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Abstract

Many pharmaceuticals have negative effects on biota when released into the environment.

For example, recent work has shown that the commonly prescribed antidiabetic drug, met-

formin (N,N-dimethylbiguanide), has endocrine disrupting effects on fish. However, effects

of metformin on aquatic primary producers are poorly known. We exposed cultured isolates

of a freshwater chlorophyte, Chlorella vulgaris, to a range of metformin concentrations (0–

767.9 mg L-1) to test the hypothesis that exposure negatively affects photosynthesis and

growth. A cessation of growth, increase in non-photochemical quenching (NPQ, NPQmax),

and reduced electron transport rate (ETR) were observed 24 h after exposure to a metfor-

min concentration of 767.8 mg L-1 (4.6 mM). By 48 h, photosynthetic efficiency of photosys-

tem II (Fv/Fm), α, the initial slope of the ETR-irradiance curve, and Ek (minimum irradiance

required to saturate photosynthesis) were reduced. At a lower concentration (76.8 mg L-1),

negative effects on photosynthesis (increase in NPQ, decrease in ETR) were delayed,

occurring between 72 and 96 h. No negative effects on photosynthesis were observed at an

exposure concentration of 1.5 mg L-1. It is likely that metformin impairs photosynthesis either

through downstream effects from inhibition of complex I of the electron transport chain or via

activation of the enzyme, SnRK1 (sucrose non-fermenting-related kinase 1), which acts as

a cellular energy regulator in plants and algae and is an ortholog of the mammalian target of

metformin, AMPK (5’ adenosine monophosphate-activated protein kinase).

Introduction

Pharmaceuticals and personal care products (PPCPs) comprise a diverse class of chemical

compounds that have gained attention as chemicals of emerging concern (CECs) due to their

widespread detection in aquatic environments [1–3] and because of their bioactive properties

[4–6]. Although the ecological effects of many active pharmaceutical ingredients (APIs) are

poorly known, several have been implicated in acute [7–8] and chronic toxicity [9–11] to

biota. Direct toxic effects of APIs on microalgae have been observed, with effects varying

according to the species and drug [12–16].
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The biguanide drug, metformin (N,N-dimethylbiguanide), is the most commonly pre-

scribed oral medication used to treat type II diabetes [17,18]. Since the incidence of type II dia-

betes is on the rise worldwide [19], there are increasing reports of metformin detections in

wastewater effluent and surface waters of North America [1,20, 21] and Europe [22–24]. The

widespread detection of metformin is due in part to its unique biochemistry and mode of

action. Although the mechanisms are not completely understood [25–27], metformin counter-

acts hyperglycemia through activation of AMP-activated protein kinase (AMPK) [28] by inhi-

bition of complex I of the mitochondrial electron transport chain [29]. AMPK belongs to a

class of energy sensing enzymes responsible for maintaining energy homeostasis; specifically,

AMPK promotes energy releasing (catabolic) processes and downregulates energy depleting

(anabolic) processes (e.g., synthesis of fatty acids, proteins) in response to an increase in aden-

osine monophosphate (AMP) relative to adenosine triphosphate (ATP) levels (i.e., adenylate

charge), and increases catabolic processes (e.g., glycolysis) [30]. An increase in adenylate

charge signals a decrease in gluconeogenesis and an increase in glycolysis [26, 28]. Metformin

remains chemically unaltered during this process [31].

In the laboratory, fathead minnows exposed to metformin at levels observed in wastewater

effluent (40 μg L-1) showed significant upregulation of mRNA encoding the production of vitel-

logenin [32], with stronger estrogenic effects seen in juvenile fish compared to adults [33]. This

suggests that metformin may have negative effects on aquatic ecosystems, but effects on the

lower aquatic food web are poorly known. Given its role as an AMPK-activator, however, met-

formin likely influences cell metabolism broadly among eukaryotes and would be therefore be

expected to have widespread effects on the ecosystem. Limited data on the influence of metfor-

min on phytoplankton suggest that lethal effects would not be expected at typical environmental

levels concentrations < ~80 μg L-1 (with the highest values observed downstream of wastewater

treatment plants [20, 24]) [12]; however, more subtle effects may occur, from direct effects such

as suppression of photosynthesis or changes in species composition [13] due to chronic expo-

sure, to indirect effects, such as the preferential elimination of grazers and trophic cascades [34].

