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Abstract

We have created a new, fast-growing strain of common carp with higher unsaturated fatty acid

content in muscle. To better understand the impacts of gene regulation in intestinal tissue on

growth and unsaturated fatty acid content, we conducted a comparative RNA-Seq transcrip-

tome analysis between intestine samples of Selected and Control groups (and corroborated

selected results by PCR). After eight weeks of cage culture, weight gain of the Selected group

was 20.84% higher. In muscles of the control group, monounsaturated fatty acids (FAs) were

more abundant, whereas polyunsaturated FAs were more abundant in muscles of the Selected

group. In total, we found 106 differentially expressed genes (DEGs) between the two groups.

Only the endocytosis pathway was significantly enriched in DEGs, with two upregulated genes:

il2rb and ehd1. The latter is involved in the growth hormone/insulin-like growth factor (Gh/Igf)

axis, which plays a key role in the regulation of growth in animals. tll2, which is known to be

associated with intestinal regeneration, was extremely highly upregulated in both transcrip-

tomic (infinite) and qPCR (610.70) analyses. Two of the upregulated genes are associated with

the fatty acid metabolism, several genes are likely to be indicators of heightened transcription

levels, several are associated with metabolic and developmental roles, several with neuronal

functions (including two with vision), several with the immune system, and two downregulated

genes with the development of vasculature. The higher growth rate of the Selected group is

likely to be at least partially attributed to increased endocytosis efficiency and genetically-driven

behavioural differences (higher aggression levels). There are some indications that this new

strain might have slightly impaired immune responses, and a higher propensity for inherited dis-

eases leading to sight impairment, as well for neurodegenerative diseases in general, but

these indications still need to be confirmed.
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Introduction

Growth rate, regulated by environmental factors and genetics, is a primary trait of interest in

selection programs of most cultured fish species due to its intrinsic link with productivity and

profitability of aquaculture enterprises [1]. The common carp (Cyprinus carpio Linnaeus 1758)

is probably the oldest and most common cultured fish species, with third largest total aquacul-

ture production output globally. In 2014, the total global output was over four million tonnes

(almost 10% of the global annual freshwater aquaculture production), producing the economic

value of almost six billion dollars, with China producing around 70% of the total output [2].

Growth of skeletal muscles of fish is the primary topic of interest for the aquaculture indus-

try [3]. Several growth-related features set the fishes apart from mammals: continuous accre-

tion of muscle tissue results in the increase of body length and mass (albeit at a slowing rate)

until mortality or senescence occur, both hyperplasia and hypertrophy contribute to muscle

growth, and fishes predominantly accumulate functional protein (as opposed to storing the

excessive energy as adipose tissue) [3–5]. Although some molecular aspects of growth in fish

are relatively well-studied, such as the growth hormone—insulin-like growth factor I

(GH-IGFI) axis of the neuroendocrine system [3,6–8], our understanding of the molecular

regulation of growth in fish remains fragmentary [3,9].

Fatty acids are essential cellular components, whose composition is important for the nutri-

tive value and taste of meat [10]. In humans, saturated FAs are risk factors for cardiovascular

diseases, whereas unsaturated and especially polyunsaturated FAs, such as omega-3 and -6 (ω-

3 and ω-6), have antiatherosclerotic effects and a number of other beneficial health effects

[11,12]. Fish meat is generally the main source of polyunsaturated fatty acids (FAs) in human

diet, and thus of remarkable significance in human nutrition [13,14].

The gastrointestinal tract acts as a selectively permeable barrier for dietary nutrients, elec-

trolytes and water, while maintaining an effective defense against pathogens [15]. Regardless

of anatomical and physiological differences (common carp is an agastric, omnivorous fish),

teleost fishes are characterised by the presence of at least two intestinal segments: the first is

responsible for the absorption of lipids and the second for pinocytotic uptake of macromole-

cules, including proteins [3,4]. Uptake of nutrients from food via the intestinal barrier is a pre-

requisite for growth, and impacts of different diets on intestinal transcriptome have been

studied in fish [16,17]. However, individual differences in the efficiency of this process in fish,

and particularly the genetic background thereof, remain almost completely unstudied.

The molecular control of growth in fish muscles is relatively well-understood [5,9], but

molecular control of intestinal nutrient uptake, although likely to play a part in the growth rate

[9], remains poorly understood. High-throughput RNA sequencing technology (RNA-Seq)

has been used to study the molecular mechanisms underlying growth in bacteria [18], plants

[19], mammals [20], and fish [21–26]. Furthermore, detailed RNA-Seq transcriptome analyses

have been applied to study gene expression profiles in 19 different tissues of the common carp,

but the analysis did not include intestinal samples [27]. Intestinal transcriptomes have been

used to search for drug candidates [28], study regeneration mechanism [29], and genome poly-

adenylation [30], but (to our knowledge) none of previous transcriptome-based studies of fish

growth have used intestine among the sampled tissues [21,22].

A new, fast-growing strain of common carp with higher unsaturated fatty acid content in

the muscle was recently created by combining the best linear unbiased prediction and molecu-

lar markers-based breeding methods [31]. To better understand the overall gene expression

levels in the intestine of common carp, as well as the impacts of gene regulation in intestinal

tissue on the growth and unsaturated fatty acid content in the muscles of this important cul-

tured fish species, we conducted a comparative RNA-Seq transcriptome analysis of intestinal

Differentially expressed genes in the intestine of a fast-growing carp strain

PLOS ONE | https://doi.org/10.1371/journal.pone.0206615 November 5, 2018 2 / 22

Projects in the National Science & Technology

Pillar Program during the twelfth Five-Year Plan

Period (2012BAD26B02); and the National

Nonprofit Institute Research Grant of CATAS-

TCGRI (2013JBFM14). The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0206615


tissues of the new strain and a control group. This study also aims to contribute to the under-

standing of the genetic basis of growth and unsaturated fatty acid content in fish and verte-

brates in general.

