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Abstract

Maintaining crop outputs to feed its large population with limited resources while simulta-

neously mitigating carbon emissions are great challenges for China. Improving the effi-

ciency of resource use in crop production is important in reducing carbon emissions. This

paper constructs a methodological framework combining emergy-based indicator account-

ing and a nonseparable undesirable output slack-based measurement (SBM) data envelop-

ment analysis (DEA) model. This framework is used to explore the efficiency of inputs and

outputs and the greenhouse gas (GHG) emissions reduction potential for crop production

systems, using Zhejiang province, China, as a case study. It is found that an emergy synthe-

sis and a nonseparable undesirable output SBM-DEA framework is compatible with the

case study. Crop production in Zhejiang province has relied heavily on an increase in agro-

chemical inputs to maintain agricultural output. Energy and chemical fertilizer use are deter-

mined as the province’s major carbon emissions sources. Although carbon emissions per

unit of monetary output has decreased sharply, the carbon emissions per unit emergy output

has increased, demonstrating a high carbon intensity reality. The DEA highlighted the differ-

ences in crop production efficiency, resource factor redundancy and carbon mitigation

potential in the different prefectures of the province. To conclude this research, policies to

support low carbon agriculture development, including subsidizing low carbon agriculture

technology development and expansion and the cancellation of subsidies to high carbon

production factors, such as chemical fertilizer production and sales, are discussed to con-

clude the research.
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1. Introduction

The agricultural sector accounts for almost 14% of global net carbon emissions [1]. In China,

rapid industrialization, urbanization and land-use changes have led to a reduction in cultivated

land across China over the past few decades [2]. To increase crop productivity and sustain its

large population, the conventional approach in China is to intensively apply high carbon inputs,

such as fertilizer, agricultural machinery, fuels and other industrial products. However, this

heavy reliance on high carbon inputs has caused large direct and indirect greenhouse gas

(GHG) emissions in the agricultural sector [3]. In China, agricultural production accounted for

11% of total carbon emissions (or approximately 820 MtCO2-eq per year), over 70% of total

nitrous oxide (N2O) emissions and approximately 50% of methane (CH4) emissions in 2005 [4].

Potential carbon reduction largely depends on improving efficiency. Commonly, when consid-

ering agricultural production efficiency, economic dimensions have been a priority. However, such

production efficiency evaluations based on economic indicators might overestimate efficiency and

cause a “low carbon illusion”. Thus, production efficiency evaluations based on energy or emergy

accounting and classifying direct and embodied carbon or GHG emissions as nonseparable unde-

sirable outputs have become essential elements in the evaluation of the sustainability of agriculture

practices; these evaluations may generate important implications for decision makers.

Based on emergy analysis and a nonseparable undesirable output slack-based-measurement

(SBM) DEA model [5], this paper constructs an analytical framework to evaluate the efficiency

performance of crop production systems, in order to disclose the high carbon reality and the

carbon reduction potential in the crop production system and therefore provide policy impli-

cations for low carbon agriculture development.

Zhejiang province, located on China’s southeast coastline, covers a relatively small total

area of 101,800 square kilometers, making it one of the smallest provinces in China. However,

the province has a dense population. The area consists of mountainous and hilly areas (70.4%),

plains and basins (23.2%), and lakes, rivers and reservoirs (6.4%). As an economically devel-

oped area, the agricultural sector of the province intends to develop a high-efficient crop pro-

duction model. However, to determine whether said model can produce verifiably low carbon

emissions, a diagnostic study is necessary.

Section 2 of this paper presents a carbon efficiency evaluation method based on emergy and

the nonseparable undesirable output SBM-DEA. Section 3 provides the carbon efficiency eval-

uation of crop production systems at the provincial and prefecture-levels in Zhejiang province.

The low carbon illusion and the high carbon reality, as well as the carbon reduction potential

for the province and different prefectures, are analyzed. Finally, Section 4 concludes this paper

and provides policy implications for sustainable low carbon agriculture development in Zhe-

jiang province and across the nation.

2. Methods and data

The literature on efficiency measurement has proposed at least three commonly used methods.

One is an indicator approach based on physical and monetary resource inputs and outputs

and environmental impacts [5]. However, the consideration of traditional resource inputs in

efficiency accounting was incomplete, especially for free natural resources [6]. Odum [7]

argued that embodied energy, or emergy, whose formation follows the laws of thermodynam-

ics, should be considered for free natural resources. Monetary accounting systems do not com-

ply with these laws, nor can they link economic systems with natural ecosystems; thus, these

systems experience a difficulty in estimating natural and economic value [8,9]. In contrast, an

emergy analysis, rooted in thermodynamics and system ecology theory, can evaluate all

resource input and product output flows and the resource use efficiency in a common
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biophysical unit [7,10]. In this paper, the amount of carbon equivalents (CO2-eq) per unit of

emergy or monetary output is employed as the efficiency indicator [11,12].