The objective of this study was to determine the effects of metformin exposure on photo-

synthesis and growth in the freshwater chlorophyte, Chlorella vulgaris, isolated from the

Columbia River, USA. This organism was chosen because it is a cosmopolitan freshwater taxa

and its response to exposure should be broadly relevant. Moreover, as a chlorophyte, it shares

similarities to land plants in terms of its photosynthetic machinery owing to a common evolu-

tionary pathway [35]. Since photosynthesis is a highly regulated process in algae that enables

cells to acclimate to fluctuating light environments, it was expected that responses in photo-

synthetic characteristics would be observed before changes in growth. The data will aid in

characterizing toxicological effects of metformin exposure on AMPK/SnRK1/SNF1-contain-

ing eukaryotes in aquatic environments.

Materials and methods

Chemicals and materials

All glassware used in media preparation and culturing was cleaned according to the USGS

National Water-Quality Assessment (NAWQA) protocols to minimize contamination from

trace organic and inorganic constituents [36].

Metformin standards (as metformin hydrochloride) for the analysis of concentrations in

growth media (0–1000 mg L-1) were prepared by dilutions of a primary metformin stock solu-

tion (10 mg mL-1 dissolved in mineral water; Toronto Research Chemicals). Mobile phase sol-

vents included 0.1% UPLC-grade formic acid in HPLC-grade water (Sigma-Aldrich; solvent

A), UPLC-grade 0.1% formic acid in HPLC-grade acetonitrile (Sigma-Aldrich; solvent B).

Metformin and algal photosynthesis

PLOS ONE | https://doi.org/10.1371/journal.pone.0207041 November 12, 2018 2 / 17

do not necessarily reflect the views of these

funders. The work was also supported through a

Robert Malouf Marine Studies Fellowship to BMC.

The funders had no role in the study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0207041


Aliquots of 0.2 μm-filtered water were dispensed into 1.5 mL (12 x 32 mm) amber borosilicate

glass SUN-SRI standard opening auto-sampler vials (Thermo Scientific). Internal standard

(IS) solutions of deuterated metformin (Toronto Research Chemicals) were prepared from fro-

zen stock solutions (1 mg mL-1 in Milli-Q water) diluted to yield a working solution (of 998 ng

mL-1). Internal standard (10 μg L-1) was added to each sample and standard.

Experimental design

Isolates of C. vulgaris from the Columbia River (1.8–5.1 μm in diameter) were grown in tripli-

cate batch cultures in 250 mL glass Erlenmeyer flasks in WC medium [37] at 18 ˚C under a

12:12 light:dark cycle in a walk-in environmental chamber equipped with full-spectrum light-

ing (~191±18 μmol photons m-2 s-1). Cell densities were determined at each time point using a

Beckman Coulter Model Z2 particle counter (Beckman Coulter, Indianapolis, IN) after dilu-

tion with Isoton II phosphate-buffered saline (Beckman Coulter, Indianapolis, IN). Cells were

kept in suspension by continuous gentle shaking (80 rpm) to prevent negative effects of high

biomass such as CO2 limitation of growth [38].

