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Abstract

A comprehensive knowledge of the types and ratios of microbes that inhabit the healthy

human gut is necessary before any kind of pre-clinical or clinical study can be performed

that attempts to alter the microbiome to treat a condition or improve therapy outcome. To

address this need we present an innovative scalable comprehensive analysis workflow, a

healthy human reference microbiome list and abundance profile (GutFeelingKB), and a

novel Fecal Biome Population Report (FecalBiome) with clinical applicability. GutFeelingKB

provides a list of 157 organisms (8 phyla, 18 classes, 23 orders, 38 families, 59 genera and

109 species) that forms the baseline biome and therefore can be used as healthy controls

for studies related to dysbiosis. This list can be expanded to 863 organisms if closely related

proteomes are considered. The incorporation of microbiome science into routine clinical

practice necessitates a standard report for comparison of an individual’s microbiome to the

growing knowledgebase of “normal” microbiome data. The FecalBiome and the underlying

technology of GutFeelingKB address this need. The knowledgebase can be useful to regu-

latory agencies for the assessment of fecal transplant and other microbiome products, as it
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contains a list of organisms from healthy individuals. In addition to the list of organisms

and their abundances, this study also generated a collection of assembled contiguous

sequences (contigs) of metagenomics dark matter. In this study, metagenomic dark matter

represents sequences that cannot be mapped to any known sequence but can be assem-

bled into contigs of 10,000 nucleotides or higher. These sequences can be used to create

primers to study potential novel organisms. All data is freely available from https://hive.

biochemistry.gwu.edu/gfkb and NCBI’s Short Read Archive.

Introduction

While humanity has only begun to influence planetary-level events in the last few hundred

years [1], microorganisms have shaped our planet since time immemorial [2]. It has been

shown that the microbes of the ocean are as important for influencing planetary climate as the

microbes of gastrointestinal (GI) tracts of cattle [3]; furthermore, new functions are continu-

ously found for the human microbiome [4–6]. However, since the advent of germ theory and

the antimicrobial revolution, microbes have been viewed as insurgents bound for eradication

[7]. Hence, we have created GutFeelingKB to provide a reference for the metagenomic analysis

of the human gut microbiome.

In 2001, some sixty years into the antibiotic era, Joshua Lederberg coined the term ‘micro-

biome’ as the pendulum of opinion began to swing back to a more microbe-tolerant position

[8,9]. In 2008, the US National Institutes of Health launched the Human Microbiome Project

(HMP) to better understand the makeup of the community of microbes in cohabitation

with humans [10,11]. This population of microorganisms brings with it a vast, diverse, and

modifiable set of genomes which have proven to influence human health and disease [12,13].

Together, these organisms’ genomes comprise the metagenome, a highly versatile pool of

genetic elements which now serves as a target for medical research [14]. Microbiome charac-

terization through various analysis pipelines has advanced progressively since HMP and this

development process has catalyzed the understanding of certain roles of these microbial com-

munities [15,16].

Although microbiomes of all body sites are important, the gut microbiome, with hundreds

of prevalent species is of major interest to a large and diverse number of researchers [17,18].

The healthy gut microbiome data and analysis is crucial for all studies of disease with relation

to the human gut. A Nature Microbiology issue in 2016 contained a consensus statement which

outlined all federally-funded microbiome research over a three-year period [19]. The authors,

on behalf of the federal government’s FastTrack Action Committee on Mapping Microbiomes

(FTAC-MM), defined a microbiome as a multi-species community of microorganisms in any

environment: host, habitat, or ecosystem. One of the conclusions reached by the authors was

a “priority need” for higher-throughput, more accurate data acquisition, better pipelines for

data analyses, and a greater ability to organize, store, access, and share/integrate data sets. At

present, most studies leverage study specific control groups and reporting mechanisms. The

studies that are successful at creating clinically relevant results, such as the work by uBiome

[20], are based on marker genes, and so they do not shed light on the origin of the “microbial

dark matter”, and are not able to be integrated with whole genome shotgun sequencing studies

(WGS). These problems are compounded by the fact that different bioinformatics pipelines

produce different results largely because all current pipelines use a limited number of ad hoc
reference organisms to determine abundance. It has also been shown that database growth
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influences the accuracy of relatively faster k-mer-based species identification [21]. The final

understanding of the baseline healthy microbiome therefore can be flawed because the meth-

ods are uniquely applied in each study. As such, there is a need for aggregation, validation for

interoperability, and eventual standardization of methods and reporting.