Results and discussion

Growth performance and effects of selection on fatty acid composition of

muscles

Growth performance test of 48 families showed that after eight weeks of cage culture experi-

ment, weight gain of the Selected group was 20.84% higher than that of the Control group

(Table 1). Fatty acid composition analysis showed that saturated FAs (SFA) were more abun-

dant (albeit non-significantly) in the muscles of Control group (Table 1). Among eight SFAs,

six were more abundant in the Control group, but only one significantly. Regarding the two

that were higher in the Selected group (C:18 and C:20), only C:18 was significantly higher.

Unsaturated FAs (UFA), however, were more abundant in the Selected group: among 15

UFAs, only four were more abundant in the Control group, and only C18:1 significantly.

Among the remaining eleven UFAs, three (C20:4, C22:3 and C22:4) were significantly higher

in the Selected group. Intriguingly, this difference was driven exclusively by polyunsaturated

FAs (PUFA), as monounsaturated FAs (MUFA) were significantly more abundant in the Con-

trol group: three out of four were more abundant. Among the PUFAs, only one (C18:3 n-3)

was more abundant in the Control group (Table 1).

A large number of factors play a part in determining the fatty acid composition of muscles

of common carp [32,33]. However, as environmental factors were controlled for in this experi-

ment, the differences observed should be largely attributable to genetics [33]. The observed

reduction in the level of oleic acid (MUFA: C18:1) is not a desirable result, as this FA is benefi-

cial both for the total cholesterol and low-density lipoprotein cholesterol levels in plasma in

humans and for the fish meat flavour [34]. However, the lower proportion of this MUFA in

the Selected group is compensated by the increase in essential PUFAs, the consumption of

which is associated with numerous health benefits [11,13]. Therefore, we can conclude that

selection for faster growth did not negatively affect the meat quality (at least not in terms of FA

composition) of the Selected line.

Transcriptome analyses

The sequencing of twelve intestine samples, which includes eight specimens from the Selected

group and four specimens from the Control group, yielded 93.78 Gb of clean data, reaching

6.17 Gb for a single sample, with Q30 over 87% (S1 Table). Clean reads of each sample were

compared to the designated common carp reference genome, with mapping successfulness

rates ranging from 62.97% to 64.91%. On the basis of the results of alternative splicing predic-

tion, gene structure optimization, and queries of seven different databases, 5 346 new genes

were discovered. Differentially expressed genes (DEGs) were identified by statistically compar-

ing the results between the two groups. Functional annotation and enrichment analysis of 106

discovered DEGs was carried out subsequently. Data are deposited in the NCBI’s BioProject

(PRJNA414702) and SRA (SRR6202422, SRR6202423, SRR6202418, SRR6202419,

SRR6202424, SRR6202425, SRR6202421, SRR6202426, SRR6202420, SRR6202429,

SRR6202427, SRR6202428) databases.

Overall distribution of gene ontology terms following the GO database [35] annotation

results are comparable to those previously reported for liver samples of bighead carp [23], with

the exception of a strong increase in the percentage of DEGs associated with synapse (cellular
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component) in the intestinal samples of common carp. Comparison of functional category dis-

tribution between DEGs and the background transcriptome revealed notable differences in the

percentages of genes associated with the following biological processes: biological adhesion,

reproductive process and growth, all of which represented between 4 and 8% of all annotated

genes, but were completely absent from the DEGs. In the cellular components category, nota-

ble differences were observed in the percentage of genes associated with macromolecular com-

plexes, membrane-enclosed lumen, extracellular region part, extracellular matrix and synapse

part, all of which appear to be notably less abundant, or even completely absent, from the

Table 1. Effect of selection on growth and long-chain fatty acid (FA) composition (% of total FA) of muscles.

Growth/FA Control group Selected group

IBW 11.88±2.63 16.09±1.90

FBW 38.08±7.84a 63.83±5.66b

BWG 26.20±6.87a 47.74±4.96b

C12:0 0.0175±0.00161 0.0145±0.0007

C14:0 0.6256±0.0305 0.5794±0.034

C15:0 0.163±0.0111a 0.1365±0.0043b

C16:0 20.443±0.4523 19.321±0.4607

C17:0 0.2525±0.0162 0.2478±0.0112

C18:0 6.6548±0.0458b 7.4656±0.1645a

C20:0 0.2143±0.0118 0.2151±0.009

C22:0 0.0815±0.008 0.0714±0.0035

C16:1 1.4435±0.1591 1.0863±0.103

C18:1 20.511±0.5896a 17.236±0.7601b

C20:1 1.0023±0.0495 1.003±0.0234

C22:1 0.241±0.0314 0.2033±0.0074

C18:2 25.674±1.141 25.998±0.6794

C18:3 n-6 0.3213±0.0268 0.3878±0.0229

C18:3 n-3 1.5308±0.0725 1.4283±0.0453

C20:2 1.1575±0.0349 1.2028±0.0497

C20:3 2.398±0.0805 2.4934±0.0572

C20:4 3.9213±0.2575b 5.3394±0.2921a

C20:5 1.315±0.0422 1.3968±0.093

C22:3 0.3418±0.0152b 0.4541±0.0267a

C22:4 1.6068±0.0451b 2.3871±0.0909a

C22:5 0.8765±0.0422 0.9205±0.0391

C22:6 9.1105±0.2154 10.331±0.4868

SFA2 28.549±0.4591 28.132±0.3424

MUFA3 23.198±0.7656a 19.529±0.8618b

PUFA4 48.254±0.9015b 52.339±1.0159a

UFA5 71.452±0.4591 71.868±0.3424

IBW = initial body weight (g), FBW = final body weight (g), BWG = body weight gain (%). Within a row, different

letters (superscript) indicate that the means are significantly different between two groups (P<0.05).
1 All values are presented as mean % ± SE
2 SFA = sum of saturated FAs (C12:0 to C22:0)
3 MUFA = sum of monounsaturated FAs (C16:1 to C22:1)
4 PUFA = sum of polyunsaturated FAs (C18:2 to C22:6)
5 UFA = sum of unsaturated FAs (MUFA + PUFA).

https://doi.org/10.1371/journal.pone.0206615.t001
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DEGs. In the molecular function category, notable differences were observed in the percent-

ages of genes associated with nucleic acid binding transcription factor activity and enzyme reg-

ulator activity, both of which represented between 3 and 7% of all annotated genes, but were

completely absent from the DEGs. Among the categories with higher proportion of DEGs

than all annotated genes were (in approximately descending order): guanyl-nucleotyde

exchange factor activity (1% among all genes and� 5% among DEGs), synapse, cell junction,

receptor activity, metabolic process, multi-organism process, catalytic activity, and structural

molecule activity (Fig 1).