Triplicate cultures were grown to mid-exponential phase before receiving one of three tar-

get metformin concentrations: 1.5 mg L-1 (9.1 μM), 76.8 mg L-1 (0.46 mM), and 767.8 mg L-1

(4.6 mM), plus controls (0 mg L-1; no metformin added). These concentrations were selected

to provide a broad range for the study of effects on photosynthesis. In addition, although the

concentrations were much higher than would be observed in nature, the density of cells in cul-

ture was also orders of magnitude higher than in natural samples; thus, the average (or nomi-

nal) exposure by any given cell in the population could be considered to be approximately

similar to environmental concentrations (e.g., the nominal concentration was the quotient of

added concentration/cell density multiplied by the average cell density observed in a river sam-

ple [~4000 cells mL-1], yielding cell-specific exposure values of 11.5 ng L-1, 80 μg L-1, and

500 μg L-1). This was done to alleviate potential suppression of toxicity that can occur when

high cell densities are used in bioassays [39]. A 1 mL pooled sample (i.e., 0.33 mL from each of

three replicates) was taken at 0, 5, and 96 h to measure dissolved metformin concentrations in

the medium to confirm the quantities added. The samples were filtered and frozen at -20˚C

prior to analysis by LC-MS/MS. An additional flask was included in each treatment and con-

trol to record pH over the course of the experiment. The initial pH was 7.3 ±0.017.

Cell density was determined in each treatment every 24 h (i.e., 0, 24 h, 48 h, 72 h, and 96 h).

Photosynthetic performance was determined at shorter time intervals (0, 1, 3, and 5 h) follow-

ing metformin addition, and then every 24 h for 96 h, since changes in photosynthesis are

more likely to be observed over shorter time intervals than are changes in growth. Photosyn-

thetic performance was characterized using a Water-PAM (Pulse-Amplitude-Modulation)

chlorophyll fluorometer (Heinz Walz, Germany) according to parameters shown in Table 1.

All samples taken for PAM fluorometry were diluted to 3 mL with WC media and dark-

adapted for 30 min to fully oxidize Photosystem II and maximize fluorescence potential upon

light saturation. Dark-adapted samples were exposed to 10 s of far-red light just before PAM

measurements to process remaining inter-system electrons through excitation of Photosystem

I and oxidation of the plastoquinone pool [40–42]. A 4-min light curve (where fluorescence of

cells exposed to a saturating light pulse is measured at increasing levels of actinic light) was

recorded for each dark-adapted sample.

Light saturation was determined by the maximum fluorescence (Fm) resulting from the initial

saturating pulse and subsequent fluorescence peaks (Fm’) associated with the stepwise actinic

pulses. Maximum quantum yield of Photosystem II (FPSIImax, or Fv/Fm), relative electron trans-

port rate (ETR), light intensity at saturation (Ek), and non-photochemical quenching (NPQ)

were calculated and considered indicators of photosynthetic performance [43, 44].
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Determination of metformin concentrations

Following a 10 μL injection, metformin was separated using a Shimadzu Prominence HPLC

system using two binary pumps (Shimadzu LC-20AD XR Prominence LC pumps) and gradi-

ent elution on the reverse-phase column (Synerg Hydro-RP LC Column (250 x 4.6 mm, 4 μm,

80 Å; Phenomonex, Torrance, CA). A ThermoFisher (Waltham, MA) BetaBasic C8 Javelin

guard column (10 x 2.1 mm, 1.5 μm) minimized column contamination from particulate mat-

ter in samples. The analyte was identified, detected, and confirmed using an AB Sciex QTRAP

5500 mass spectrometer (Applied Biosystems/MDS Sciex Instruments, Concord, ON, Canada)

and Analyst 1.6.2 software. Samples with metformin concentrations >75 mg L-1 were diluted

1:500 in mineral water to improve peak resolution. The concentration of metformin was calcu-

lated from a standard curve of measured area ratios (analyte area/IS area) versus expected con-

centration ratios (analyte concentration/IS concentration). A single six-point linear standard

curve with a 1/x weighting factor was established for each run.

Statistics

Curves generated from ETR data were fit by non-linear regression using Microsoft Excel

Solver; curve fitting for growth data was performed using GraphPad Prism (version 7.04,

GraphPad Software, La Jolla, California). The resulting models were used to estimate parame-

ters of growth and photosynthesis and differences among treatments and controls over time

were tested using two-way repeated-measures ANOVAs performed using Microsoft Excel

2016 or GraphPad Prism.