Currently, metagenomic analyses use nucleotide sequences from a limited set of pre-

determined microorganisms or genes as a reference database, and, as such, these reference

lists are not truly comprehensive. The use of limited sets of sequence data is prevalent

because it is computationally challenging to perform pairwise read alignment against the

entire NCBI non-redundant nucleotide database (NCBI-nt) [22]. Algorithms have been

developed that allow the use of the complete NCBI-nt and it has been shown that using the

NCBI-nt permits accurate analysis of the data with significantly fewer errors in microorgan-

ism abundance quantification [23]. To leverage this prior work on metagenomic analysis

algorithms, samples from a healthy cohort of participants were collected and sequenced to

specifically target healthy control data. To ensure the samples were abundant and correct

enough to build healthy reference list, we also retrieved sequences of healthy people from

HMP. Furthermore, we developed an approach that generates a collection of assembled con-

tiguous sequences (contigs) that cannot be aligned to any known sequence in NCBI-nt but

are present in healthy individual fecal samples and are ideal for healthy-disease-microbiome

correlation analysis and novel primer design. For the purposes of this study, these sequences

are defined as metagenomic dark matter–sequences that cannot be mapped to any known

sequence but can be assembled into contigs of 10,000 nucleotides or higher. Together, these

data form our Gut Feeling Knowledge Base–GutFeelingKB. The contig nucleotide length

threshold is expected to reduce the number of contigs in GutFeelingKB that are not of bio-

logical origin. Our definition is much stricter than previous definitions of the metagenomic

dark matter which accepts remote homology to known sequences [24]. The need to include

metagenomic dark matter in comprehensive analyses of the gut microbiome matches the

arguments presented by Bernard et al. in their recent manuscript on microbial dark matter

where they opine that “unraveling the microbial dark matter should be identified as a central

priority for biologists” [25].

The primary aim in creating GutFeelingKB is to provide a reference knowledgebase for

the metagenomic analysis of the human gut microbiome. All the organisms which were confi-

dently observed in a healthy human gut are included. Using this knowledgebase, we designed

a standard reporting template of individual microbiome data for direct comparison to GutFee-

lingKB. This type of report can be useful to any scientist, clinician, or patient and can enhance

comparison of results from different studies.

Materials and methods

Metagenomic sampling and participant statistics

Healthy cohort selection and nutritional information. Participants for this study were

recruited from the George Washington University (GW) Foggy Bottom campus area through

the use of flyers and emails to GW affiliated organizations (selection criterions included in S1

Table). Study participants provided samples and anthropomorphic measurements (included

in S1 Table) were collected from healthy people at GW according to a George Washington

Institutional Review Board (IRB#011605) approved protocol. At the baseline visit, participants

received extensive instructions on how to record their dietary intake (including type, brand,

and portion size of every food and beverage consumed on each day throughout the study

period) and the time of consumption for each item. Participants then recorded their dietary

intake using a seven-day food journal throughout the length of the study. Each participant
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provided three samples. The food journal was collected at the submission of the final sample,

after which the reported 7-day dietary intakes for each subject were entered into the Nutrition

Data System for Research (NDSR) [26]. NDSR produces a tabular daily nutrient profile for

each day of dietary intake for each individual, which was then added as metadata to the abun-

dance matrices (supplementary table S2 Table). All participants self-reported as ‘healthy’ (par-

ticipant does not have an obvious or self-declared disease state) at the start of the study and

remained healthy throughout.

Sampling and sequencing. Fecal samples were collected from healthy volunteers using

sterile commode containers at the Milken Institute School of Public Health at the George

Washington University (GWSPH). Immediately following collection in ethanol, the fecal sam-

ples were stored in a -20˚ Celsius freezer for a period of up to two weeks, after which, aliquots

were placed in longer term storage at -80˚ Celsius ultra-freezer. Samples were subsequently

transported to the sequencing center on dry ice. DNA was extracted using the MoBio Power-

Fecal DNA Isolation kit25. Double-stranded DNA (dsDNA) concentration and quality was

assessed using NanoDrop and the Qubit dsDNA Broad Range (BR) DNA Assay Kit26, respec-

tively. DNA was diluted for library preparation using the Illumina Nextera XT Library Prep

Kit, and 1 ng from each sample was fragmented and amplified using Illumina Nextera XT

Index Kit primers. Amplified DNA was then cleaned using Agencourt AMPure XP beads,

resuspended in buffer, and tested again for concentration, quality, and fragment size distribu-

tion on a Bioanalyzer using the Agilent High Sensitivity DNA Kit. DNA libraries were brought

to the same nM concentration, pooled, and denatured with 0.2 N NaOH prior to loading on

an Illumina MiSeq Reagent Kit v3 and sequencing on the Illumina MiSeq platform. Sequence

data FASTQ files were uploaded to BaseSpace (https://basespace.illumina.com/home/index)

for sharing and further analysis.

