]). Psychopathological traits

related to obsessive-compulsive or eating disorders were assessed using respectively the Padua

Inventory (PI, [26]) and the Eating Disoder Inventory-2 (EDI-2, [27]). Actually, PI was

designed to measure four factors, namely “Becoming Contaminated”, “Checking Behaviours”,

“Impaired Control of Mental Activities”, “Urges and Worries of Losing Control”. Moreover,

alexithymia, i.e., the difficulty in identifying and describing emotions, was measured by means

of the Toronto Alexitimia Scale (TAS-20, [28]). The questionnaire has a three-factor structure.

The first factor (F1) assesses the ability to identify feelings and to distinguish them from the

somatic sensations that accompany emotional arousal. The second factor (F2) assesses the abil-

ity to describe feelings to other people, while the third (F3) evaluates externally oriented

thinking.

Ethical statement

All the procedures performed in this study involving human subjects were conducted in accor-

dance with the ethical standards of the San Raffaele Hospital and with the 1964 Helsinki decla-

ration and its later amendments or comparable ethical standards. With reference to the online

administration of the RMET, the questionnaire was completed anonymously without collect-

ing any sensitive data compromising identities of the respondents. The participation to the

experimental sessions was voluntary and, prior to study participation, participants gave their

written informed consent. The entire FIRB project, of which the study presented in the paper

is a part, was approved by the Ethics Committee of San Raffaele Hospital (CE 1129 register

213/2014).
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HRV analysis

HRV refers to the variability of the length of beat to beat (R-R) intervals in electrocardiograms.

It can be quantified by descriptive statistics of R-R interval duration and its variation over

time, i.e. range, mean and standard deviation. Beat-by-beat series of R-R intervals were

obtained by ECG recordings by applying the freely available “eplimited” software [29]. Each

recording was subdivided into several segments: the baseline epoch, i.e. the 5 minutes before

the starting of the questionnaire, and the segments of variable length associated to the period

of time following the vision of the stimulus. Only when 85% of beats resulted normal accord-

ing to ECG quality and R-R physiological value range, the segments were analyzed. The spec-

tral analysis was performed for the baseline recording only. For each segment and the baseline

epoch we computed the following time-domain parameters [30]: mean of beat to beat (R-R)

intervals (msec), the average heart rate in beat per minute (bpm), the standard deviation of

beat to beat (R-R) intervals commonly named SDNN, the square root of the sum of the squares

of differences between adjacent R-R intervals (RMSSD), the number of pairs of adjacent R-R

intervals differing by more than 50 ms in the sequence (NN50), the sample asymmetry repre-

sented by the ratio R1/R2 [31], the SD1 and SD2 parameters from the Poincaré plot [32]. Poin-

caré plot is actually a diagram in which each R-R interval of tachogram is plotted against the

previous R-R interval, where the values of each pair of successive R-R interval define a point in

the plot.

All the collected time domain measures of HRV are summarized in Table 1.

Statistical methods

Identifying difficult RMET questions

Differently from previous works which evaluate the association between HRV and emotion

recognition indexed by RMET total score (e.g., [2]), we decided to use the information pro-

vided by each item of the test and, in particular, to examine the effect of item difficulty on

HRV modulation. Hence, Rasch model was used, on the total sample, just to estimate item dif-

ficulty, thus allowing for a classification of items as “difficult” or “easy”. The model has been

proposed in the psychometric field to study the ability of a subject to overcome or fail a test.

The key hypothesis underlying the Rasch model is that the probability of a correct answer

depends on two parameters: a parameter for items and a parameter for the subject. For the

Table 1. Heart rate variability measures.

Time-domain

Measure Description

meanRR

(msec)

Mean of beat to beat (R-R) intervals

std(msec) Standard deviations of beat to beat (R-R) intervals

RMSSD Square root of the mean of the squares of differences between adjacent beat-to-beat intervals

SDSD Standard deviation of the successive differences of the R-R intervals

NN50 Number of pairs of successive normal-to-normal (NN) intervals that differ by more than 50 ms.

pNN50 Percentage of differences between adjacent NN intervals that are greater than 50 ms

mean(bpm) Average heart rate in beat per minute

R1/R2 Sample asymmetry, given by the ratio of two measures, each the weighted sum of values less than

(R1) or greater than (R2) the median R-R interval.