The second method is a nonparametric data envelopment analysis (DEA) introduced by

Charnes et al. [13]. This method can be used to comprehensively evaluate the total-factor effi-

ciency and considers all inputs and desirable and undesirable outputs [14–18]. The DEA

approach of the mathematical programming does not require the construction of specific func-

tion forms, which avoids making arbitrary assumptions of the distributional form [19]. DEA

usually assumes that producing more outputs relative to less resource inputs and less undesirable

outputs (environmental impacts) is a criterion of efficiency [20,21]. Normally, if no undesirable

output (or environmental impacts) exists, then a slack-based measurement (SBM)-DEA, which

deals with input reduction and output expansion at the same time and is more in line with real-

ity, should be used [22]. If an undesirable output exists, then a normal undesirable output

SBM-DEA should be applied [5]. However, multiple studies have observed that some undesirable

outputs cannot be separated from inputs and the corresponding desirable outputs, in which case,

a nonseparable undesirable output (SBM)-DEA model should be employed [20,23,24].

The third commonly used method is the parametric approach stochastic frontier analysis

(SFA), which was independently proposed by Aigner, Lovell and Schmidt in 1977 [25,26,27].

The SFA model, which has the virtue of being stochastic and takes random errors into account,

can distinguish the effects of statistical noise from those of productive inefficiency items. In most

cases, both methods (DEA and SFA) achieve highly correlated results [28]. However, the

parametric method can compound the problem of misspecification of functional forms. In addi-

tion, a flexible form is susceptible to multicollinearity, and theoretical restrictions may be violated

[29]. For the present research, observational data were limited to 11 prefectures over 5 years. A

parametric method application test showed strong multicollinearity within the four explanation

variables (See Table A in S1 File). Thus, the SFA method was not applied in this paper.

2.1 Inputs use efficiency indicators based on emergy and carbon accounting

Emergy, developed from thermodynamics and systems ecology in the 1980s, is defined as the

energy embodied in any form of goods or services. It is sometimes thought of as energy memory

to evaluate different energy, material, services, etc. in terms of a single energy type of solar joules

(sej) [7,30]. Emergy is proposed as an indicator of aggregate resource use for life cycle assess-

ments (LCA) [31]. Compared to the traditional LCA method that measures downstream envi-

ronmental burdens, emergy accounting boundaries are extended to incorporate all inputs [32],

including sunlight, rain, wind, and heat, that contribute to agriculture production. The emergy

accounting method is used in agricultural production systems with two kinds of analysis: bot-

tom-up and top-down. Bottom-up emergy analysis usually quantifies the resources required at

the farm level for different agricultural products [33]. Top-down emergy analysis approaches

the farming system holistically to analyze the contributions of various natural resources to agri-

cultural production [34]. An advantage of the latter is that it makes use of socioeconomic statis-

tical datasets and can conduct time series analyses. This paper uses the top-down approach.

In this study, there are four conceptual categories of production inputs accounted for in

emergy values, namely, free renewable natural resources (FRR), free nonrenewable natural

resources (FNR), purchased renewable resources (PRR) and purchased nonrenewable

resources (PNR), as described in Table 1. Crop output (Yem) is also accounted for in the study

in terms of emergy. The emergy accounting data sources used for inputs and outputs are listed

in the right column of Table 1.

In this table, carbon emissions (or undesirable outputs) from the crop production include

CO2, CH4, and N2O. Although carbon emissions from agricultural use energy production and

Production efficiency and GHG emissions reduction potential evaluation in the crop production system
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consumption (diesel, electricity power, and energy embodied in agricultural chemicals) are

accounted for as emissions from energy sectors in IPCC guidelines [41], in this study, these

carbon emissions are categorized as emissions from the agricultural sector to reflect agricul-

tural production’s complete carbon footprint.

The calculation of direct and indirect CO2 emissions is based on the research of Dong et al.

[42] and Bennetzen et al. [43]. The energy input is partitioned into three categories: primary

energy consumed directly during crop production, such as diesel consumed by machinery;

secondary energy embodied in thermal power electricity; and tertiary energy embodied in fer-

tilizers, pesticides and films.

All GHG emissions are converted to their CO2 equivalent (CO2-eq) using their 100-year

global warming potentials (GWPs): 1 for CO2, 25 for CH4, and 298 for N2O [3].