Sequence quality assurance. All sequence data were uploaded to the GW High-perfor-

mance Integrated Virtual Environment (HIVE) [27,28]. Upon initial upload into the system,

HIVE automatically conducts a series of quality assurance (QA) computations for each

sequence read file and generates figures to display the results. S1 Fig is a compilation of the

quality assurance computations done on one read file.

Upon completion of the initial upload for each read file, the resulting quality assurance

figures were inspected to ensure that the read file was of adequate quality and did not have

any unusual characteristics (such as low-quality score or disproportionate distribution of

nucleotides). Reads that had an average Phred quality score of 20 or less were discarded. The

nucleotide base distribution was also examined to ensure that no read files had an unusual dis-

tribution of bases or a positional quality score below the threshold of 20. S2 Fig is an aggregate

of the computations across all samples.

Healthy cohort from Human Microbiome Project. In addition to the data generated

from sequencing described above, additional data were downloaded and analyzed from the

Human Microbiome Project (HMP) [29]. HMP sequence data and metadata are available

through NCBI SRA and dbGaP. Fifty fecal metagenomic samples, randomly chosen from

HMP Phase I (supplementary table S1 Table) to match approximately the number of samples

collected in our study were selected. The samples generated by the HMP project dataset sub-

jects were screened based on stringent criteria listed in their publication and the individuals

who passed the screening were considered “healthy” subjects [11].

GW and HMP combined data. Sequence and metadata from this study are publicly avail-

able through GutFeelingKB (https://hive.biochemistry.gwu.edu/gfkb), and also available from

two NCBI-SRA BioProjects (Healthy Human Gut Metagenomics (PRJNA428202), and Effects

of non-nutritive sweeteners on the composition of the human gut microbiome (PRJNA487305).

For PRJNA487305, only the samples donated prior to intake of non-nutritive sweeteners were
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used in this study. HMP data were downloaded from NIH Human Microbiome Project (HMP)

Roadmap Project (PRJNA43021).

A total of 48 samples from 16 individuals were sequenced in the GW cohort. Each sample

resulted in two pair-end read files (for details see S3 Table). Sequence data from these 48

samples along with 50 samples from HMP passed sequence quality checks and were used to

develop the baseline microbiota profile. For GW samples 55.55% (± 13.46%) while for HMP

48.29% (± 18.54%) of the reads could not be mapped to any known sequence. There was no

need for any computational filtering of human DNA as the MoBio PowerFecal DNA Isolation

kit25 was used for GW samples, biochemically removing any host DNA. For the HMP data, all

human DNA had been computationally removed before the samples were deposited in dbGaP

[11]. Sample and participant information can be seen in Table 1.

Filtered-nt. The Filtered-nt (v5.0) was created from the NCBI-nt file downloaded on May

21st, 2017. A detailed README.md and the code used can be found at https://github.com/

GW-HIVE/HIVE-lab/tree/master/Filtered_nt. Both the NCBI-nt (ftp://ftp.ncbi.nlm.nih.gov/

blast/db/FASTA) and NCBI taxonomy files (ftp://ftp.ncbi.nlm.nih.gov/pub/taxonomy) were

downloaded using the wget command.

Using a curated blacklist file of taxonomy IDs, Filtered-nt was generated based on terms

that are contained in the lineage of each taxonomy entry. Taxonomy nodes with terms such as

‘unclassified’, ‘unidentified’, ‘uncultured’, ‘unspecified’, ‘unknown’, ‘vector’, ‘environmental

sample’, ‘artificial sequence’, ‘other sequence’ were blacklisted. Child nodes are also automati-

cally removed. The filtered taxonomy list was then used to filter the NCBI-nt sequence file. Fil-

tered-nt and the blacklisted taxonomy IDs along with node names are available for download

at https://hive.biochemistry.gwu.edu/filterednt.

Metagenomic analysis pipeline

The innovative metagenomic analysis pipeline developed includes three software tools and

one sequence database (Filtered-nt), organized in a fashion to produce a workflow that ensures

an efficient and comprehensive analysis of a large sequence space. The tools are CensuScope

[30], HIVE-Hexagon [31], and IDBA-UD [32]. All software tools are integrated in the HIVE

platform [27,28] and allow end-to-end analysis of metagenomic sequences.