Cell count data for short-term responses (0–5 h) to metformin addition were plotted

against time and fitted with an exponential growth equation:

Nt ¼ Mo emt ð1Þ

where Nt is the number of cells at time, t, N0 is the initial number of cells, and μ is the specific

growth rate. Cell count data for the 0–96 h time period were plotted against time and fitted

with a Weibull growth curve model (5) [45]. In addition to Nt, N0, and μ, the time correspond-

ing to the point of inflection (δ) and Nmax (the maximum number of cells) are included in the

Table 1. Photosynthetic parameters measured or calculated by PAM fluorometer.

Parameter Notation Determination method Description

Maximum fluorescence Fm

F0m
Direct measurement Fluorescence when PSII reaction centers are closed and plastoquinone pool is reduced

Minimum fluorescence Fo Direct measurement Fluorescence when PSII reaction centers are open and plastoquinone pool is oxidized

Maximum quantum yield of PSII FPSIImax
Fv
Fm

or Fm � Fo
Fm

Efficiency of dark-adapted PSII to absorb light

Effective quantum yield of PSII FPSII F0v
F0m

or F0m � F
F0m

Efficiency of PSII in the presence of light

Relative electron transport rate ETR FPSII x PARa x 0.5 x 0.84 Rate of electron movement in the photosynthetic ETCb

Electron transport efficiency α Initial slope of light curve Efficiency of electron transport in the photosynthetic ETC

Minimum saturating irradiance Ek
ETRmax

a
Irradiance at onset of light saturation

Non-photochemical quenching NPQ Fm � F0m
F0m

Excitation dissipated by heat

aPAR = photosynthetically active radiation
bETC = electron transport chain

https://doi.org/10.1371/journal.pone.0207041.t001
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Weibull model:

Nt ¼ Nmax � ðNmax � N0Þe
ð� ðmtÞdÞ ð2Þ

Specific growth rates at each exposure level and time point were evaluated for differences

relative to controls according to a two-way ANOVA.

ETR data were fitted according to Platt et al. [46] and photosynthetic parameters including

the initial slope of the ETR curve (α), slope of the photoinhibition region (β), minimum satu-

rating irradiance (Ek), and ETRmax were determined from the fitted data. Resulting models

were used to compare parameter values among exposure levels and time points.

ETR ¼ ETRmax½1 � expð� aI=ETRmaxÞ�½expð� �I=ETRmaxÞ� ð3Þ

Maximum quantum yield of PSII (FPSIImax) and NPQ were compared among exposure

levels and time using two-way repeated-measures ANOVAs.

Results

Effects of metformin on cell density and growth

Metformin concentrations remained within 20% of initial spike concentrations during the

experiment (data not shown). Metformin reduced the culture density of C. vulgaris at expo-

sures of 76.8 mg L-1 (0.46 mM) and 767.8 mg L-1 (4.6 mM) due to a rapid reduction in growth

that was not observed in controls (Fig 1). There was a significant interaction between treat-

ment and time (ANOVA, F(27,72) = 17.3, p<0.0001), whereby cell densities were reduced rel-

ative to controls by 48 h after an exposure of 767.8 mg L-1 (Tukey HSD). Unlike cell density,

specific growth rates during the mid-exponential growth phase did not differ from the controls

at any exposure concentration (data not shown), suggesting that growth ceased in response to

exposure, rather than slowed.

The culture pH varied from 7.32 ±0.017 at T0 to 7.36 ±0.054 at T72 to 7.7 ±0.03 at the end of

the experiment (T166); since pH did not increase beyond 7.7, it is unlikely that the cultures were

limited by the availability of carbon (as carbon dioxide or bicarbonate) in the medium [47].

