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Abstract

Introduction

Walking speed has been associated with many clinical outcomes (e.g., frailty, mortality, joint

replacement need, etc.). Accurately measuring walking speed (stride length x step count/

time) typically requires significant clinician/staff time or a gait lab with specialized equipment

(i.e., electronic timers or motion capture). In the present study, our goal was to measure

“step count” via smartphones through novel software and to compare with step tracking soft-

ware that come standard with iOS and Android smartphones as a first step in walking speed

measurement.

Methods

A separate calibration and validation data collection was performed. Individuals in the cali-

bration collection (n = 5) walked 20m at normal and slow speed (<1.0 m/s). Appropriate set-

tings for the novel mobile application were chosen to measure step count. Individuals in the

validation (n = 52) collection walked at 6m, 10m, and 20m at normal and slow walking

speeds. We compared step difference (absolute difference) from observed step counts to

native step tracking software and our novel software derived step counts. We used general-

ized estimated equation adjusted (participant level) negative binomial regression models of

absolute step difference from observed step counts, to determine optimal settings (calibra-

tion) and subsequently to gauge performance of the shake algorithm settings and native

step tracking software across different distances and speeds (validation).

Results

For iOS/iPhone 6, when compared to observed step count, the shake service (software

driven approach) significantly outperformed the embedded native step tracking software
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across all distances at slow speed, and for short distance (6m) at normal speed. On the

Android phone, the shake service outperformed the native step tracking software at slow

speed at 6 meters and 20 meters, while its performance eclipsed the native step tracking

software only at 20 meters at normal speed.

Discussion

Our software based approach outperformed native step tracking software across various

speeds and distances and carries the advantage of having adjustable measurement param-

eters that can be further optimized for specific medical conditions. Such software applica-

tions will provide an effective way to capture standardized data across multiple commercial

smartphone devices, facilitating the future capture of walking speed and other clinically

important performance parameters that will influence clinical and home care in the era of

value based care.

Introduction

Walking speed is a reliable and valid measure, used as a prognostic and diagnostic indicator

for heath and function. Walking speed is associated with mobility disability, mortality, and

determining optimal rehabilitation care settings post hospital stay [1–3]. Some have even con-

sidered walking speed a sixth vital sign [4]. However, this measure is not widely used in typical

clinical settings, and its capture is typically limited to research laboratories [5, 6]. Due to its

powerful diagnostic and prognostic value and ease of capture, walking speed can be recorded

by health professionals in clinical settings, or by nonprofessionals in home settings, facilitated

with technology. This would provide important data to aid clinical decision making. In addi-

tion, such data recorded in a home environment and remotely monitored by a health profes-

sional could provide important, actionable insights into chronic disease management.

Biosensor-based health tracking devices are increasingly being used by the lay public and

researchers to track health, mobility and fitness data [7–9]. While the ownership of such fitness

trackers has grown in the US over the last decade, current and forecasted ownership of smart

phones far outpaces increases in fitness tracker device uptake. Nearly two-thirds of Americans

reported they owned smartphones in 2015 [10, 11] a number forecasted to continue to grow in

the United States (US) in the near future [11, 12]. While fitness trackers provide several advan-

tages, such as being lightweight and configurable to any body part, the fact that many people

already own a smartphone makes it a reasonable platform to develop clinically relevant tests of

walking.

Walking speed is the product of step length and step frequency (step count/time). Typically,

mobile application and activity trackers record the number of “events” detected (i.e., steps)

and display as step count. Accurately measuring step count is the first step to quantifying step

frequency (i.e., step count/time). Step count, whether collected by a smartphone or fitness

tracker, is reliable and valid when data are collected in a controlled environment on a treadmill

and over a large number of steps [7, 13, 14]. However, smartphones and fitness tracker devices

are much less accurate in over ground and free-living conditions [15]. When compared to

observed step count, fitness trackers had an absolute mean step count differences from 0.3% to

9.6% when ambulating on a treadmill [13, 14]. Kooiman et al found that the criterion validity

for monitoring step count in free-living condition with a commercially available smartphone

application was 37.6% as measured by the mean absolute percentage error from the gold

Walking assessment using a smartphone
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standard [14]. If mobile applications are going to be used to successfully measure rehabilitation

outcomes overground, in clinical settings and homes, further refinement of the technology is

required.