Functions of DEGs were also predicted and classified by searching COG [36] and KOG

[37] databases (Fig 2). Results of these two functional classifications were only partially con-

gruent: by far the highest proportion of DEGs could be merely assigned to the ‘general func-

tion prediction only’ functional class in both classifications. In KOG classification, this was

followed by ‘signal transduction mechanisms’, which was completely absent from COG, but

‘replication, recombination and repair’ and ‘amino acid transport and metabolism’ were found

in both classifications. A small proportion of DEGs were associated with categories likely to

be implicated in growth, such as carbohydrate and lipid (absent from COG) transport and

metabolism. Intriguingly, although it may be expected that faster growth would be reflected

in a number of DEGs related to the energy production, cell growth and division, DEGs classi-

fied as ‘energy production and conversion’, ‘cell cycle control, cell division, chromosome

Fig 1. GO functional classification of annotated genes in transcriptome profiles of selection and control groups. ‘DEG Unigene’ refers to differentially expressed

genes and ‘All Known Gene’ to all annotated genes in both groups.

https://doi.org/10.1371/journal.pone.0206615.g001
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partitioning’, ‘cell wall biogenesis’, and ‘extracellular structures’ were absent from both classifi-

cations. This scarcity of functional categories of DEGs becomes even more obvious when the

results are compared with liver profiles of fast and slow-growing bighead carp, where all func-

tional categories were represented among the discovered DEGs [23]. This is almost certainly at

least partially a reflection of the central regulatory role the liver has in the growth of fish [7], as

opposed to very specific functions of intestines. However, importantly for the objectives of our

study, pathway enrichment analysis showed that (only) endocytosis pathway was significantly

enriched in DEGs, compared to the whole genome background (S1 Fig). This finding indicates

that endocytosis efficiency might indeed contribute to the observed differences in the growth

rates of two groups.

Specific differentially regulated genes

Among the 106 DEGs (S2 Table), we have selected a subset of 25 genes which might be partic-

ularly relevant for the objectives of this study (Table 2). Overall, among the DEGs, there were

more downregulated than upregulated genes. To corroborate the results of the transcriptome

analysis, the expression of a further subset of ten of these DEGs was studied using qPCR (Fig

3). Correlation between transcriptomic and qPCR results was relatively low (S2 Fig), but this

was mostly caused by a number of outliers, whereas some genes exhibited almost perfectly

congruent results between the two methods (S3 Table). As discussed before [38], this might be

a consequence of different data normalization methods used for qPCR (reference gene) and

RNA-seq (RPKM) data analyses [39,40]. Gene expression patterns vary widely between tissues

in common carp, which poses a problem for RNA-Seq analyses, which assume that samples

are comparable [27,39]. These high individual gene expression differences may also explain

the relatively low number of DEGs observed, as a large SD would influence the statistical sig-

nificance calculations. Furthermore, gene expression analyses in teleost fishes are additionally

encumbered by a large number of co-expressed, highly similar paralogs [38]: as a result of a rel-

atively recent (�8 MYA) genome duplication specific to this taxonomic group, teleost fishes

possess a large number of duplicated genes [41]. Although many of the superfluous gene copies

have been lost in the course of evolution, in many cases two (or more) paralogs have retained

their functions and continue to be expressed [42,43]. In common carp, which is an allotetra-

ploid, possessing a large number of functional paralogs [27,44,45], this can be up to four func-

tional paralogs. As observed in our transcriptomic results as well, sometimes paralogs forming

teleost gene families are differentially expressed, which indicates that this functional redun-

dancy may have resulted in the evolution of slightly diversified functions and very complex

regulation [5,46,47]. Apart from presenting a problem for gene annotation, these paralogs can

also produce apparently inconsistent expression results. For example, in cases where qPCR

analysis indicates upregulation, whereas the transcriptomics indicates downregulation, it is

possible that the primers designed for qPCR may have non-specifically amplified both (or

more) differentially expressed paralogs present in the genome.

A number of regulated genes could be associated with metabolism, growth, development

and proliferation. Most importantly for this study, two upregulated genes were associated with

endocytosis pathway: interleukin-2 receptor subunit beta (il2rb; infinite upregulation) and EH
domain-containing protein 1 (ehd1 or intersectin-1; +1.6). The il2rb gene is involved in recep-

tor-mediated endocytosis and transduces the mitogenic signals of il2 [48]. This gene has not

been associated with animal growth before (to our knowledge), but a very recent study indi-

cated that it might be implicated in jaw diversity in pupfishes [49]. The Ehd1 protein interacts

with Insulin-like growth factor 1 (Igf-1) receptor. The level of Igf-1 in serum is known to be

positively correlated with growth rate in fishes [3]. Generally, in most vertebrates, growth
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Fig 2. KOG and COG functional classification of differentially expressed genes between the selection and control groups.

https://doi.org/10.1371/journal.pone.0206615.g002
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hormone/insulin-like growth factor (Gh/Igf) axis (a major component of which is Igf-1) plays

a key role in the regulation of growth, proliferation and differentiation [6,7,9,21,50]. Particu-

larly interesting for this study is that Gh supports muscle protein synthesis indirectly by

Table 2. A subset of 25 putatively relevant genes among those differentially expressed in Selected and Control groups.