SD1 Dispersion of points perpendicular to the axis of line of identity in the Poincaré plot

SD2 Dispersion of points along the axis of line of identity in the Poincaré plot

https://doi.org/10.1371/journal.pone.0207123.t001
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sake of simplicity, a binary Rasch model without accounting for guessing was used. Incorrect

answers were aggregated into a single category. The probability that an individual with a par-

ticular trait level will correctly answer an item characterized by a particular difficulty is

Pr ðXij ¼ 1Þ ¼
expðyi � bjÞ

1þ expðyi � bjÞ
; i ¼ 1; . . . ;N subjects; j ¼ 1; . . . ; J items

where βj are the item parameters measuring the difficulty of the item and θi represent the per-
son parameter measuring the ability of the respondent [33]. Estimated difficulty parameters

were used to classify items into two categories, respectively as “difficult” or “easy”, if their val-

ues were larger or smaller than zero, which is the mean of the latent trait.

Latent class mixed models

LCMMs provide a flexible framework to model Gaussian or non-Gaussian (curvilinear) quan-

titative and even ordinal longitudinal outcomes.

LCMMs generalize traditional LMEs, assuming that the population is heterogeneous and G
unobserved sub-populations (latent classes), with their own mean profiles of trajectories, may

be identified. Hence these models allow to account for common fixed effects over classes, for

class-specific fixed effects and for sources of unobserved heterogeneity by specifying random

effects. Following the notation provided by Proust-Lima et al. (2015) [17, 34] and consistently

with the literature on latent variable modelling, the approach requires the specification of a

structural latent model, i.e., a standard linear mixed model without measurement errors, along

with a measurement model, linking the latent process to the outcome of interest. When hetero-

geneous population is assumed, for a subject i belonging to the class ci equal to g (g = 1, . . ., G),

a latent class-specific process can be defined as

LiðtÞjci¼g ¼ X1iðtijÞ
0
bþ X2iðtijÞ

0
gg þ ZiðtijÞ

0uig þ wiðtijÞ

where

• tij denotes the time of measurement for subject i (i = 1, . . ., N) at occasion j (j = 1, . . ., ni)

• X1i(tij) and X2i(tij) are vectors of time-dependent covariates respectively with common fixed

effects β over classes and class-specific fixed effects γg

• Zi(tij) is a vector of time-dependent covariates associated with individual class-specific ran-

dom effects uig

• wi(tij) represents an autocorrelated process.

Then a measurement model ruling the relationship between the longitudinal outcome vari-

able, observed at time tij, and the latent process is defined as it follows

Yijjci¼g ¼ HðLiðtÞjci¼g þ �ij; ZÞ

where H is a parametrized monotonic increasing link function, defining linear/nonlinear

transformations, �ij are independent normally distributed errors and represents a noisy latent

process at time. Every subject is assigned to one latent class only. For each subject, the latent

class membership is described by a latent variable ci that equals g if i belongs to class g and

probability of latent class membership is modeled using a multinomial logistic regression:

pig ¼ Pðci ¼ gjX3iÞ ¼
ex0gþX0

3ix1g

PG
l¼1

ex0lþX0
3ix1l
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where ξ0g is the intercept for class g and ξ1g is the vector of class-specific parameters related to

the time-independent covariates X3i.

LCMM for multivariate outcomes case

LCMM framework has been generalized to the case of multiple outcomes measuring the same

latent process [34]. Let us assume that K longitudinal outcomes, indicators of the same under-

lying construct, are available. For each subject i, i = 1, . . ., N, and outcome variable k, k = 1, . . .,

K, the set of measurements yik = (yi1k, . . ., yijk, . . ., yinikk)0 is collected at times ti1k, . . ., tijk, . . .,

tinikk.