The time or distance walked may also affect the accuracy of counting steps with fitness

trackers. Most normed rehabilitation measures only require 6 to 20 meters of space to measure

walking speed [16, 17]. Typically, greater distances and walking times have been used in mea-

suring the validity and reliability for fitness trackers. In fact, shorter walking distances/less

steps has resulted in greater measuring error for these devices [13–15] that is also affected by

walking speed [7]. Other studies support that pedometer applications for smartphones are

much less accurate overground and when individuals walk slower than a comfortable pace

[18]. Many smartphones come with native pedometer applications, however, similar to com-

mercially available applications, the native pedometer application on iOS devices was much

less accurate at slow walking speeds (<1.38m/s) and during overground conditions [19].

Greater error at shorter distances while walking overground and with slow walking speeds is

problematic for the clinical utility of using smart phone applications to assess common clinical

tests of walking speed. Our long-term goal is to provide clinical utility for tools that measure

walking speed for clinicians at the point of care and to patients in their homes for longitudinal

follow-up with minimal expense and greater accuracy over shorter ditances and slower speeds.

Thus, rather than focusing on fitness tracker devices, we sought to test approaches to measure

step count as a first step toward walking speed measurement via the more ubiquitous smart-

phones. In the present study, our purpose was to design and test a novel application to measure

step count and to compare these results to those reported by health tracking applications that

come standard with iOS (i.e., Apple Health Application) and Android (i.e., Google Fit) smart-

phones across different speeds and distances.

Methods

Setting

This study took place at the University of Alabama at Birmingham. The Institutional Review

Board at the University of Alabama at Birmingham (UAB) approved the study protocol, and

all participants provided written informed consent prior to study enrollment (UAB IRB proto-

col #X151202005).

Overall study design

We developed a software-based method to count steps using the open source JavaScript plugin

called shake.js available at GitHub (https://github.com/alexgibson/shake.js/). This plugin is

designed to count events based on measured 3D accelerations of the phone. We tested this

software based “shake service” approach versus native fitness tracking software embedded in

sixth generation smartphones for iOS (iPhone 6, firmware 9.3.1) and Android (Nexus 6p,

firmware 6.0.1). The shake service allows for adjustment of amplitude required to register as

an event, or step in our case (i.e., sensitivity). We could also modify the refresh rate or refrac-

tory period, which was how often the software could count an event or step in our case. The

study consisted of two phases. During the first study phase (Calibration), we calibrated the

shake service for the mobile application, finding optimal settings to measure step counts at

normal (> 1 meter/second) and slow (< 1 meter/second) walking speeds. The slow speed con-

dition was added to assess the effect of walking speed on the calibration of the device. In the

second phase of this study (Validation) we validated how well the shake service-based mobile

application measured step count compared to observed step count and the native fitness
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tracking software found in the tested iOS and Android smartphones. We used the same two

phones throughout the study.

Smartphone calibration phase

First, we performed a calibration study to determine appropriate parameters for use with the

shake service algorithm to most accurately detect steps at two ambulation speeds. Five individ-

uals completed the phone calibration phase (25–54 years old, 1.67–1.87 m tall). We used indi-

viduals on the research team for the phone calibration phase as a convenience sample.

The shake service allows two parameters to be adjusted, sensitivity and refresh time. The

shake algorithm has 19 different sensitivity settings and 19 different refresh times (Fig 1). Dur-

ing pilot testing, the investigators found that many of the combinations of sensitivity and

refresh time were highly inaccurate. Further, we observed that different combinations of sensi-

tivity and refresh time were required at different speeds. This makes sense biomechanically

because of the positive linear relationship between walking speed and the vertical oscillations

of the center of mass [20].

To limit the number of possible combinations, we first narrowed down the available

options by observationally determining the nine best combinations of settings for each speed.

The two speeds were labeled as normal (> 1 meter/sec) and slow (< 1 meter/second) pace. We

tested the following combinations at a normal pace (sensitivity/refresh time): 1.5/400, 1.5/450,

1.5/500, 2.0/400, 2.0/500, 2.5/400, 2.5/450, and 2.5/500. Then, we tested the following combi-

nations of sensitivity/refresh time at a slow pace: 1.0/400, 1.0/450, 1.0/500, 1.5/450, 1.5/500,

2.0/400, 2.0/450, 2.0/500.

To test each setting, we marked a 20-meter course with timing gates (Farmtek, Wylie, TX)

at the start and end of the course. The timing gates were used to ensure that an individual was

walking at a normal or slow speed. A trial was repeated if the person did not ambulate at the

required speed.

Participants placed the iOS and Android smartphone in each of their front pant pockets.