Gene Name Nr or Swiss Prot2 annotation eggNOG class annotation FDR log2FC Reg

phyh Phytanoyl-CoA dioxygenase, peroxisomal precursor [Osmerus

mordax]

Lipid transport and metabolism 0.003956 2.31 up

il2rb Interleukin-2 receptor subunit beta precursor [Danio rerio] Extracellular structures 0.000423 Inf up

H3.3 Histone H3.3 [Salmo salar] Chromatin structure and dynamics 7.54E-07 Inf up

itsn1 Intersectin or EH-domain containing 1a [D. rerio] Signal transduction1 0.003146 1.63 up

novel β-ketoacyl Novel protein containing a beta-ketoacyl synthase, N-terminal

domain [D. rerio]

Lipid transport and metabolism 0.002079 11.54 up

flad1 FAD synthase region [D. rerio]2 Coenzyme transport and metabolism 2.05E-17 5.77 up

tll2 PRED: cubilin [D. rerio]; Tolloid-like protein 2 [Xenopus laevis ]2 Coenzyme transport and metabolism 0.00392 Inf up

cd276 CD276 antigen homolog (Precursor) [X. laevis ]2 General function prediction only 3.27E-07 Inf up

calm Calmodulin [Oreochromis mossambicus] 2 Signal transduction mechanisms 0.004969 7.96 up

nlrp3-like PRED: NACHT, LRR and PYD domains-containing protein 3-like [D.

rerio]3
General function prediction only 1.16E-05 2.43 up

nlrp3 PRED: NACHT, LRR and PYD domains-containing protein 35 [D.

rerio]

General function prediction only 5 5 down

nlrp12 PRED: NACHT, LRR and PYD domains-containing protein 125 [D.

rerio]

General function prediction only 5 5 down

setd8-a PRED: N-lysine methyltransferase SETD8-like [D. rerio] General function prediction only 0.000502 -5.01 down

rpgrip1l RPGRIP1-like (K16550)6 Embryonic pattern specification7 0.000491 -inf down

atp10-b PRED: probable phospholipid-transporting ATPase VB [D. rerio] Inorganic ion transport and metabolism 2.63E-06 -inf down

epd-2 PRED: ependymin-2-like [Astyanax mexicanus] General function prediction only 0.003711 -1.93 down

ldlrad3 PRED: low-density lipoprotein receptor class A domain-containing

protein 4-like [D. rerio]

Signal transduction mechanisms 0.001095 -3.99 down

glomulin PRED: glomulin, FKBP associated protein b isoform X1 [D. rerio] Function unknown 5.38E-14 -6.16 down

aggf1 Angiogenic factor with G patch and FHA domains 1 [D. rerio] General function prediction only 0.00088 -1.73 down

cxcl14 Cxcl14 protein [D. rerio] General function prediction only 0.000458 -1.49 down

tln2 PRED: talin-2 isoform X2 [D. rerio] Cytoskeleton 0.00066 -1.50 down

svop PRED: synaptic vesicle glycoprotein 2C-like [A. mexicanus] General function prediction only 1.43E-05 -5.91 down

st8sia1 alpha 2,8-sialyltransferase ST8Sia I/V/VI-r2 [D. rerio] Carbohydrate transport and metabolism 0.000165 -6.39 down

proteoglycan 4-
like

PRED: proteoglycan 4-like, partial [Poecilia reticulata] - 8.88E-05 -inf down

trim25 PRED: E3 ubiquitin/ISG15 ligase TRIM25 isoform X3 [D. rerio]4 Posttranslational modification, protein

turnover, chaperones

1.60E-07 -inf down

PRED = predicted
1 KOG class annotation
2 Swiss Prot annotation
3 SwissProt annotation is Neoverrucotoxin subunit alpha [Synanceia verrucosa, Reef stonefish]
4 Annotation of this protein was ambiguous, depending on the database: E3 ubiquitin-protein ligase ORTHRUS 2-like in KEGG annotation, Stonustoxin subunit alpha

[Synanceia horrida, Estuarine stonefish] in SwissProt
5 Eight isoforms of this gene were downregulated, five of which were annotated as protein 3(-like) and three were protein 12(-like). FDR values ranged from 1.17E-07 to

5.16E-03 (2.08E-03 on average) for protein 12-like, and from 8.92E-07 to 0.000787 (0.000251 on average) for protein 3-like. Regulation ranged from -2.02 to -2.31-fold

(-2.17 on average) for protein 12-like, and from -2.01 to -5.74-fold (-3.61 on average) for protein 3-like. Two of the isoforms (one protein-3 and one protein-12) were

annotated as Protein NLRC5 (gene name = nlrc5) [Ictalurus punctatus, Channel catfish] in SwissProt database
6 KEGG annotation
7 GO annotation.

https://doi.org/10.1371/journal.pone.0206615.t002
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enhancing rates of amino acid uptake from the intestine and by stimulating intestinal growth

[3,51]. This indicates that the higher growth rate observed in the Selected group is likely to be

at least partially attributed to increased endocytosis efficiency.

Two of the upregulated genes are known to be involved in the fatty acid metabolism: the

enzyme encoded by phytanoyl-CoA dioxygenase, peroxisomal (phyh) gene (transcriptome = 2.3,

qPCr = 2.5) is critical for the normal function of peroxisomes, which play a key role in the

breakdown of some fatty acids [48,52]. A novel gene was annotated on the basis of its similarity

with zebrafish genes: protein containing a beta-ketoacyl synthase, N-terminal domain. This

gene, very highly upregulated in both transcriptome (11.5) and qPCR (710.79) analyses, is

Fig 3. qPCR analysis of a subset of ten differentially expressed genes. Data were normalized to gapdh as the

reference gene and presented as a fold change between the Selected and Control groups (mean±SD). Results were

analyzed by the t-test, where different letters indicate significant (P< 0.05) differences.

https://doi.org/10.1371/journal.pone.0206615.g003
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likely to be responsible for the chain-elongation step of dissociated (type II) fatty-acid biosyn-

thesis, i.e. the addition of two C atoms to the fatty-acid chain [53].