Healthy Human gut microbiome list (GutFeelingKB). CensuScope [30] is a taxonomic

profiling software that randomly extracts a user-defined number of reads and maps them to

any size sequence database using BLAST [33]. CensuScope is rapid, accurate, and is not hin-

dered by the size of the reference sequence database. With the non-redundant sequence

database’s almost constant exponential increase, CensuScope offers a scalable approach for

estimating taxonomic composition of a microbial population. A list of organisms, taxonomy

identifiers, and BLAST alignments are provided as the output by CensuScope. A manual evalu-

ation of the CensuScope results for each of the identified organisms was performed to verify

that the “hit” represented an authentic match. “Manual evaluation” included the following

criteria:

1. Inspection of the match count. The number of matched alignments over the entire compu-

tation (over all iterations) had to be> = five out of total 12,500 alignment threshold set by

Table 1. Human Microbiome Project (HMP) and GW participant statistics.

Feature White Other Asian Black Male Female

HMP samples 39 2 7 2 30 20

GW samples 24 0 6 18 21 27

https://doi.org/10.1371/journal.pone.0206484.t001
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CensuScope. Five was chosen so that there were enough individual alignments to appraise

the authenticity of the matches.

2. Confirmation of a justifiable taxonomy assignment. Hits to sequences that lacked a clear

taxonomic lineage were excluded and marked for removal from Filtered-nt.

3. Completeness of sequence in GutFeelingKB. Partial sequences, single proteins, or unassem-

bled contiguous sequences were mapped to complete genomes to be included in GutFee-

lingKB. This is the only way to keep partial sequences from skewing organism abundance

results.

4. Organism verification. In order to have confidence in the results, it was necessary to inde-

pendently verify the biological accuracy of each “hit”. Metadata about the organism was

reviewed to verify appropriateness of its presence in the human gut.

Any reference sequence and organism that satisfied these criteria was added to the GutFee-

lingKB. To extend the usability of this list, available online databases and reference text was

used to annotate the organisms [22,34–36]. The NCBI accession numbers from the true posi-

tive CensuScope hitlist results were used to obtain the NCBI accession, the RefSeq accession,

the NCBI taxonomy ID, the organism name (Scientific Name), the taxonomy id, and the

genome assembly IDs. Using the taxonomy ID, the lineage and taxonomic name from the

NCBI taxonomy database was retrieved.

Genome to proteome mapping was guided by Representative Proteome Groups (RPGs), a

dataset that clusters similar proteomes (https://proteininformationresource.org/rps/). The

RPG clusters are calculated based on co-membership in UniRef50 clusters [34] (supplemen-

tary tables S4 and S8 Tables). Using the taxonomy ID and the RPG, the corresponding

proteome in https://www.uniprot.org/proteomes was identified. From the proteome entry,

verification of the Genome Assembly ID match between UniProt, RPG, and NCBI was

performed.

In most instances the proteome entry contained some descriptive text about the organism

taken from a publication, as well as citations. Such information was added as organism annota-

tion. Additional fields (Resistance to Antibiotic, Susceptibility to Antibiotic, Physical Charac-

teristics) were populated from other sources [36]. Finally, all of the associated DOI and PMIDs

for the metadata were added to the final column. It is important to note that many bacteria are

closely related and hence have large homologous regions. This can lead to species level mis-

identification. Although the concept of pan-genome or pan-proteome for closely related bacte-

ria is well accepted [35], it is important to avoid such misidentification for known pathogens.

To avoid such false positives of well-known pathogens (S5 Table), they are included only if

their abundance is 1% or higher and their alignments have been manually evaluated.

Bacterial abundance profile. Fig 1 provides a schematic representation of the workflow.

The first step uses CensuScope (a subsampling BLAST algorithm) to identify organisms that

are present in the sample. To generate a rapid and accurate taxonomic profile, 2,500 reads are

used in each iteration [30] (up to five iterations). This step allows identification of organisms

present in a sample. These organisms are added into GutFeelingKB if it is not already present.

Next, HIVE-hexagon, a highly specific and sensitive short-read aligner [37], is used to map

all of the reads in each sample to GutFeelingKB (created through the use of CensuScope) to

obtain the final abundance profiles. It is important to note HIVE-hexagon best match parame-

ter was used. This parameter allows reads to be mapped to the reference (in the case of best

matches to more than one reference) which has the greatest number of matches.