The participant activated the smartphone shake service step counter by tapping their smart-

phone screens prior to walking. Thus, the assessment was ‘active’ in that it was triggered

explicitly by participants, rather than passively monitoring mobility in the background. Three

researchers independently counted the participant’s steps. We defined a step from heel strike

to contralateral heel strike while walking. We instructed participants to come to an immediate

stop on the step where they crossed the 20m line to ensure that a full step was counted. The

researchers reported the number of self-counted steps prior to looking at the step count on

both phones. If there was a discrepancy in the investigators’ counts, a consensus was reached

and recorded prior to revealing the application step counts. Each individual ambulated 3 times

for each combination of sensitivity/refresh time settings listed above for both walking speeds.

For quality control purposes, we recorded the first 5 participant attempts via digital camcorder

and reviewed the video to confirm the observed step count matched the researcher’s reported

count 100% at both normal and slow speed attempts.

Statistical analysis calibration phase

To determine which combination of sensitivity and refresh time settings resulted in the least

amount of deviation from the observed step counts, we fit negative binomial regression models

modeling the count of the absolute difference between the count of observed steps and the

shake algorithm reported steps. Separate models were fit for each speed (normal, slow). Each

model included the nine fixed combinations of sensitivity and refresh time as the independent

variable. As we had observations clustered among the 5 testers, we used generalized estimating
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equations (GEE) with an exchangeable correlation structure to account for the potential within

observer correlation. Average absolute step differences and incidence rate ratios (IRR) are

reported. All analyses were performed with SAS v. 9.4 (SAS, Cary, NC).

Fig 1. The interface for modifying shake service parameters is shown. The shake threshold relates to the amplitude

required to register as an event and shake timeout which provided a window where a single event could be counted.

https://doi.org/10.1371/journal.pone.0206828.g001
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Validation phase

We recruited 52 participants for the Validation Phase of the study (28.3 ± 9.9 years old, 28

males, 69.3 ± 4.4 inches). A cross-sectional study using a repeated measures design was used to

determine concurrent validation of the phone’s step counters with the investigators observed

step count. We set the shake algorithm calibration settings for the Validation Phase based on

the review of the Calibration Phase results. Individuals were eligible to participate in this study

if they reported no health problems that affected their ability to walk and were aged 18 years or

older. We recruited participants from the greater UAB community. The methods used in this

phase for collecting step count was the same as those used in the calibration phase of this

study. However, individuals also walked down a 6 and 10-meter walkway flanked by gait tim-

ers in addition to ambulating 20 meters. Researchers commonly use distances of 6–20 m to

assess walking speed [17, 21]. Prior to Validation testing, we confirmed all distances with a

standard tape measure. Each participant ambulated each distance 3 times at both normal and

slow gait speeds. Three trials were collected to assess repeatability (not assessed in the current

analysis). The order of speed and distance was randomly selected to avoid order bias.

Statistical analysis validation phase

Negative binomial regression models were fit modeling the count of the absolute difference

between the observed steps and the shake algorithm reported steps. Separate models were fit

for each phone (Android and iOS) at each speed (normal and slow) at each distance (6m, 10m,

and 20m) for a total of 12 separate models with each model including the measurement tool

(shake service versus the standard pedometer application) as the independent variable. As we

had observations clustered among the 52 participants, we used generalized estimating equa-

tions (GEE) with an exchangeable correlation structure to account for the potential within par-

ticipant correlation. All analyses were performed with SAS v. 9.4.

Results

Calibration phase

We recorded 270 observations for calibration of normal speed and 270 separate observations

for the calibration of slow speed.

For normal speed, the setting with the minimal step count difference from the observed

step count was 2.5/450 (1.4 steps). In the negative binomial regression models, 2.5/450 was

used as the referent and outperformed (p< 0.05) three settings (1.5/400, 2.0/400 and 2.5/500)

and there was insufficient evidence to conclude any of the remaining settings were closer to

the observed difference (no statistically significant difference observed, see Fig 2A).

For the 270 slow speed observations, the setting with the minimal step count difference

from the observed step count was 1.5/500 (1.8 steps). In the negative binomial regression mod-

els, 1.5/500 outperformed (p< 0.05) all other settings, and there was insufficient evidence to

conclude that the remaining setting (1.5/450) was closer to the observed difference (no statisti-

cally significant difference observed, see Fig 2B).

Thus, we calibrated the shake algorithm on both phones (iOS and Android) at 2.5/450 for

normal speed and 1.5/500 for slow ambulation speed.