Several other genes upregulated in the Selected group are likely to be indicators of height-

ened transcription levels: histone h3.3 gene was extremely highly upregulated in the transcrip-

tome analysis (infinite), but only mildly upregulated (0.77) in the qPCR analysis. This gene is

believed to represent an epigenetic imprint of transcriptionally active chromatin [48]. Three

more upregulated genes are associated with transcription and RNA processing [54]: rna-bind-
ing protein 5 (2.01), n-lysine methyltransferase setd8-a (4.15) and fad synthase region (flad1),

which was very highly upregulated in both transcriptome (5.77) and qPCR (11.94) analyses.

Intriguingly, two setd8-a paralogs were downregulated in the transcriptomic analysis (-5 and

-infinite), which indicates that setd8 paralogs might have slightly different functions and com-

plex regulation.

Several more DEGs are associated with metabolic and developmental roles: tolloid-like pro-
tein 2 (tll2) gene encodes a protease which processes procollagen C-propeptides, such as chor-

din. It is required for the embryonic development, where it influences dorso-ventral

patterning and skeletogenesis [48,55,56]. It appears to have a broad range of functions, as it

has been linked with behaviour in mice and bipolar disorder in humans [57]. Intriguingly, a

knockout of this gene resulted in increased muscle mass in mice [58], which is not in agree-

ment with our observations (positive correlation). This gene was extremely highly upregulated

in both analyses: infinitely in transcriptome and 610.70 in qPCR. As tolloids were also associ-

ated with gut regeneration in sea cucumber; the authors proposed that Bmp1/Tll axis might be

involved in folding of the luminal epithelium and gut looping [59]. This raises some interesting

hypotheses about the correlation between tll2 expression, proliferation of intestinal epithelium,

and growth in common carp, but they need to be further experimentally tested. Calmodulin
was very highly upregulated in both analyses: 7.96 in transcriptome and 5.92 in qPCR. It medi-

ates the control of a large number of enzymes, including protein kinases and phosphatases

[48]. Calmodulin plays an important role in the activation of phosphorylase kinase, which ulti-

mately leads to glucose being cleaved from glycogen by glycogen phosphorylase. It also plays

an important role in lipid metabolism by activating calcitonin, which is a hormone that lowers

blood Ca2+ levels and activates G Protein cascades that lead to the generation of cAMP [48]. In

fish, calmodulin has been proposed as a molecular stress indicator [60]. Phospholipid-trans-
porting ATPase IC gene (atp10b), a component of the P4-ATPase flippase complex, which cata-

lyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to

the inner leaflet of various membranes and ensures the maintenance of asymmetric distribu-

tion of phospholipids [48], was strongly downregulated (- infinite). Phospholipid translocation

also seems to be implicated in vesicle formation and in uptake of lipid signaling molecules

[48]. The protein is found in brain and in low levels in testis, but its expression is known to be

enhanced in intestines in humans [61,62]. However, the reason for its strong downregulation

in the Selected group remains unclear.

Intriguingly, two downregulated genes are associated with vision in animals: rpgrip1-like
gene (- infinite) encodes a photoreceptor protein that is a key component of cone and rod pho-

toreceptor cells. Mutations in this gene lead to autosomal recessive congenital blindness

[54,63,64]. Ependymin-2-like (epd) was downloaded in the transcriptome analysis (-1.9) and

slightly upregulated (0.46) in the qPCR analysis. It belongs to the family of proteins predomi-

nant in the cerebrospinal fluid of teleost fishes, associated with neuroplasticity and (optic

nerve) regeneration [65]. This particular gene (epd-2), however, is expressed in non-brain tis-

sues in fishes. In intestines, it is overexpressed in colon cancer, and its overexpression might

be associated with intestinal regeneration [65]. It has also been associated with aggression lev-

els in teleosts: inactivation of ependymin in subdominant fish resulted in a substantial increase
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in aggression in parallel with an enhanced competitive ability [66]. Therefore, lower expression

of this gene in the Selected group may result in more aggressive behaviour during feeding [67]

and ultimately faster growth of the fish in this group. Two more downregulated genes have

been associated with neuronal function: ST8 Alpha-N-Acetyl-Neuraminide Alpha-2,8-Sialyl-
transferase 1 (st8sia1: -6.4) has been associated with multiple sclerosis, as well as with metabo-

lism of membrane-bound sphingolipids, important for cell adhesion and growth of cultured

malignant cells [68]. Synaptic vesicle 2-related (svop; -5.9) is involved in neuron formation,

maturation, or neuronal function [69]. Another gene associated with multiple functions in the

synaptic vesicle cycle [70], itsn1, was upregulated in both transcriptome (1.63) and qPCR

(1.94) analyses. Low-density lipoprotein receptor class A domain-containing protein 3 (ldlrad3),

an important component of a pathway associated with neurodegenerative diseases, including

Alzheimer’s [54,71], was strongly downregulated (-4.0). Similarly, rhoGEF and pleckstrin
domain-containing protein 1 (farp1) gene, also relatively strongly downregulated (-2.7), plays a

role in the assembly and disassembly of dendritic filopodia, the formation of dendritic spines,

regulation of dendrite length and ultimately the formation of synapses [48]. It is not clear

whether mRNAs of these genes originate from the enteric nervous system, or whether some of

them are expressed in cells of the gastrointestinal wall. Regardless, these results indicate that

genetically-driven behavioural differences (higher aggression levels) may also have contributed

to the higher growth of the Selected group. However, there are also indications that this popu-

lation might have a higher propensity for inherited diseases leading to sight impairment, as

well higher propensity towards neurodegenerative diseases in general.