This model specification allows for a number of measurements and related time records

varying within subjects and outcomes.

Observed outcomes actually should provide information on the true common latent pro-

cess LiðtÞt2R.

As for the univariate case, a measurement model for each collected outcome and a structural
model for the latent process can be defined.

The first describes the association between the observed outcome and the underlying latent

process, the second allows to examine changes in the latent trait over time, thus identifying

variables modulating the construct of interest.

The measurement model can be specified as it follows

Hkðyijk;ηkÞ ¼ ~yijk ¼ LiðtijkÞ þ X2iðtijkÞ
0
gk þ aik þ �ijk ð1Þ

where Hk(�; ηk) is a flexible outcome-specific parameterized link function transforming yijk into

an intermediate Gaussian variable ~yijk; Λi(tijk) is the true common latent process at time tijk;

X2i(tijk)0 and γk are, respectively, time-dependent covariates and contrasts accounting for differ-

ential effects of covariate/time on outcomes after adjustment for the latent process level.

Finally, αik are subject- and test-specific random effects and �ijk are measurements errors.
Several different link functions (linear, splines, thresholds, etc.) can be chosen depending

on the type of the longitudinal markers. Curvilinear as well as bounded quantitative longitudi-

nal outcomes can be analyzed within this modeling framework.

The structural model

LiðtÞ ¼ X1iðtÞ
0
bþ ZiðtÞ

0bi þ wiðtÞ

accounts for the dynamic nature of the latent trait, embodying information on collected covar-

iates and time. Actually, X1i(tijk)0 are time-dependent covariates associated with fixed effects β,

Zi(t)0 are other time-dependent covariates associated with random effects bi. Autocorrelated

process wi(t) may be also defined. As in the univariate LCMM, also in the multivariate frame-

work, latent classes of subjects may be hypothesized.

A sketch showing the idea underlying this modeling procedure is provided in Fig 1, where

multivariate outcomes are represented by different HRV indices.

Model specification

Among all the HRV indices, we chose a measure of central tendency and one of variability of

beat to beat (R-R) intervals since other measures resulted correlated with each others and

therefore redundant. To account for possible individual-specific physiology, the baseline val-

ues of the collected indices were subtracted to the actual values recorded while administering

the RMET, thus allowing to highlight the activation induced by the task itself (if any exists).

Evaluating physiological responses during emotion recognition
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We first fitted separate LCMM models modelling to separately examine the changes, with

respect to baseline values, of the average heart rate expressed as beat per minute (Δmean.bpm)

and of the standard deviations of R-R intervals (Δstd.msec). Then, we model them jointly. In

all models, we estimated the impact of the following variables on the physiological response:

• item (i.e., picture) sequence as time variable

• performance on the RMET test (correct/wrong answer) and item difficulty (as categorical

variable)

• demographics and clinical characteristics (age, gender, state anxiety, depression,

alexithymia)

Moreover, we included interaction terms to evaluate gender-specific effects of clinical vari-

ables on physiology. In particular, we tested for differential effects of anxiety, depression and

alexithymia depending on respondent’s gender. All the above mentioned covariates were set as

fixed in the model. Random intercept and random slope models were specified. RMET pic-

tures sequence was set as random effect in the latent process mixed model. Random effects

were grouped by subject’s ID.

Flexible splines link functions were considered to account for nonlinearities in the longitu-

dinal response.

LCMMs were estimated with a number of latent classes ranging from 1 to 4 in order to

ensure an adequate sample size in each class and thus allowing for accurate parameter esti-

mates [35]. Bayesian information criterion (BIC, [36]) was used to choose the optimal number

of latent classes, thus following traditional mixture modeling approaches [37].