Influence of metformin on photosynthetic performance

No short-term (<5 h) effects on electron transport rate (ETR)(Fig 2) or photosynthetic param-

eters (α, FPSIImax, Ek)(Fig 3) were observed at different exposure levels [ETRmax, (F(12,32) =

0.8302, p = 0.6199); α (F(12,32) = 1.84, p = 0.082), FPSIImax (F(12,32) = 1.09, p = 0.401, and Ek

(F(12,32) = 1.405, p = 0.2145)]. Significant variability in β across treatment and time (F(12,32)

= 3.224, p = 0.004) appeared to be stochastic, with no systematic differences among any of the

treatments when single effects were examined.

By 24 h, ETRmax was reduced in the 767.8 mg L-1 exposure (F(12,32) = 38.91, p<0.0001;

Tukey HSD, p = 0.0065, p<0.0001) (Fig 2). Further decreases were observed until ETR reached

baseline levels at 96 h, with the steepest decline occurring 48–72 h after exposure. At lower

exposure levels, reduction of ETRmax was delayed or absent. At the 76.8 mg L-1 exposure level,

ETR declined between 72 and 96 h (Tukey HSD, p = 0.007), while no negative effects on ETR

were observed at the 1.5 mg L-1 exposure.

There were significant interactions between exposure concentration and α (F(12,32) =

40.02, p<0.0001) and exposure concentration and Ek (F(12,32) = 12.62, p<0.0001). Upon

exposure to 767.8 mg L-1 metformin, α values were 10-fold lower than controls and other

treatments (Tukey HSD, p = 0.0029) (Fig 3). By 24 h, average Ek values in the 767.8 mg L-1

exposure level were significantly lower than in the controls, decreasing from 885 to 263 μmol

Metformin and algal photosynthesis
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photons m-2 s-1 over 96 h (Tukey HSD, p = 0.0003). FPSIImax decreased >two-fold (~0.7 to

0.3 μmol photons-1 m2 s-1) by 48 h (p = 0.0005). A significant increase in NPQmax was observed

between 0 and 48 h at the highest exposure concentration (F(12,32) = 15.6, p<0.0001; Tukey

HSD, p<0.0001). NPQmax of the 76.8 mg L-1 exposure also increased with time, reaching ~0.9

by 96 h (Tukey HSD, p<0.0001).

NPQ was elevated at irradiances >~1500 μmoL photons m-2 s-1 24 h and 48 h after expo-

sure to the highest metformin concentration relative to controls and to the other treatments

(Fig 4). Between 48 and 72 h post-spike, NPQ declined in the highest exposure treatment, but

increased in the 76.8 mg L-1 treatment at the higher irradiances. By 96 h, NPQ was lower in the

highest-exposure cultures than the controls, while values exceeded controls in the 76.8 mg L-1

treatment for most irradiance levels (Fig 4).

Discussion

Growth in Chlorella vulgaris ceased 24–48 h after exposure to 767.8 mg L-1 (4.6 mM) metfor-

min, while exposure to lower concentrations (i.e., 76.8 mg L-1) led to delayed effects (72–96 h)

on photosynthesis and growth, including an increase in non-photochemical quenching

Fig 1. Algal growth curves (in log values) at different metformin concentrations. (A) Culture densities in Chlorella vulgaris in four triplicate cultures

(three treatments and a control); first panel tracks cell densities over 96 h prior to a spike of three concentrations of metformin at 120 h, indicated in the

second panel. Short-term changes in cell density were tracked for 5 h (120–129 h). Third panel shows cell densities at 144 h (24 h post-spike), 168 h (48

h post spike), 192 h (72 h post-spike), and 216 h (96 h post spike). (B) Ratio of cell density determined after inoculation relative to initial value (C/C0,

where C0 = initial concentration at time = 120 h). Error bars represent ± 1 standard deviation.

https://doi.org/10.1371/journal.pone.0207041.g001
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Fig 2. Effects of metformin on electron transport rates (ETR). Parameters were estimated by models of best fit

according to Platt (1980) and include electron transport efficiency (α), photoinhibition (β), maximum relative electron

transport rate (ETRmax), and minimum saturating irradiance (Ek). Symbols indicate different metformin additions:

0 μg L-1 (black circles), 1.5 mg L-1 (open squares), 76.8 mg L-1 (open diamonds), and 767.8 mg L-1 (open triangles).

https://doi.org/10.1371/journal.pone.0207041.g002
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Fig 3. Effects of metformin on photosynthetic parameters of C. vulgaris over 96 h of exposure for four treatment

levels: No addition (Control, open circles); 1.5 mg L-1 (Treatment A, open triangles); 76.8 mg L-1 (Treatment B,

open squares); and 767.8 mg L-1 (Treatment C, closed diamonds). Parameters include (A) maximum yield of PSII

(FPSIImax), (B) electron transport efficiency (initial slope of the ETR curve, α), (C) minimum saturating irradiance

(Ek), and (D) maximum nonphotochemical quenching (NPQmax).

https://doi.org/10.1371/journal.pone.0207041.g003
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Fig 4. Non-photochemical quenching (NPQ) versus photosynthetically active radiation (PAR) after exposure to

three levels of metformin (Treatment A = 1.5 mg L-1, Treatment B = 76.8 mg L-1, and Treatment C = 767.8 mg L-1)

and a control over 96 h.

https://doi.org/10.1371/journal.pone.0207041.g004
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(NPQ), the dissipation of light energy not used to carry out photochemistry. Delayed effects

on growth could reflect a shift to the use of internal carbon stores, as occurs under conditions

of low or fluctuating irradiance [48] or it could occur if upregulation of membrane transport-

ers is required for metformin to enter mitochondria where it inhibits complex I and activates

AMPK [31, 49]. Indeed, metformin is known to accumulate within mitochondria of mamma-

lian cells [50, 51] through active transport across the membrane down a chemiosmotic gradi-

ent via organic cation transporters (e.g., OCT1–3; [52]). The number of available transporters

may thus dictate effective metformin concentrations found within mitochondria, which

require time for upregulation and thus lead to delayed effects.

Photosynthetic performance in C. vulgaris was impaired 24 h after exposure at the highest

concentration (767.8 mg L-1), shown by a ~20% decline in both electron transport rate (ETR-

max) and in the minimum irradiance capable of saturating photosynthesis (Ek). These effects

indicate a reduced capacity to process light energy, which is also supported by the observed

decline in α and Fv/Fm (after 48 h) and most dramatically in elevated NPQ and NPQmax values

(after 24 h). The depression in ETRmax observed in C. vulgaris compared to controls is reminis-

cent of the response to low light in a number of algal species, where light-limited cells reach a

much lower maximum rate of photosynthesis compared to those grown at saturating irradi-

ance [53–55]. A decrease in Fv/Fm is generally interpreted as a signal of physiological stress in

unialgal cultures; Fv/Fm is also typically depressed under high light [56]. To date, effects of met-

formin on photosynthesis have not been shown; the unusual biochemistry of the compound

makes it somewhat difficult to predict its physiological target in aquatic microorganisms, since

there are no chemical analogues (aside from other biguanide compounds) with known toxic

modes of action with which to compare effects as has been done with other pharmaceutical

compounds such as fluoxetine [57].

Non-photochemical quenching describes a number of processes involved in energy dissipa-

tion and photoprotection in photosynthetic cells [58]. NPQ components—differentiated by

relaxation kinetics in response to a saturating pulse of light—include qE, a rapid-response de-

excitation mechanism driven by the pH of the chloroplast lumen, qT, quenching that accom-

panies state transitions (a shift in the location of light harvesting antennae complexes from the

readily fluorescent photosystem II to the weakly fluorescent photosystem I), and qI, or photo-

inhibitory quenching, which is associated with either protein damage or the reversible down-

regulation of photosystem II, sometimes referred to as qRC (where RC refers to reaction center

[59]). Among these, the likely origin of the response by C. vulgaris to metformin exposure in

this study is qI. The rationale behind this hypothesis is that the timescale of response by qE is

short (seconds); the timescale for qT is slower, but still on the order of minutes. On the other

hand, quenching that occurs at the reaction center is slower (hours). The fact that changes in

NPQ and NPQmax occurred over a period of days in the present study suggests a longer-term

loss of capacity to process light energy. In addition, it has been shown that qE deficient

mutants of Chlamydomonas reinhardtii are able to acclimate to growth under constant—but

not fluctuating—conditions [60]; in contrast, growth was impaired in the present study.