A number of regulated genes were associated with the immune system: cd276 antigen

homolog (upregulated: infinite) modulates immune responses, trim25 gene (downregulated:

-infinite) is involved in innate immune defense against viruses, and cxcl14 (downregulated:

-1.5) belongs to the cytokine gene family, which encode secreted proteins involved in immu-

noregulatory and inflammatory processes [48]. cxcl14 might also be involved in the homeosta-

sis of monocyte-derived macrophages, rather than in inflammation [54]. Nine gene isoforms

belonging to the NACHT, LRR and PYD domains-containing protein (nlrp) family were also

regulated: three nlrp12 gene isoforms and six nlrp3 gene isoforms. Apart from one nlrp3 iso-

form (upregulated: 2.43), all other isoforms were downregulated: nlrp3 from -2.01 to -5.74,

and nlrp12 from -2.02 to -2.31. Whereas in mammals this family contains only several mem-

bers, in teleost fish, NLR proteins have expanded into a huge family containing hundreds of

genes, which mostly act as innate immune sensors for pathogen-associated stress signals [72].

Therefore, if we presume that studied carps were exposed to similar pathogens, downregula-

tion of these paralogs indicates a possibility of slightly impaired immune responses of the

Selected group.

Two downregulated genes are associated with the development of vasculature: mutations in

glomulin (-6.2) have been associated with glomuvenous malformations [73], whereas angio-
genic factor with G patch and FHA domains 1 gene (aggf1; -1.73) promotes angiogenesis and

proliferation of endothelial cells. Another two downregulated genes might be an indication of

a higher likelihood of health-related problems in the Selected group: talin-1 (tln1; -1.5) is

involved in connections of major cytoskeletal structures to the plasma membrane and cell-cell

contacts [48], whereas proteoglycan 4-like (-infinite) prevents protein deposition onto cartilage

from synovial fluid by controlling adhesion-dependent synovial growth and inhibiting the

adhesion of synovial cells to the cartilage surface [48].

To sum up the results: two upregulated genes are known to be involved in the fatty acid

metabolism, several genes are likely to be indicators of heightened transcription levels and pro-

liferation, several are associated with metabolic and developmental roles, several with neuronal
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functions (including two with vision), several with the immune system, and two downregu-

lated genes with the development of vasculature.

Conclusions

Gene expression analyses indicate that the higher growth rate of the Selected group is likely to

be at least partially attributed to increased endocytosis efficiency and genetically-driven beha-

vioural differences (higher aggression levels). Among the detected DEGs, il2rb is the most

likely candidate gene to explain the increased growth rate, while phyh is the most likely candi-

date to explain the increased unsaturated fatty acid content in the muscles of the new Huanghe

carp strain. Our results contribute to the understanding of the genetic basis for growth and

unsaturated fatty acid content in fish, as well as vertebrates in general.

Materials and methods

Strain creation

Following the national aquaculture development strategy, a new strain of common carp was

created at the Nanquan farm of the Freshwater Fishery Research Center (FFRC) of Chinese

Fisheries Academy in the period between 2010 and 2016 with the aim of achieving higher

growth rate and unsaturated fatty acid muscle content, and lower feeding costs [31]. The basis

for the strain creation was a population (n = 1600) of the ‘Yellow River’ (Yuxuan Huanghe)

strain specimens introduced from the Fisheries Science Research Institute of the Henan Acad-

emy of Fishery Sciences and a local Jian carp population (n = 20). A subpopulation of about

600 Huanghe and 20 Jian specimens exhibiting a comparatively high growth rate was selected

in 2010 for the creation of the new strain (age� 17-month-old, average weight = 197.40±75.08

g) via artificial breeding (S3 Fig). The best model of parental pair selection was inferred via

BLUP analysis [74] on the basis of their breeding values and inbreeding coefficients (<0.02).

‘Selected’ line was created in the following way: families and individuals in each family were

ranked according to their breeding values, then male and female specimens with highest

breeding values were selected from the top-ranking families, and their inbreeding coefficient

values were calculated. If the inbreeding coefficient value of a given pair was below 0.02 it was

chosen for the Selected line family. A total of approximately 60 Selected line families (the num-

ber varied among generations) were created in this way, with each family represented by 50

(offspring) specimens produced by a selected parental pair. The control line (average number

of families per generation = 20) was generated by random mating of specimens with inbreed-

ing coefficient < 0.02. Their breeding values and the best model for parental pair selection

were inferred via a BLUP analysis. When they reached the size of about 10 g (� 3 months of

age), F1 juveniles were PIT (Passive Integrated Transponder) tagged for subsequent identifica-

tion, and growth performance data (length and weight) were simultaneously collected. At 8

months of age, growth performance of the F1 offspring was measured again, which was fol-

lowed by a comprehensive screening for molecular markers, BLUP analysis, and unsaturated

fatty acid muscle content analysis, to estimate the breeding value of the broodstock. For the

molecular markers we selected five markers (SNPs and SSRs) which we previously found to be

associated with body weight in carp: IGF2a4#, IGF2R intron 1, D-LOOP253, COI626, and

Koi42 [75]. DNA samples of parents and selected (high-performing) 500 offspring were also

collected. F2 parents were selected on the basis of juvenile growth performance and their

molecular markers. The best model for parental pair selection was obtained via data integra-

tion with the help of SAS/STAT 8.0 (SAS Institute Inc., Cary, NC, USA) and R3.1.14 [76] pro-

grams. The breeding value was estimated using ASReml2 [77], DMU [78], Python [79], and

two unpublished (but copyrighted) in-house developed programs, DNA compare1.0 and
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COECAL2.1. This process was repeated for three generations (2010–2016, two years per gener-

ation; S3 Fig): one-to-one artificial propagation of the core population was conducted in the

early May of 2012, 2014 and 2016 following the standard procedure [31,80]. In 2016, after

three generations of selection and breeding, we had a stock of 4000 (80 × 50) selected F3 speci-

mens, which were released into the same pond for the breeding program (not further discussed

in this study). In addition to these, we randomly selected five specimens from 48 families

(5 × 48 = 240 specimens) for the growth performance test (cage culture experiment) and unsat-

urated fatty acid muscle content analyses. Among these 48 families, 38 were from the Selected

line and 10 were from the control group. When they reached the size of about 10 g (� 3

months of age), all 240 juveniles were PIT (Passive Integrated Transponder) tagged for subse-

quent identification.