In this study, local data at the provincial and prefecture levels in Zhejiang province were

collected from the local statistical yearbooks (1995–2016) of Hangzhou, Ningbo, Wenzhou,

Jiaxing, Huzhou, Shaoxing, Jinhua, Quzhou, Zhoushan, Taizhou and Lishui [44–54]. The

emergy accounting-based indicators to characterize crop production efficiency, including total

emergy input (U), emergy input density (EID), ecological environmental loading radio (ELR),

purchased input ratio (PIR), self-sufficiency ratio (SSR) and emergy yield ratio (EYR), were

constructed according to Odum [7].

The carbon emissions accounting and the monetary and emergy-based outputs accounting

are combined to reflect multiple aspects of efficiency, including carbon-emergy output inten-

sity (CemI) and carbon-monetary output intensity (CmI). The formulae and function descrip-

tion of these indicators are introduced and listed in Table 2.

2.2 Nonseparable undesirable output SBM DEA model

Traditional DEA is a nonparametric linear programming technique to study the relative effi-

ciency scores of different decision-making units (DMUs) compared to the available best prac-

tice production model. Many studies have employed the DEA model in considering

undesirable outputs for efficiency evaluation in the agricultural sector [14, 55, 56]. In the cur-

rent study, we want to emphasize the inseparability of undesirable outputs. For example, CO2

emissions are nonseparable undesirable outputs caused by fossil fuel use, and N2O emissions

are nonseparable undesirable outputs caused by using nitrogenous fertilizer inputs. Murty,

Russell and Levkoff proposed a byproduction approach that makes a distinction between

Table 1. Data sets of input and output based on emergy and carbon accounting.

Category Resource flows Data sources

Free renewable natural

resources (FRR)

Sunlight, rain, wind, earth cycle All emergy calculations in this paper are based on the 15.83E+24 sej/y emergy

baseline [20]. Other transformities are referenced from Brown and Ulgiati [35],

Odum [20], Bastianoni et al. [36].

The inputs and outputs of agricultural production of Zhejiang province were

calculated based on the analysis of crop commodities and the inputs of crop

production systems for the period 1978–2014 from the following documents:

Zhejiang Statistical Yearbooks [37]

Comprehensive Agricultural Statistical Data and Material on 60 Years of New

China [38]

National Compilation of Data of Agricultural Product Cost and Revenue (1953–

1997) [39]

China Agricultural Products Cost-Benefit Yearbook [40]

GHG emission factors were drawn from the IPCC [41] and all emissions of GHGs

were measured with the carbon dioxide equivalent.

Free nonrenewable natural

resources (FNR)

Net loss of topsoil

Purchased renewable resources

input (PRR)

Irrigation water, labor and services

Purchased nonrenewable

resources input (PNR)

Mechanical equipment, chemical fertilizers,

pesticides, plastic mulch, energy resources

Desirable crop outputs (Yem) Rice, wheat, corn, soybean, tubers, fruits,

Vegetables, Crop residues, and various economic

crops

Carbon emissions (or

undesirable outputs) (CO2-eq)

GHG emissions of CO2, CH4, N2O

Note: Detailed data sets for this table please see Table B in S1 File.

https://doi.org/10.1371/journal.pone.0206680.t001
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conventional technology and byproduction technology. This is also in line with the reasoning

that the pollutant itself would be linked to pollution-generating inputs [57]. In the current

study, inputs and undesirable (carbon emissions) and desirable (value added of crop planta-

tion) outputs were evaluated using a nonseparable undesirable output SBM-DEA model [23,

24] to measure the efficiency and carbon reduction potential of crop production systems.

The nonseparable undesirable SBM-DEA model assumes a connection between desirable

(good) and undesirable (bad) outputs. Tone [23], Tone and Tsutsui [24] separate the set of

good and bad outputs (Yg, Yb) into (Ysg, Ysb) and (Ynsg, Ynsb), where s and ns, g and b denote

the separable and nonseparable, good (desirable) and bad (undesirable) outputs, respectively.

Inputs can be divided into (Xs, Xns), denoting separable and nonseparable input data matrices,

respectively. A reduction of the nonseparable inputs and bad (undesirable) outputs are desig-

nated by αxns, αynsb, where 0� α� 1, assuming the same reduction index a for inputs and

bad (undesirable) outputs. Accompanied by the nonseparable setting, a new production possi-

bility set Pns is defined by:

Pns ¼

(

ðxs; xns;Ysg;Ysb; ynsbÞ
�
�
�
�

xs � Xsl; xns � Xnsl; ysg � Ysgl; ysb � Ysbl;

ynsb � Ynsbl

)