The increase in NPQ over time in C. vulgaris in response to metformin exposure suggests

that the cells were less able to process the same amount of light energy over time. qI results

from a long-term downregulation of photosystem II, and likely occurs through a combination

of photoprotection and photoinhibition [61]. In the present case, the increase in NPQ likely

accompanied photoinhibition (and damage to photosystem II) rather than photoprotective

quenching, given that a reduction in Fv/Fm was observed. That is, Fo should decrease in direct

proportion to Fm in the case of photoprotective quenching, while increased Fo is accompanied

by decreased Fm when quenching is achieved through photoinhibition, thus reducing (Fm-Fo)/

Fm, or Fv/Fm [61].
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Interestingly, activation of SnRK1 (SNF1-related protein kinase 1)—an ortholog of AMPK,

the target of metformin—is also associated with a decrease in the rate of photosynthesis in

plants [62, 63]. Although not completely understood, SnRK1 activation occurs under energy

deficit conditions, for example in darkness; to conserve energy, energetically demanding pro-

cesses such as protein synthesis and cell division are inhibited [64, 65]. In contrast, SnRK1 is

inhibited by sugars [66]. Recently, genes for SnRK1 were discovered in eukaryotic algae [67],

and regulatory proteins involved in SnRK1 signaling pathways have been identified in both

green algae and diatoms [68, 69]. Since energy sensing kinases are highly conserved among

humans (AMPK), plants (SnRK1), and phytoplankton (SnRK1) [70, 71] the observed effects

on growth and photosynthesis in C. vulgaris could be due to activation of SnRK1. It is possible

that SnRK1 is implicated in stress responses to emerging contaminants such as pharmaceutical

by algae more broadly, and therefore identifying factors that activate SnRK1 pathways would

be valuable in assessing ecosystem effects of PPCPs.

Alternatively, it is possible that metformin inhibits complex I of the electron transport

chain within algal mitochondria, resulting in a suppression of photosynthesis due to a reduc-

tion in interactions between organelles, either driven by inhibition of complex I or through

activation of SnRK1. SnRK1 has been implicated in energy signaling between organelles [72];

in addition, a significant role for metabolic interactions between the chloroplast and the mito-

chondrion was demonstrated in mutants lacking complexes I and IV activity in another green

alga, Chlamydomonas, which showed a 40% reduction in the light-saturated capacity of O2

evolution [73]. This reduction in the rate of photosynthesis is similar to the ~20% reduction in

ETRmax in this study, although more dramatic, consistent with the idea that complex I may be

a target in eukaryotic phytoplankton. Another example comes from the diatom, Phaeodacty-
lum tricornutum, where upregulation of alternative oxidase (AOX) activity in the mitochon-

drion occurred in response to iron-deplete conditions [74] suggesting a possible way to

reroute photosynthetic electrons towards respiration rather than photosynthesis [75].

The fact that inhibition of complex I by metformin is observed across different phylogenetic

groups including the yeast, Pichia pastoris, the bacterium, Escherichia coli, and the bovine

heart mitochondria [49, 51] indicates that the biguanide binding site is found in the core sub-

unit that is conserved across taxa, not just in mammalian cells [76]. Although the reported

effect concentrations tend to be substantially higher than those found in the extracellular

matrix or ambient environment (e.g., IC50 of 22.6 ±4.3 mM in P. pastoris [49]), the 1000-fold

accumulation of metformin within the mitochondrial matrix [51, 77] makes even low levels

physiologically relevant. Moreover, in the environment, persistent exposure to metformin (for

example in slow-moving reservoirs or lakes or else due to constant input fluxes [78]) could