Fig 1. Example of structural and measurement models in a multivariate modeling framework, where several

outcomes are expected to measure the same phenomenon. In a very general experimental setting where elicited

physiological reactions are measured, one may assume to have different HRV indices measured in several occasions,

e.g., while administering emotionally charged stimuli. These multivariate outcomes potentially underlie a common

latent trait that could be described as an “overall physiological activation”, which in turn is affected and modulated by

demographic and clinical characteristics.

https://doi.org/10.1371/journal.pone.0207123.g001
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Whenever the best model included at least two latent classes, we test, by applying appropri-

ate inferential procedures, whether subjects assigned to different latent classes were different

respect to clinical or demographic characteristics. We used this strategy to reduce the number

of variables to be included in the class membership model. We aim so at reducing computa-

tional burden and improving model convergence. Covariates effectively distinguishing among

latent classes were included to estimate the model and BIC was used for model comparison.

Hence, we compared simpler intercept-only model with more complex models including also

covariates in the class-membership multinomial logistic model.

All the analyses were performed using R Statistical Software [38], version 3.3.1. In particular

lcmm [34] package was used to estimate latent class mixed models.

Results

When examining the simplest LCMM model with 1 latent class, we found that item difficulty,

BDI and TAS play a significant role in modulating the change with respect to baseline of aver-

age beats per minute (Δmean.bpm) during the emotion recognition task. In particular, in pres-

ence of difficult items, physiological response significantly increases (see Table 2).

Moreover, in males, as TAS increases, Δmean.bpm significantly increases, while increasing

depression levels measured through BDI significantly decreases the variation in the physiologi-

cal response.

To address the second goal of our research, that is the identification of clusters of homoge-

neous subjects, we estimated models with a number of latent classes greater than 1. When

increasing the number of latent classes, we found that the two latent classes model is the best

in terms of BIC, with 51 subjects assigned to class 1 and 35 to class 2 (BIC = 15114.07). These

latent classes significantly differ on total levels of alexithymia (average class 1 TAS was 43.10±
9.08 while in class 2 it was 47.8± 10.45, Mann-Whitney test p-value = 0.038) and in terms of

the third TAS subscale measuring “Externally-Oriented Thinking” (average class 1 TAS-F3

was 17.69± 4.32 while in class 2 it was 19.54± 4.71, Mann-Whitney test p-value = 0.031). When

including these covariates in the class membership model, we found that the best model is the

Table 2. Separate simple LCMM models, with 1 latent class, for the index Δmean.bpm and Δstd.msec. BDI.TOT indicates the total score in the Beck Depression Inven-

tory, i.e. the questionnaire administered to evaluate depression severity, STAI.Y.1 indicates the state anxiety measured by the State-Trait Anxiety Inventory, TAS.TOT is

the total score in the Toronto Alexitimia Scale used to measure alexithymia, i.e., the difficulty in identifying and describing emotions. “Easy” category was chosen as refer-

ence in the item difficulty variable derived from Rasch model and “wrong” as reference for the item answer.

Parameter Average Beats Per Minute Sd of RR intervals

Estimate SE p-value Estimate SE p-value

Intercept (not estimated) 0 0

Item difficulty 0.1148 0.0381 0.0026 0.0912 0.0385 0.0179

Time 0.0045 0.0040 0.2628 0.0079 0.0028 0.0044

Correct answer 0.0653 0.0418 0.1183 -0.0134 0.0422 0.7508

Age -0.0163 0.0129 0.2068 -0.0056 0.0129 0.6656

Female:STAI.Y.1 -0.0062 0.0175 0.7233 0.0046 0.0176 0.7952

Male:STAI.Y.1 -0.0315 0.0164 0.0548 0.0173 0.0167 0.2998

Female:BDI.TOT 0.0153 0.0263 0.5602 0.0052 0.0268 0.8475

Male:BDI.TOT -0.0816 0.0319 0.0106 -0.0362 0.0352 0.3027

Female:TAS.TOT -0.0011 0.0140 0.9387 0.0102 0.0147 0.4871

Male:TAS.TOT 0.0322 0.0135 0.0165 -0.0001 0.0135 0.9918

BIC 15116.42 25235.75

https://doi.org/10.1371/journal.pone.0207123.t002
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one with two latent classes and total alexithymia score as covariate in the class membership

model (BIC = 15113.02). Results are shown in Table 3.