ð1Þ

An SBM-DEA model with nonseparable inputs and outputs can be the following equation:

r� ¼ min
1 � 1

m

Xm1

i¼1

ss�i
xsi0
� 1

m

Xm2

i¼1

sns�i
xnsi0
�

m2

m ð1 � aÞ

1þ 1

s

Xs11

r¼1

ssgr
ysgr0
þ
Xs22

r¼1

snsbr
ynsbr0
þ ðs21 þ s22Þð1 � aÞ

� � ð2Þ

Subject to xs
0
¼ Xslþ Ss� ; axns

0
¼ Xnslþ Sns�

ysg0 ¼ Ysgl � Ssg� ; aynsg0 � Ynsgl; aynsb
0
¼ Ynsblþ Snsb

Xs11

r¼1
ðysgr0 þ ssgr Þ þ a

Xs21

r¼1
ynsgr0 ¼

Xs11

r¼1
ysgr0 þ

Xs21

r¼1
ynsgr0 ;

Ssgr
ysgr0
� Uð8rÞ

ss� � 0; sns� � 0; ssg � 0; snsb � 0; l � 0; 0 � a � 1:

Table 2. Emergy and carbon emissions-based production efficiency indicators.

Indicators Formula Description

Total emergy input (U) U = (FRR+FNR+PRR+PNR) Total resource emergy used

Emergy input density (EID) EID = U/sown area The indicator reflects the intensity of the total resources emergy flow input per unit sown area

Ecological environmental

loading radio (ELR)

ELR = (FNR+PNR) /(FRR

+PRR)

Total nonrenewable resource emergy flows to the total renewable resource emergy flows. The lower

the ratio, the lower the pressure on the ecological environment.

Purchased input ratio (PIR) PIR = (PRR+PNR)/(FRR

+FNR)

Ratio of purchased resource emergy flows over the sum of free natural resource emergy input. The

lower the ratio, the smaller the reliance on outsourced resources.

Self-sufficiency Ratio (SSR) SSR = (FRR+FNR)/U Represents the free natural resource inputs to total inputs.

Emergy yield ratio (EYR) EYR = Yem/(PRR+PNR) System yield (Yem) divided by the purchased resource emergy flow input.

Carbon-emergy output intensity

(CemI)

CemI = CO2-eq / emergy

output

CO2-eq emissions per unit yields measured in emergy.

Carbon-monetary output

intensity (CmI)

CmI = CO2-eq / monetary

output value

CO2-eq emissions per unit yield measured in monetary terms. All monetary value is converted to

1978 prices based on the price index.

Note: Data sets for this table please see Table C in S1 File.

https://doi.org/10.1371/journal.pone.0206680.t002
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where ρ� is the efficiency score, a is the reduction proportion of inputs or outputs, and U is the

extendable upper limit of separable desirable outputs. ss-, sns-, ssg and snsb are slacks of separa-

ble inputs, nonseparable inputs, separable desirable outputs, and nonseparable undesirable

outputs, respectively.

The objective function is strictly monotonically decreasing with respect to ss�i 8ið Þ; s
sg
r 8rð Þ;

and a. The DMU is efficient if and only if r� ¼ 1; i:e:; Ss� � ¼ 0; a� ¼ 1.

If the DMU is inefficient, i.e., ρ�<1, it can be improved and become efficient using the fol-

lowing projection:

xso ( xso � Ss� �; xnso ( a�xnso ; ysg0 ( ysg0 þ ssg�; ynsbo ( a�xynsbo

The decision-making units (DMUs) in the current research are the crop plantation system

of the 11 prefectures or cities in Zhejiang Province. The four input variables, labor, sown land,

nitrogen fertilizer and mechanical power, were selected as the most important affecting factors

of agricultural productivity. Table 3 reports the descriptive statistics of the variables.

Labor was measured by the “Employment in crop planting”. Employment is defined as the

number of people of working age engaged in agricultural crop planting activities. Sown land

was measured by the extension (in thousand ha) of the sown land. Mechanical power was used

as a proxy for fuel and energy inputs. Nitrogenous fertilizer consumption was measured in fer-

tilizer purity (in tons). Finally, the output was expressed by the crop plantation value added.

The CO2-eq emission was accounted for according to the IPCC method [41].

In the nonseparable undesirable SBM-DEA model, the sown area and labor force were

treated as separable inputs, and energy consumption and nitrogen fertilizer were treated as

nonseparable inputs. The value added of crop plantation was treated as the desirable output

and CO2-eq emission as a nonseparable undesirable output. Since CO2 emission is a byproduct

of energy consumption, CO2 emission and energy consumption were treated as nonseparable

variables. N2O emissions and nitrogen fertilizer were treated as nonseparable variables. The

estimation of efficiency scores through nonseparable output SBM-DEA models was conducted

using the MaxDEA software.