potentially lead to bioaccumulation and negative effects as transporters are synthesized. The

issue of bioaccumulation is complex, since the multitude of pharmaceutically active ingredi-

ents with highly diverse chemistries show different propensities for bioaccumulation or bio-

magnification in the food web [79]. A recent study in Taihu Lake in China suggested that

trophic magnification of several pharmaceuticals including norloxacin, ciproflaxin, and tetra-

cycline are low [80, 81]. Persistent exposure to the antibiotic, ciproflaxin, downstream of a

wastewater treatment plant in Kansas, United States, however, was associated with shifts in

algal assemblages, a loss of genus richness, decrease in biomass yield, and changes in algal bio-

volumes [13].

In addition to deleterious effects on biota, exposure to chemical contaminants can lead to

physiological acclimation (at sub-lethal concentrations) as well as evolutionary adaptation

[82], which enables certain genotypes to survive, owing to the occurrence of beneficial muta-

tions; this phenomenon is referred to as evolutionary rescue [83]. In the face of environmental

deterioration, species–including microalgae [84, 85]–can become resistant to xenobiotics,
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which likely underlies shifts in algal assemblages observed downstream of wastewater treat-

ment plants [13] as sensitive species are lost and resistant species persist. Evolutionary rescue

appears to be strongest when effects are slow, with repeated exposure, and dispersal is modest

[83]. Although exposures to low levels of a variety of pharmaceuticals have unknown conse-

quences for aquatic biota [86], evolutionary rescue could be invoked in response to circum-

stance where risks are high, for example if chemical mixtures, particular life stages, or different

physiological stressors render certain genotypes sensitive to exposure in ways that cannot be

overcome by short-term physiological acclimation.

The present study is limited by the fact that effects of long-term exposures were not

assessed; however, exposure to pharmaceutical compounds and other chemicals of emerging

concern can occur over short or long time periods, making studies of both types necessary to

evaluate ecological effects of unregulated contaminants. In addition, this study focuses on a

single pharmaceutical compound in isolation, exposed to a single target organism; this clearly

does not adequately represent natural environmental conditions [81], and therefore the results

should be interpreted as such. Nevertheless, our approach was to determine whether exposure

to an unusual pharmaceutical compound would elicit effects on photosynthesis in suspended

algal populations, and the results shed some light on potential mechanisms.

Finally, recent evidence has shown that different biguanides [including antimalarial drugs,

anti-hyperglycemic drugs (metformin, phenformin, and buformin), and drugs for the treat-

ment of cardiovascular disease and cancer; [51]) inhibit complex I to varying degrees. We

tested the effects of one biguanide on photosynthetic performance; it is possible that other

biguanides could have different effects on complex I or in the activation of SnRK1, which

could influence photosynthetic processes differently, meriting further investigation into their

toxicological effects. Future work should explore the mechanisms by which SnRK1 activation

occurs, as well as responses by SnRK1 to environmental toxicants in order to better under-

stand broader impacts on photosynthetic processes.

Supporting information

S1 Table. Cell concentration data used to calculate experiment growth rates. Cell concen-

trations determined at each experimental time point and used to calculate specific growth rate.

Cells were enumerated using a Coulter counter. Triplicate samples were averaged, and cell

densities determined by accounting for dilution of the samples prior to enumeration.

(XLSX)

S2 Table. Photosynthetic performance data showing response to metformin additions. Pri-

mary data produced by a Pulse Amplitude Modulated fluorometer for experimental time

points. The data were collected for 120 h before spiking the cultures with three concentrations

of metformin, plus a control. Photosynthetic characteristics were tracked for 1, 3, and 5 h after

the spike and each 24 h thereafter (until 96 h after the spike). F = fluorescence; Fm’ = effective

maximum fluorescence; Fv/Fm = yield of PSII; ETR = electron transport rate;

PAR = photosynthetically active radiation; NPQ = nonphotochemical quenching. Primary

ETR and NPQ data from light curves are also included.
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