TAS presents a significant effect on class membership, with more alexithymic subjects less

likely belonging to class 1. Actually, subjects assigned to class 1 show, on average, a higher vari-

ation in the physiological response, with respect to the baseline, in the longitudinal process. In

the longitudinal model, we found that item difficulty and increasing TAS levels significantly

increases Δmean.bpm. On the other side, with increasing levels of depression and anxiety, in

men, the change in the physiological response decreases significantly.

Average posterior probabilities of falling into the class in which the subjects were classified

are equal to 0.9464 and 0.9739 (Table 4), thus suggesting an unambiguous classification. In

addition, the non-diagonal terms indicate that subjects classified in class 1 have a non-negligi-

ble probability of belonging to class 2 (mean of 0.0536) and conversely (mean of 0.0261).

In the model with 1 latent class, evaluating changes, with respect to baseline, in the standard

deviations of R-R intervals (Δstd.msec), we found that the presentation of items classified as

difficult and the rating task itself positively affect the outcome: in presence of difficult pictures

to be rated and, as the number of presented pictures increases, also the standard deviations of

R-R intervals increases. Clinical covariates do not significantly modulate this signal (see

Table 2). When increasing the number of latent classes, we found that a three latent classes

model is the best choice in terms of BIC, with 32 subjects assigned to class 1, 40 to class 2 and

12 to class 3 (BIC = 25214.13).

Table 3. LCMM for the index Δmean.bpm with 2 latent classes (model BIC: 15113.028) and total alexithymia score

as covariate in the class membership model.

Parameter Estimate se p-value

Class membership probability

Intercept class1 2.9679 1.2393 0.0166

TAS.TOT class1 -0.0582 0.0265 0.0281

Longitudinal model

Intercept class1 (not estimated) 0.0000

Intercept class2 -1.5786 0.1162 0.0000

Item difficulty 0.1153 0.0381 0.0025

time 0.0045 0.0040 0.2626

Correct answer 0.0661 0.0418 0.1134

Age -0.0065 0.0083 0.4362

female:STAI.Y.1 -0.0075 0.0106 0.4765

male:STAI.Y.1 -0.0311 0.0097 0.0014

female:BDI.TOT 0.0067 0.0173 0.6981

male:BDI.TOT -0.1092 0.0202 0.0000

female:TAS.TOT 0.0227 0.0088 0.0096

male:TAS.TOT 0.0547 0.0091 0.0000

https://doi.org/10.1371/journal.pone.0207123.t003

Table 4. Mean of the posterior probabilities of belonging to each latent class in the model for Δmean.bpm.

Final classification Number of subject Mean of the probabilities of belonging to

each latent class

1 2

class 1 52 0.9464 0.0536

class 2 34 0.0261 0.9739

https://doi.org/10.1371/journal.pone.0207123.t004
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Examining differences among these classes, it emerged that they significantly differ on the

PADUA subscale reflecting “contamination fear” (average PADUA F2 score in class 1 was

9.22± 5.77, in class 2 was 7.15± 5.62 and in class 3 was 4.83±4.06, Kruskal-Wallis test p-

value = 0.035, with class 3 resulting significantly different from class 1 in the post-hoc pairwise

comparison). However, when including this covariate in the class membership model, we

found that the best model is the only-intercept three latent class model, being the latter model

associated with higher BIC.

We found that Δstd.msec significantly increases as difficult items were shown and as the

number of presented and rated items increased (significant time effect). Clinical characteristics

do not play a significantly role in the physiological response modulation (Table 5).

Average posterior probabilities are equal to 0.9236, 0.9308 and 0.9816, thus suggesting

again an unambiguous classification (see Table 6).