All the input and output data of crop production were drawn from local statistical year

books in the 11 prefectures and Zhejiang Province [44–54]. Some missing data were estimated

through cross-referencing and proportional calculation (see Table D in S1 File).

2.3 Analytical boundary and framework

Fig 1 illustrates the analytical boundary and framework of the emergy and emission account-

ing and DEA analysis of the crop plantation systems in the current study.

Table 3. Summary statistics of the DMUs’ input and output variables.

Variable Unit Mean Max Min Std.Dev

Input:

Labor input 104 persons 61.73 129.68 4.63 33.97

Sown land million ha. 282.90 512.10 13.45 118.19

Nitrogen fertilizer 104 tons 5.17 10.35 0.24 2.41

Mechanical power million kW 192.39 360.00 51.10 75.32

Output:

Value added of crop plantation 100 million RMB 51.79 168.57 1.78 37.86

CO2-eq emission 104 tons 160.94 268.54 14.06 61.66

https://doi.org/10.1371/journal.pone.0206680.t003
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Within the emergy and emission accounting and DEA analysis framework, FRR and FNR,

such as sunlight, rainfall and topsoil, are attributed to sown land area input. PNR includes

inputs such as machinery, diesel fuel, electrical power and nitrogen fertilizer, which the direct

and indirect undesirable outputs, CO2 and N2O emissions, respectively, are associated with.

3. Results

3.1 Emergy accounting for resource input and output

3.1.1 Various resource input changes in crop production. Fig 2 shows that total

resource inputs measured in emergy (U = FRR+FNR+PRR+PNR) in crop production systems

increased from 1978 to 2001 and then began decreasing slightly after 2002. Total input (U) in

2014 (2.16E22 sej) increased by 23.72% compared with 1978 (1.75E22 sej). Arable area showed

Fig 1. Diagram of the boundary of crop plantation system of the current study.

https://doi.org/10.1371/journal.pone.0206680.g001
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a deceasing trend from 1978 to 2006 and then slightly increased subsequently. The sown area

declined sharply.

Fig 3 shows the trend of annual emergy input densities (EIDs) measured by emergy input

per unit sown area and arable land area, respectively. The former has an upward trend during

the study period, which shows an increasing dependence on resource inputs. The latter has an

increasing trend from 1978 to 2006 and then deceases due to the increase of arable area.

Fig 4 illustrates a significant change in various agricultural emergy inputs. During the study

period, FRR (including sown land area associated rainfall and sunshine), FNR (representing

sown land area associated topsoil), and PRR (labor and irrigation water) declined by 40.71%,

40.71% and 23.09%, respectively, because of the continuous decrease in sown area over the

past 30 years. Meanwhile, PNR (chemicals and energy) increased by 222.29%, from 4.04E21

sej in 1978 to 1.30E22 in 2014. The decline of inputs of renewable natural resources (FRR

+PRR) and an overdependence on purchased nonrenewable resources (PNR) suggests there is

an unsustainable trend of the crop production model in Zhejiang province.

3.1.2 Measuring unsustainability. The EID indicator alone cannot measure the level of

unsustainability of crop production. The following indicators assist in this case: the environmen-

tal load indicator (ELR), the purchased input ratio (PIR) and the self-sufficiency ratio (SSR).

The environmental load indicator (ELR = (FNR+PNR)/(FRR+PRR)), or the ratio of nonre-

newable inputs to renewable resource factor inputs, experienced an upward trend, indicating

an increasing environmental load of agricultural production due to an overdependence on

nonrenewable resources to maintain crop production. The ratio of purchased resources to free

Fig 2. Change trend of total input (U) and arable and sown area during 1978–2014.

https://doi.org/10.1371/journal.pone.0206680.g002
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resource factors (PIR = (PRR+PNR)/ (FRR+FNR)) also increased. The higher the ratio, the

more reliance on purchased inputs compared to nonpurchased inputs. The self-sufficiency

ratio (SSR = (FRR+FNR)/U) indicator exhibited a decreasing trend for the ratio of renewable

inputs to total inputs. The changes of the ELR, PIR and SSR are shown in Fig 5.

The emergy yield indicator (EYR = Y/ (PRR+PNR)) decreased during the study period,

indicating a decreasing payback rate for purchased inputs (PRR+PNR).

3.1.3 Structural changes of purchased nonrenewable inputs. During the study period,

PNR sharply increased and eventually outweighed the other three categories of inputs (Fig 4),

and it was the main source of CO2 and N2O emissions. Thus, a closer observation of the

change in the formation of PNR is necessary.