Validation phase

Individuals walked at 0.81 ± 0.09 m/s for the slow walking condition and 1.38± 0.16 m/s for

normal speed (p<0.001) creating two different speeds to test this application.

Walking assessment using a smartphone
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For iOS/iPhone 6, when compared to observed step count, the shake service (software

driven approach) significantly outperformed the embedded native step tracking software

across all distances at slow speed, and for short distance (6m) at normal speed (see Table 1).

On the Android phone, the shake service outperformed the native step tracking software at

slow speed at 6 meters and 20 meters, while its performance eclipsed the native step tracking

software only at 20 meters at normal speed (see Table 2). Furthermore, a similar reported

error rate was observed for 6 and 10 m distances across both phones.

Fig 2. Calibration of Shake Algorithm across normal (2a) and slow (2b) speeds and models (name type) to determine the best fit to the observed step count line. For

slow speed (2a.) 1.5/500 (sensitivity/refresh time) achieved the minimal step count difference from the observed step count (1.8 steps). For normal speed (2b) 2.5/450

(sensitivity/refresh time) achieved the minimal step count difference from the observed step count (1.4 steps).

https://doi.org/10.1371/journal.pone.0206828.g002

Table 1. Step difference1 from observed step count for the iOS smartphone for different speeds (slow, fast) and distances (6m, 10m, 20m) and GEE adjusted nega-

tive binomial regression model of absolute step difference.

Slow Speed2

(n-153)

P-value3 Normal Speed4

(n = 156)

P-value3

Shake Native Software Shake Native Software

6m 2.16±1.97 8.15±4.48 <0.001 1.93±1.60 5.44±3.82 <0.001

10m 2.85±2.77 5.38±4.84 <0.001 2.48±2.19 2.94±3.37 0.188

20m 5.22±5.22 7.41±7.89 0.029 4.32±3.87 5.24±3.14 0.112

1. Absolute off, no directionality, step difference (either over or under) observed step count.

2. Slow speed is < 1 meter/second

3. P-values are from a GEE adjusted (participant level) negative binomial regression model of absolute step difference.

4. Normal speed is >1 meter/second

https://doi.org/10.1371/journal.pone.0206828.t001
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Discussion

Accurately measuring step count is a key first step towards building a mobilie application that

can reliably measure walking speed (stride length x step count/time). In the present study, we

compared step counts measured through a novel software driven approach (shake algorithm

application) to native software on iOS and Android phones across different distances (6m,

10m, 20m) and speeds (< 1 m/s and> 1 m/s). Notably, previous research has validated step

counts using long distances that are often not physically possible for individuals whose mobil-

ity is restricted by chronic medical conditions [7, 13–15]. In this study, we found that our soft-

ware driven approach outperformed the native step tracking software found in Android and

iOS phones across many walking speed and distance parameters. Software based approaches

like our mobile application that allow for adjustment (e.g., amplitude and refresh rate, Fig 1)

permit additional flexibility that can enable calibration for different clinical conditions to max-

imize accurate step count capture beyond what “one size fits all” step tracking software

included in commercial smartphones and fitness devices offer. Software based approaches will

aid dissemination and utilization as potential users will be able to diminish cost and employ

already owned smartphone devices to capture walking speed, versus the purchase of yet

another commercial device. Furthermore, our application encourages active assessment as

opposed to many applications that operate in the background and continuously measure

behavior that may (i.e., walking performance over ground) or may not (i.e., stair walking,

walking through a crowded room) be the behavior of interest or may not be measured accu-

rately, (i.e., if device is carried in a bag or purse at the time of the measurement).

While the shake algorithm outperformed the step tracking software in both phones for

most experimental conditions, it did not do so across all our experimental conditions. We also

note that there was error in step count associated with all distances between phones and within

groups when compared to the reported observed step counts. This may be due to our selected cali-

bration settings, as they were chosen based on a single distance and the limited number of individ-

uals (n = 5) that we assessed. While these methodological decisions were made to guide data

collection in this investigation, it is important to note that the shake algorithm can be further indi-

vidualized to ensure accurate measures within a specific movement pattern or to optimize data

capture for specific medical conditions. Settings could also be further adjusted by additional infor-

mation (e.g. physical function as assessment by questionnaire from the NIH PROMIS system)

[22], and may perform better when specifically calibrated for the Android vs iOS phones. We can

envision a future where it is possible to target shake algorithm settings for specific conditions or

patients so that mobile applications such as ours could be tailored to yield even better results. This

Table 2. Step difference1 from observed step count for the Android smartphone for different speeds (slow, fast) and distances (6m, 10m, 20m) and GEE adjusted

negative binomial regression model of absolute step difference.