Growth performance and tissue sampling

To test the growth performance of the new strain, the aforementioned 240 healthy one-year-

old F3 generation specimens were reared in eight 1×1×1.2 m cages (approx. 30 fish per cage)

placed in earthen ponds from early September to mid-November 2016 (8 weeks). Selected and

Control lines were reared together, and there was no significant difference in the initial weight

(at the onset of the cage-rearing experiment) between the eight groups (cages). Light/dark

schedule was natural. Fish were fed pelleted feed (S4 Table) three times daily (8:00, 12:00,

16:00) to satiation (until fish would stop taking floating pellets from the surface). The amount

of feed was, thus, variable. Hand clapping was used as the feeding signal. The last feeding was

on the 56th day, 8:00am, at which point the fish was eight months-old. After starving the fish

for 24h, at 8:30am of the 57th day all 240 individuals (mortality rate = 0.0) were tranquilised in

20–30 mg/L MS-222 (Sigma-Aldrich, USA) as described [81]. Selected morphometric traits

were recorded: weight (g, 2 kg scale), standard length, body depth, body width (all to mm,

using a ruler) (S5 Table). One family from both lines (Control and Selected) was randomly

chosen for tissue sampling, followed by random selection of eight specimens from the Selected

group and four specimens from the Control group (S1 and S5 Tables). These twelve specimens

(5 male + 7 female, S1 Table) were euthanised in buffered MS-222 at 350 mg/L concentration

[81]. The fish were then dissected and a caudal portion of the epaxial muscle (> 10 g) sampled

using sterile scissors and forceps, and placed in sterile plastic bags. After weighing the entire

viscera, the intestine was rinsed three times with sterile phosphate buffered saline (PBS,

pH = 7.0) to remove the ingesta, and foregut, midgut and hindgut separated as described [82].

Samples were immediately (<3min) placed in labelled sterile plastic bags, flash-frozen in liquid

nitrogen, and stored at -80˚C. The handling of animals was conducted in accordance with the

guidelines for the care and use of animals for scientific purposes set by the Institutional Animal

Care and Use Committee of the Freshwater Fisheries Research Center, Chinese Academy of

Fishery Sciences, Wuxi, China and the EU Directive 2010/63/EU for animal experiments. The

permit to conduct this study was obtained from the institutional Animal Care and Use Com-

mittee of the Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences.

Analysis of fatty acid composition

To determine the effects of selection for fast growth on fatty acid (FA) composition of carp

meat, muscle samples of eight specimens from the Selected group and four specimens from

the Control group were collected (described above) and analysed. As fish muscles are mostly

composed of long-chain fatty acids [33,83], we focused on the composition of long-chain (C12

to C22) FAs in this experiment. A portion (�4 g) of each muscle sample was manually crushed

in liquid nitrogen using mortar and pestle and sent (on ice) to the State Key Laboratory of
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Food Science (Jiangnan University, Beijing), where the total lipid extraction and analysis was

performed as described before [33,84]. Briefly, lipids were extracted using chloroform/metha-

nol (v/v = 2:1), methylated with 10% (v/v) methanolic HCl at 60˚C for 3 h, extracted with n-

hexane, and analysed by gas chromatography using Agilent DB-WAXETR column (Agilent

Technologies, Santa Clara, CA, US), according to the manufacturer’s protocol. Pentadecanoic

acid (15:0) was used as the internal standard. Statistical analysis was conducted in Excel, with

the significance threshold set at 0.05.

Transcriptome analysis

RNA isolation, cDNA library construction and Illumina sequencing. Total RNA for

each sample was extracted from the intestine samples, cDNA libraries constructed and

sequenced, and transcriptome assembled and annotated by the Beijing Biotech Co. Ltd. (Bei-

jing, China) roughly as described before [85,86]. In total, eight specimens from the Selected

group and four specimens from the Control group were used for the transcriptome analyses.

To ensure that foregut, midgut and hindgut segments are represented in the transcriptome,

RNA was extracted (Trizol, Invitrogen, US) separately from the three segments, and equal

amounts (of the three segments belonging to the same specimen) were then pooled together.

RNA integrity and concentration were assessed using an Agilent Bioanalyzer 2100 system

(Agilent Technologies, CA, USA). cDNA libraries were generated using NEBNext UltraTM

RNA Library Prep Kit for Illumina (NEB, USA) following the manufacturer’s recommenda-

tions. One μg of RNA per sample was used as input material. Index codes were added to attri-

bute sequences to each sample. Briefly: poly-T oligo-attached magnetic beads (NEB, E7490)

were used to purify the mRNA from total RNA. Fragmentation was carried out using divalent

cations under elevated temperature in NEBNext First Strand Synthesis Reaction Buffer (5X).

First strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse

Transcriptase (RNase H). Second strand cDNA synthesis was subsequently performed using

DNA Polymerase I and RNase H. Remaining overhangs were converted into blunt ends via

exonuclease/polymerase activities. After adenylation of 3’ ends of DNA fragments, NEBNext

adaptors with hairpin loop structure were ligated to prepare for hybridisation. In order to

select cDNA fragments of preferentially 200–250 bp in length, library fragments were purified

with AMPure XP system (Beckman Coulter, Beverly, MA, USA). Following this, 3 μl of USER

Enzyme (NEB, USA) was incubated with size-selected, adaptor-ligated cDNA at 37˚C for 15

min, followed by 5 min at 95˚C. PCR was then performed with Phusion High-Fidelity DNA

polymerase, universal PCR primers and Index (X) Primer. Finally, PCR products were purified

(AMPure XP system) and library quality assessed on the Agilent Bioanalyzer 2100 system.

Clustering of the index-coded samples was performed on a cBot Cluster Generation System

using TruSeq PE Cluster Kit v4-cBot-HS (Illumina) according to the manufacturer’s instruc-

tions. After cluster generation, the library preparations were sequenced on an Illumina Hiseq

2500 platform and paired-end reads were generated.