As illustrated by the time series of emergy flows of the PNR components (Fig 6), chemical

nitrogen fertilizer (N-fertilizer) and energy inputs were the main purchased nonrenewable

resources. The amount of N-fertilizer use initially rose and then fell during the period of 1978–

2014. The increase of N-fertilizer use was due to the implementation of a household responsi-

bility system (HRS), which encouraged farmers to increase inputs and raise crop yields. Its

subsequent decrease was due to the decline of sown area, the application of balanced fertiliza-

tion technology, and the promotion of organic fertilizer use. The fossil fuels emergy flow

increased almost 10-fold from 1978 to 2014. The emergy flow proportion of mechanical

Fig 3. Annual emergy input density (EID) measured by emergy input per unit arable and sown area (sej/ha.) in crop production in Zhejiang

province.

https://doi.org/10.1371/journal.pone.0206680.g003
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equipment increased from 8.74% in 1978 to 13.56% in 2014. Pesticide emergy input levels

were relatively stable from 1990 onward.

3.2 Low-carbon illusion based on CmI accounting and the high-carbon

reality based on CemI accounting

3.2.1 Carbon accounting of crop production systems. GHG emissions embodied in crop

plantations were primarily from rice paddies (CH4 emission) and PNR inputs. The calculation

of carbon emissions embodied in PNR inputs was based on the LCA method proposed by ISO

14000 [41, 42, 58]. Total GHG emissions peaked in 1990 at 21.07 million tons of CO2-eq. From

1978–1986, rice cultivation-induced CH4 accounted for approximately 50% of total GHG

emissions. Its proportion then declined to 20% in 2014 with a decrease in rice paddy area.

As shown in Fig 7, carbon emissions embodied in N-fertilizer applications have always

been a large part of total emissions, ranging from 36.88% in 1978 to 51.33% in 1988. In 2014, it

was 40.22%. Carbon emissions embodied in diesel production rose sharply to exceed rice

paddy emissions and became the second largest emissions source in 2010. These changes were

due to more extensive use of agricultural machinery in recent years.

3.2.2 Conflicting carbon intensity tendencies based on CmI and CemI accountings.

Carbon intensity measured in monetary output (CmI) declined from 29.82 tons CO2-eq/ten

thousand RMB in 1978 to 2.81 tons CO2-eq/ten thousand RMB in 2014, with a sharp decreas-

ing rate of 90.58% (Fig 8). However, the indicator of carbon-emergy output intensity (CemI)

increased 23.98% from 5.74 g CO2-eq /1010 sej in 1978 to 7.12 g CO2-eq /1010 sej in 2014.

Fig 4. Yearly change of emergy inputs by categories in crop production in Zhejiang province.

https://doi.org/10.1371/journal.pone.0206680.g004
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Although the CmI has decreased, the fact that the CemI indicator has increased indicates

an increasing carbon intensity trend in the crop farming sector in Zhejiang province. Thus,

the decline in carbon intensity based on the monetary output indicator conflicts with the

increasing carbon intensity indicator that is based on the emergy indicator.

From Fig 9, CmI and CemI experienced very similar time series shapes from 1978–1984.

This is due to the consistent crop plantation structure. After 1984, the carbon intensity mea-

sured by per unit monetary output value continuously decreased. However, this is just a ‘low

carbon illusion,’ which was not caused by a carbon reduction in crop plantations (according to

Fig 7, total carbon emissions embodied in crop plantations have not been decreasing sharply)

but was instead caused by an increase of output measured in monetary terms due to the expan-

sion of cash crops (and at the same time a decrease of grain crops).

Within crop plantations, in addition to grain crops, there are higher value crops (or cash

crops), including economic crops (oil, cotton, sugar, tobacco, etc.) and horticultural crops

(vegetables, fruits, tea, etc.). Due to the decrease in the sown area of grain crops, along with the

increase of cash crops, since 2001, the output of cash crops (measured by emergy) has sur-

passed that of grain crops. From 1978–2014, although the total output measured by emergy

first increased and then decreased (due to total sown land area shrinkage), a dramatic increase

in the total output measured in terms of monetary value (output value) can be seen (see Fig 9).

This produced the divergence in the change trends of carbon intensities indicated by carbon-

money output intensity (CmI) and carbon-emergy output intensity (CemI).