When jointly modeling the two physiological indices (Δmean.bpm and Δstd.msec), we

found that a three latent classes model is the best in terms of BIC, with 32 subjects assigned to

class 1, 41 to class 2 and 13 to class 3 (BIC = 41980.85).

If we assume that the latent trait measured by these two indices is a “global activation”, we

may conclude that the length of the task (the increasing number of presented pictures) and the

presentation of difficult items have a positive and significant impact on the latent trait (see

Table 5. LCMM for the index Δstd.msec with 3 latent classes (model BIC: 25214.13) and only-intercept class mem-

bership model.

Parameter Estimate se p-value

Class membership probability

Intercept class1 1.0157 0.3603 0.0048

Intercept class2 1.2139 0.3511 0.0006

Longitudinal model

Intercept class1 (not estimated) 0.0000

Intercept class2 0.8748 0.0850 0.0000

Intercept class3 -1.6399 0.1247 0.0000

Item difficulty 0.0915 0.0385 0.0175

Time 0.0079 0.0028 0.0045

Correct answer -0.0146 0.0422 0.7300

Age -0.0048 0.0059 0.4174

female:STAI.Y.1 0.0043 0.0075 0.5653

male:STAI.Y.1 0.0065 0.0076 0.3861

female:BDI.TOT -0.0139 0.0132 0.2916

male:BDI.TOT -0.0182 0.0175 0.2988

female:TAS.TOT 0.0099 0.0072 0.1713

male:TAS.TOT 0.0054 0.0061 0.3769

https://doi.org/10.1371/journal.pone.0207123.t005

Table 6. Mean of the posterior probabilities of belonging to each latent class in the model for Δstd.msec.

Final classification Number of subject Mean of the probabilities of belonging to each latent class

1 2 3

class 1 32 0.9236 0.0763 0.0002

class 2 40 0.0692 0.9308 0.0000

class 3 12 0.0184 0.0000 0.9816

https://doi.org/10.1371/journal.pone.0207123.t006
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Table 7). Inspecting the posterior probabilities table, we can observe an unambiguous classifi-

cation (see Table 8).

Discussion

In this work we investigate the role of an emotion recognition task on HRV, accounting also

for demographic and clinical characteristics. LCMMs provide an appealing framework to ana-

lyse univariate and multivariate longitudinal psychophysiological outcomes, due to their flexi-

bility in handling non-Gaussian continuous outcomes. Differently from standard models for

longitudinal data, the proposed approach may account for a heterogeneous population. The

HRV is a well-established marker of the ANS activity. However, the interpretation of single

HRV indices may be complex. Alternatively, a set of indices may provide a better description

of the ANS activation or state. The typical example is given by the rest tilt test, which is a pro-

vocative sympathetic stimulus (see Figure 5 in [30]) where the physiological response is

described as an increase of the heart rate along with a decrease of the standard deviation. How-

ever, when the heart rate increases, without a joint reduction of standard deviation, the inter-

pretation of an exclusive activation of the sympathetic nervous system (SNS) could not still

hold.

Our modelling strategy highlighted that in presence of complex stimuli, reflecting complex

mental states to recognize, physiological response significantly increases. In fact, in both the

Table 7. Jointly modeling of Δmean.bpm and Δstd.msec (3 latent classes, BIC = 41980.85).

Parameter Estimate se p-value

Class membership probability

Intercept class1 0.9125 0.3713 0.0140

Intercept class2 1.1823 0.3560 0.0009

Longitudinal model

Intercept class1 (not estimated) 0.0000

Intercept class2 1.6268 0.2699 0.0000

Intercept class3 -3.0444 0.4841 0.0000

Item difficulty 0.1776 0.0752 0.0182

Time 0.0150 0.0055 0.0065

Correct answer -0.0223 0.0775 0.7740

Age -0.0084 0.0108 0.4410

femaleSTAI.Y.1 0.0067 0.0140 0.6317

maleSTAI.Y.1 0.0124 0.0160 0.4396

femaleBDI.TOT -0.0283 0.0319 0.3743

maleBDI.TOT -0.0561 0.0455 0.2174

femaleTAS.TOT 0.0169 0.0176 0.3366

maleTAS.TOT 0.0090 0.0121 0.4575

https://doi.org/10.1371/journal.pone.0207123.t007

Table 8. Mean of the posterior probabilities of belonging to each latent class in the multivariate model.