Transcriptome assembly, annotation, ontology, and differential gene expression. Raw

data (raw reads) were first processed through in-house perl scripts WipeAadpter.pl and Fas-

tq_filter (Biomarker Technologies, Beijing): adaptor-only reads, reads containing poly-N

stretches (>5% total N), and low-quality reads (Q20-value�20) were filtered out, thereby pro-

ducing ‘clean reads’. These clean reads of each sample were compared to the designated refer-

ence common carp genome downloaded from the CarpBase [87] using TopHat2 [88], based

on Bowtie2 algorithm [89]. The numbers of reads produced by RNA-Seq analyses were nor-

malized to FPKM (fragments per kilobase of transcripts per million fragments mapped) to

compute gene expression levels [90], and differentially expressed genes (DEGs) between the
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two groups (S and C) detected using EBseq software [91]. Benjamini-Hochberg procedure

[92] was used to control the false discovery rate (FDR). Genes were defined as differentially

expressed when they exhibited the following parameters: |fold change|� 2 and FDR < 0.01.

Genes were queried against a number of databases using BLASTx [93]: RefSeq [94], UniProt

[95], GO [35], COG [36], KOG [37], Pfam [96], and KEGG [97]. After using KOBAS 2.0 [98]

to obtain the KEGG Orthology results, HMMER [99] web server was employed to obtain the

annotation for new genes from the predicted amino acid sequences using Pfam database. Path-

way enrichment analysis was conducted using KEGG database as described before [100].

qPCR

This method was used to further investigate the expression of a subset of ten genes significantly

differentially expressed between the two groups (eight specimens for the Selected group and

four specimens for the Control group). Genes were selected based on their relevance for the

objectives of this study and regulation magnitude. Total RNA was extracted prepared as

described above from the same samples that were used for the transcriptome sequencing.

cDNA libraries were prepared using PrimeScriptTM RT reagent Kit with gDNA Eraser

(Takara) following the manufacturer’s protocol. cDNA libraries were diluted five-fold and

Table 3. Primers used for qPCR.

Gene Primer sequence (5‘-3‘) Tm (˚C) Fragment length

phyh F: 5`-GCTCGTTGACTCTGTGCTGG-3` 60 400

R: 5`- TCGTAATGCTTCGGCTTGTG-3`

itsn1 F: 5`-GGCAGATGTTGACAAAGACG-3` 59 118

R: 5`- CACAAGGTGAGCAGGCAGT-3`

flad1 F: 5`-GCACCAAATCCTCCGACAG-3` 59 142

R: 5`- TACCAGCAGAACAGCAACAA-3`C

tll2 F: 5`-TCCAAAGGAGGATTTACTG-3` 52 179

R: 5`- GATTTGATGGTGCCTGTAT-3`

calmodulin F: 5`-AGACAACTACCTGAGCACCTC-3` 57 130

R: 5`- GACAAATAGCAGCCATCCA-3`

setd8-a F: 5`-ACAAGAGGCAGAAGAAGTA-3` 52 145

R: 5`- TGCTAAAGTAGGAGGAAAC-3`

h3.3 F: 5`-GCGAGTGCTGTTTGTTCTG-3` 57 95

R: 5`- CTCGGTGGACTTCTGGTAG-3`

epd-2 F: 5`-GTCTCGTCGCAGGGTGTAAT-3` 59 135

R: 5`- CCAGACCAGGAACGGACAT-3`

novel β-ketoacyl F: 5`-TTCCCTACCCACGATACCA-3` 58 123

R: 5`- ACATTGAACTGCCTGTGCC-3`

nlrp12 F: 5`-TGACCAACAGAAGGAGCAG-3` 57 226

R: 5`- CTGTATCCGCAGGAAGTGA-3`

18S1 F: 5`-TTCCCTACCCACGATACCA-3` 60

R: 5`- ACATTGAACTGCCTGTGCC-3`

beta actin1 F: 5`-TGACCAACAGAAGGAGCAG-3` 60

R: 5`- CTGTATCCGCAGGAAGTGA-3`

gapdh1 F: 5`-CCGTTCATGCTATCACAGCTACACA-3` 62 310

R: 5`- GTGGATACCACCTGGTCCTCTG-3`

1 reference genes.

https://doi.org/10.1371/journal.pone.0206615.t003
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used as templates for qPCR with the primers listed in Table 3. Three reference genes, gapdh,

beta actin and 18S, were tested for the stability of expression among all samples; as reflected in

no significant differences between Selection and Control groups (S6 Table), all three genes

exhibited a stable expression. On the basis of our previous experiences and published studies

[101,102], we selected gapdh as the reference gene. Primers were designed using Primer Pre-

mier 5 software (Premier Biosoft, USA) on the basis of sequences of these ten genes obtained

from the transcriptome data, and synthesized by the WCcgene company (Shanghai, China).

qPCR was performed using ABI VIIA@7 instrument (ABI, USA) and GoTaq qPCR Master

Mix (Promega, USA). In brief: the total qPCR mixture reaction volume of 10 μL contained

5 μL GoTaq qPCR Master Mix 2X, 3 μL ddH2O, 0.75 μL of each primer and 0.5 μL of cDNA

template. qPCR procedure: pre-incubation at 95˚C for 10 min, followed by 40 cycles of 15 s at

95˚C, 30 s at 60˚C, and 30 s at 72˚C. Melt curve analysis was performed at the end. Reactions

were performed in triplicate for each sample. gapdh was chosen as the reference gene accord-

ing to earlier recommendations [103,104]. Expression levels are presented as fold changes rela-

tive to the target gene expression in the control group, calculated using the 2–ΔΔCt method

[105]. qPCR data were analyzed statistically using Microsoft Excel and SPSS. Student-T test,

implemented in SPSS, was applied to test the statistical significance of differences between the

two groups, where significance thresholds were set at P < 0.05 (significant) and P < 0.01

(highly significant).
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