Fig 5. ELR, PIR, SSR and EYR indices of Zhejiang crop production systems.

https://doi.org/10.1371/journal.pone.0206680.g005
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Fig 6. Purchased nonrenewable inputs (PNR) component structure in terms of emergy.

https://doi.org/10.1371/journal.pone.0206680.g006

Fig 7. GHG emission structure of the crop plantation sector in Zhejiang province.

https://doi.org/10.1371/journal.pone.0206680.g007
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Fig 8. Carbon-monetary output intensity (CmI) and Carbon-emergy output intensity (CemI) in Zhejiang province.

https://doi.org/10.1371/journal.pone.0206680.g008

Fig 9. Crop outputs measured in terms of emergy and monetary value in Zhejiang province.

https://doi.org/10.1371/journal.pone.0206680.g009
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The increase of cash crops (and the simultaneous decrease of grain crops) was also

responsible for the increases in the use of PNR and the emergy input per unit sown area

because cash crop plantations are generally more chemical and energy intensive than grain

crop plantations.

3.3 Mitigation potential based on DEA analysis

In the previous section, emergy input and output indicators and carbon emissions intensity

accounting were applied to describe the carbon efficiency of crop production. Specifically, the

emergy-based carbon efficiency (CemI) indicated that a low efficiency problem in crop planta-

tion systems may exist. However, CemI alone does not give an indication of a system’s carbon

reduction potential. To determine the reduction potential, the nonseparable undesirable out-

put SBM-DEA method was employed to reveal the input redundancy and the undesirable out-

puts (GHG emissions) of crop production for each prefecture in the province.

Due to data availability, only the production efficiency value (Table 4), input factors redun-

dancy estimation (Fig 10) and the associated carbon mitigation potential (Table 5) were esti-

mated for the years 1995, 2000, 2005, 2010 and 2014. The results are listed in Table 4.

Table 4 presents the results of the production efficiency value of various prefectures of the

province. Each prefecture in a specific year was treated as a separate individual entity (i.e., the

same prefecture observed in two different years was treated as two separate entities). The table

shows that, of the 5 selected years, 35 of the total 55 observations are fully efficient. This is very

high proportion and can be caused by a relatively small number of observations within the

same province. However, the results did uncover inefficiencies in some prefectures, which is

consistent with the development level and geographical characteristics of the prefectures in

Zhejiang province, so the number of observations is not ’too small’.

Tables 4 and 5 and Fig 10 indicate that Jinhua, Taizhou, and Wenzhou, which are primar-

ily located in the southern part of the province, exhibit relatively lower production efficiencies,

higher input factor redundancies (especially machinery and chemical fertilizer use which are

carbon intensive), and higher carbon emissions reduction potentials for crop production.

Although the northern prefectures, such as Hangzhou, Huzhou, and Jiaxing, have relatively

higher production efficiencies, they have lower input factor redundancy and less carbon reduc-

tion potential.

The annual total mitigation of emissions through the overall study period shows a slight

increasing trend, which corresponds to the high carbon trend revealed by the CemI

calculation.

Table 4. Crop production efficiency value of various prefectures of Zhejiang Province in selected years.

Region 1995 2000 2005 2010 2014 average

Hangzhou 1 1 1 1 1 1

Huzhou 0.8128 1 1 1 1 0.9626

Jiaxing 0.8853 1 1 1 1 0.9771

Jinhua 0.7074 0.70244 0.64770 0.6429 0.6042 0.6609

Lishui 1 1 1 1 1 1

Ningbo 1 1 1 1 0.8515 0.9703

Quzhou 1 1 1 0.6299 0.8199 0.8899

Shaoxing 1 1 1 1 1 1

Taizhou 0.6684 0.6020 0.5631 0.5514 0.5139 0.5798

Wenzhou 0.6184 0.6535 0.6905 0.7142 0.7543 0.6862

Zhoushan 1 1 1 1 1 1

https://doi.org/10.1371/journal.pone.0206680.t004
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4. Discussion and conclusion

This study applied a thermodynamics indicator, emergy, to account for the quantity of differ-

ent types of inputs in crop production—namely, free renewable natural resources (FRR), free

nonrenewable natural resources (FNR), purchased renewable resources (PRR) and purchased

nonrenewable resources (PNR)—and the total crop production (Y) to be able to compare and

analyze these factors. GHG emissions embodied in crop production are accounted for to show

the carbon intensity of crop production, in terms of per unit emergy and monetary output,

Fig 10. Input factors redundancy estimation for the prefectures of Zhejiang province.

https://doi.org/10.1371/journal.pone.0206680.g010

Table 5. Carbon mitigation potential based on emergy output in the crop production systems of various prefectures of Zhejiang province in selected years.