Slow Speed2

(n-153)

P-value3 Normal Speed4

(n = 156)

P-value3

Shake Native Software Shake Native Software

6m 2.15±1.92 2.92±2.88 0.006 1.79±1.61 1.85±2.28 0.870

10m 2.52±2.50 2.89±3.49 0.374 2.03±2.28 1.47±1.60 0.066

20m 4.34±4.57 3.01±3.78 0.033 3.47±4.41 1.35±1.35 <0.001

1. Absolute off, no directionality, step difference (either over or under) observed step count.

2. Slow speed is < 1 meter/second

3. P-values are from a GEE adjusted (participant level) negative binomial regression model of absolute step difference.

4. Normal speed is >1 meter/second

https://doi.org/10.1371/journal.pone.0206828.t002
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is a significant advantage of our novel software based approach versus commercial fitness tracker

devices where settings may be more difficult to adjust and where hardware diverges amongst

devices [13–15]. Due to being adaptable and adjustable, we believe the shake algorithm to provide

a promising/sound direction to pursue further research and a great foundational step towards

measuring walking speed in clinical settings and patient’s homes.

In terms of speed, for both phones the shake algorithm was more accurate than the native

software when the participants walked less than 1 m/s (meter per second) for all observations

except measurements by the Android phone at 20m. Previous investigators found that slower

speeds increased step count error [7, 13]. Older adults and individuals with acute and chronic

conditions tend to ambulate at a slower pace [3, 23–25]. The shake application performed well

at 6-meters in both phones regardless of walking speed. This is advantageous for measurement

in private residences where long straight distances may be scarce as many homes do not have

more than 6 to 10 meters to ambulate without turning. This represents another reason our

software driven approach may outperform native software found in current phones to measure

step counts to subsequently derive walking speeds for future patient monitoring in home set-

tings. Such monitoring seems poised to gain importance in the coming years as the medical

field continues to stress the importance of home management of chronic illness to prevent

hospitalization, a foundational pillar of population health and value based care initiatives [26].

While fitness trackers can include enhanced monitoring sensors for a variety of measures,

the added cost and complexity of these devices may represent barriers to their widespread

adoption and use. In contrast, the ubiquity of smartphones is growing [10, 12] at a greater

pace than that of fitness trackers, making solutions that piggyback on this existing technology

more attractive for dissemination to the general population. We posit, that mobile applications

therefore may be the better technology to acheive remote monitoring of patients by healthcare

workers due to its generalizability and published reports that almost half of health tracker own-

ers quit wearing them within the first six months [27].

Our study has limitations. First, we tested this application on only two phones. Different gener-

ations and models of smart phones utilized different hardware, that may affect their measurement

error. However, one important feature is that we can customize our software to optimize parame-

ters to each participant regardless of phone hardware. Second, we elected to select one sensitivity/

refresh time for each ambulation speed for both smartphones. There exists the possibility that we

could have achieved even better results had we individualized settings to a specific phone. With

this investigation we chose to demonstrate that one software solution could be used across devices

with different operating systems (iOS, Android). However, we recognize that device specific set-

tings or even condition or patient specific settings could be possible in the future, potentially fur-

ther enhancing the performance of the mobile app. Third this study was performed in a healthy

adult sample and the results that we saw with this population may not generalize to other popula-

tions. Our intent is to replicate this study and recalibrate our assessment parameters as needed in

older patients with chronic illnesses. Fortunately, our approach would allow for customization

across different medical conditions in the future. Finally, we need to test this algorithm for even

longer distances to determine if it could be used for other functional measures such as the 6-min-

ute walk test. Previous researchers stated that mobile applications tend to have less step count

error the longer the distance walked, an effect that may very well further enhance the accuracy of

our approach in future testing across longer distances [14, 15].

Conclusions

The shake service based mobile application (software based approach) provides an effective

way to standardize data capture across multiple available commercial smartphones as well as

Walking assessment using a smartphone
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provides the option to customize settings for different medical conditions in the future. We

will continue to explore this approach and build towards accurately measuring walking speed

on commercial smartphones to facilitate access to this important clinical parameter to aid cli-

nicians at the point of care. This technology could further assist patients as they monitor their

progress in their homes during longitudinal follow-up in the age of population health and

value based care.
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