Final classification Number of subject Mean of the probabilities of belonging to each latent class

1 2 3

class 1 32 0.8895 0.0960 0.0145

class 2 41 0.0674 0.9326 0.0000

class 3 13 0.0379 0.0180 0.944

https://doi.org/10.1371/journal.pone.0207123.t008
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models for Δmean.bpm (Average Beats Per Minute) and Δstd.msec (standard deviations of R-R

intervals), as well as in the joint model, we found a significant and positive effect of item diffi-

culty. This result confirms previous findings reported by Park et al. (2013) [39], which sug-

gested how cardiac vagal tone is associated with more adaptive top-down and bottom-up

modulation of emotional attention to faces. In this perspective, our results highlight how the

recognition of more complex faces (e.g., the recognition of more complex emotional states)

require more physiological activation. Future studies should investigate the performance and

difficulties of subjects with psychopathologies once exposed to these complex stimuli.

Moreover, we found that alexithymic features are associated with an increase in Δmean.
bpm.

These results lead to some speculation from the psychological perspective.

Grynberg et al. (2012) [40] reviewed and supported the hypothesis that alexithymia is

linked to deficits in processing and labeling emotional facial expressions. In particular, the

Authors suggested that alexithymia would be associated with processing deficits already at the

perceptual level. Our data could deepen this hypothesis since it supports the belief that a bot-

tom-up activation is present during the evaluation of an emotion inducing facial expression.

Hence, a deficient perceptual level would be associated with a bottom-up physiological

activation.

Finally, in line with the current literature, we found that anxiety and mood state influenced

the physiological response during the task in males. Neuroimaging studies have well docu-

mented a gender dimorphism for what concerns limbic system in humans. More in detail,

amygdala is modulated by both vasopressin (involved in anxiety and stress) and oxytocin [41]

and it is able to influence the autonomic control [42, 43]. Moreover, lots of evidences [44–46]

supported a female superiority in the ability to read others mental states, linking this capability

with the action of gender-related hormones. Taken together these evidences suggest that it is

crucial to control for depression and anxiety when analyzing ANS arousal during an emotion

recognition task as proposed by Quintana and colleagues in their previous work. Future stud-

ies should be conducted to deepen the knowledge on the complex interrelationships among

sex hormones, anxiety, depression, the ability to understand other mental states and ANS

arousal. The modeling approach here proposed can be applied to provide an insight into this

mechanism.

Our work provides evidence for a relationship between emotion recognition and HRV dur-

ing RMET, by evaluating longitudinal trajectories of physiological responses during the task.

Our methodology should be considered a first step to provide clinicians the chance to investi-

gate theory of mind performances and its physiological components. In fact, even if it is well

documented the role of theory of mind as mediator of effectiveness in psychotherapy treat-

ments [47] as well as it is known the role of ANS in the maintenance of psychopathological fea-

tures [48], nowadays there is lack of methodologies able to assess their relationship and

possible interactions.

To conclude, some directions for future works can be suggested. From the statistical point

of view, we would rather consider a more complex Rasch model appropriate for multiple-

choice test thus obtaining a more precise estimate of item difficulty. Moreover, the collection

of more “stress-coping related” covariates could improve the characterization of the latent

classes.

Finally, we focused mainly on HRV parameters. However, electrodermal activity could be

also used in evaluating stress levels induced by the task. Actually, skin electrical conductivity

depends on the activity of eccrine sweat glands which, in turn, is controlled by the nervous sys-

tem and is involved in thermoregulation processes or varies in response to stressful situations.
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Also skin conductance response reflects the ANS activity and has been widely used as a marker

of emotional states [49, 50].
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