Year 1995 2000 2005 2010 2014 Total

Carbon mitigation potential Unit 104 tons CO2-eq

Hangzhou 0 0 0 0 0 0

Huzhou 0 0 0 0 0 0

Jiaxing 0 0 0 0 0 0

Jinhua 20.77 40.22 31.33 27 46.19 165.50

Lishui 0 0 0 0 0 0

Ningbo 0 0 0 0 24.76 24.76

Quzhou 0 0 0 36.78 9.25 46.03

Shaoxing 0 0 0 0 0 0

Taizhou 54.11 50.88 48.19 44.97 55.56 253.70

Wenzhou 51.11 75.85 52.82 46.88 39.77 266.43

Zhoushan 0 0 0 0 0 0

Total 125.99 166.94 132.34 155.63 175.52 -

https://doi.org/10.1371/journal.pone.0206680.t005
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during the study period. A nonseparable undesirable output SBM-DEA analysis was used to

reveal the production efficiency variation and the carbon emission mitigation potential of crop

farming in Zhejiang province.

The emergy input density (EID) showed an increasing trend of emergy input per unit area,

implying an increasing dependence on resource inputs. The ecological environmental loading

radio (ELR) experienced an upward trend due to an overdependence on nonrenewable

resources used to maintain crop production. The purchased input ratio (PIR) also continued

to increase, thus implying increasing reliance on purchased inputs. The self-sufficiency ratio

(SSR) presented a decreasing trend of the share of renewable inputs in input totals. These four

indicators indicated that sustainability was not optimum in the province’s crop production.

GHG emissions from crop plantation were primarily related to PNR inputs based on the

LCA method. Carbon intensity based on monetary output (CmI) declined. However, this does

not mean that there are decreasing carbon emissions per unit of crop farming output. Cash

crop plantations tend to produce a higher monetary value, which leads to an underestimation

of actual carbon intensity per unit output. The carbon intensity indicator based on emergy

(CemI) indicates an increasing carbon intensity trend in the crop farming sector, which

reflects a more probable situation. This high carbon intensity trend is largely attributed to

mechanization and the shift from labor-intensive to energy-intensive farming models.

Chemical fertilizers and energy utilization are the major GHG emissions sources. From the

overall technical efficiency analysis based on the nonseparable undesirable output SBM-DEA,

we inferred that an optimization of agricultural input allocation and, more specifically, reduc-

ing the use of nonrenewable resource inputs, such as chemicals and fossil fuels, would help to

reduce GHG emissions.

The efficiencies in the areas of the northern prefectures of the province, namely, the Hang-

jiahu (Hangzhou, Jiaxing, Huzhou) and the Ningshao plains (Ningbo, Shaoxing), are higher

than those of the southern areas, especially in the Jinqu basin (Jinhua, Quzhou) and other

areas in the middle hilly region.

Currently, to keep agricultural production profitable, shifting to cash crop farming and

increasing the use of outsourced, nonrenewable resource inputs with high direct and embod-

ied carbon emissions has become a “must” in both Zhejiang Province and the nation.

The governmental departments of both Zhejiang Province and China have realized the

urgency in promoting low carbon agriculture, and a series of actions are being implemented.

Zhejiang province’s government has drawn up the "Zhejiang Modern Ecological Circular

Agriculture Development Plan" [59]. In this plan, both an increase in chemical fertilizer use

efficiency and a reduction in chemical fertilizer use in crop plantation is required. Technolo-

gies such as testing soil formula fertilization, organic nutrients (such as commercial organic

fertilizers, biogas slurry, straw returning to the fields and green manure) and the replacement

of chemical fertilizer are strongly encouraged. Controlling methane emissions is also addressed

through water and fertilizer management improvement.

A green subsidy to support these reforms and technical progress is underway. Due to the

small-scale nature of the average Chinese farmer, low carbon agriculture reform generally

lacks investment for R&D. Therefore, financial support for low carbon agriculture technology

development and expansion becomes a priority for policymakers in China. During 2011–2015,

the Zhejiang Provincial government arranged 90 million RMB annually to support eco-circu-

lar agriculture development in the province, and the budget has been increased to 190 million

RMB for 2016–2020. Though the subsidy is still small, compared with the large scale of pro-

duction, it demonstrates substantial progress. The annual subsidy from the central govern-

ment for testing soil formula fertilization have amounted to 700 million RMB since 2015. In
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2013, Zhejiang Province regulated subsidies to encourage the phasing out of high-energy-con-

sumption agricultural machinery [60].

The cancellation of subsidies to high carbon production factors, especially chemical fertil-

izer production and consumption, is another major countermeasure [61]. In 2015, the Minis-

try of Agriculture of China set the target of “zero increase of agricultural chemical fertilizer

application by the year of 2020”. In response to the national target, the subsidies to chemical

fertilizer production and sales have been cancelled, including the cancellation of preferential

power and natural gas prices for chemical fertilizer production, a cancellation of the chemical

fertilizer purchase subsidy, and the recovery of a value added tax on chemical fertilizer.

A low carbon agriculture promotion policy toolkit is expected to have profound effects in

the near future.
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