Metagenomic dark matter. The unaligned reads of each sample were assembled using

IDBA-UD [32] and considered as metagenomic dark matter. Only the assembled contiguous
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sequences (contigs) longer than 10,000 nucleotides were investigated in this experiment. Such

a large length threshold was used to ensure that the metagenomics dark matter contigs were

truly of biological origin. The gut microbiome of a sample can be represented as the sum of

known organisms and organisms represented by the metagenomic dark matter sequences.

More specifically, the contigs that were over 10,000 nucleotides in length were tagged with the

sample ID and numbered, and metadata data about the participant was added to the header.

These contigs are available as a download at (https://hive.biochemistry.gwu.edu/gfkb) for

further analysis and novel primer design.

Analysis of nutritional metadata and microbial abundance

MaAsLin, an R package that employs a “multivariate statistical framework that finds associa-

tions between clinical metadata and microbial community abundance or function” [38] was

Fig 1. Metagenomic analysis pipeline for 3 samples. Step 1: CensuScope is run for each read file against Filtered-nt. Each of the aligned

organism approved by manually check is added to the GutFeelingKB and it is versioned. Step 2: For the final analysis the raw read files are

mapped against GutFeelingKB organism sequences using HIVE-hexagon. Outputs are tabulated as relative abundance percentages. Unaligned

reads from each sample were assembled using IDBA-UD. Contigs that were over 10,000 nucleotides long had their headers modified to include

the following: sample ID, numbered according to length (long to short), and additional metadata data about the participant. These contigs are

available as a download at (https://hive.biochemistry.gwu.edu/gfkb).

https://doi.org/10.1371/journal.pone.0206484.g001
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used to find correlations between bacterial abundance and diet. Intra-host variability was ana-

lyzed evaluating the standard deviation of multiple measurements for every patient averaged

over all patients. Inter-host variability was computed as a standard deviation of the means of

per-host abundance values. To estimate the degree of stability of measurements for bacterial

populations in patient samples intra-host vs inter-host variability ratio was computed.

Nutrition to organism abundance correlation was also computed by using a Cosine Similar-

ity Coefficient. The matrix of bacterial strain abundances was variance scaled and zero cen-

tered to create comparable distributions of equal variability. Categorical data (such as gender)

were turned into numerical values. More specifically, in order to define correlation metrics

between features and bacterial composition for the set of individuals, we used Cosine Similar-

ity Coefficient as defined in Formula 1. Cosine Similarity Coefficient of correlation between

bacteria (j) and feature (k) is computed as the sum product of jth Bacteria (Bj) abundance for

patient i and kth Feature (Fk) of patient i.

Correlationj;k ¼
XN

i¼1

Bi;j � Fi;k

A Cosine Similarity of around 1 indicates a strong correlation, -1 indicates a strong anti-

correlation, 0 is no correlation with 0.7 being considered the marginal threshold for evidence

of some degree of correlation [39,40].

Results and discussions

Filtered NCBI-nt (Filtered-nt)

NCBI nucleotide sequence collection (NCBI-nt) is the most comprehensive collection of

DNA sequences [22], but many sequences present in NCBI-nt do not provide enough relevant

information or correct metadata (e.g. sequences with taxonomy placement such as environ-

mental, unclassified, synthetic sequences, unidentified sequences etc.). A great number of

the sequences available in NCBI-nt are also artificial. Reads mapped to such sequences do

not provide any valuable biological information in a clinical setting and hence are not useful

in understanding the microbial composition of a sample. The version of NCBI-nt used to

create our Filtered-nt (v5.0) initially contained 42,439,338 sequences and the taxonomy file

contained 1,601,859 scientific names. After removal of 250,610 blacklisted taxonomy IDs

(supplementary table S6 Table) pertaining to 7,499,592 sequences the Filtered-nt contained

34,939,806 sequences. The Filtered-nt is ideal for comprehensive metagenomic analysis that

relies on a best sequence hit.

Most studies use genomes from known gut bacteria as a truncated reference database

[18,30,41,42] and hence would not be able to detect organisms that are not present in their

reference database. The use of our Filtered-nt offers surety that the entirety of the known

sequence space is covered while excluding the in-silico sequence space and the uncultured/

unclassified sequence space.

Healthy fecal microbiome

GutFeelingKB—A reference list for healthy human gut organisms. GutFeelingKB is a

compilation of highly curated data and metadata associated with organisms identified as pres-

ent in the samples we analyzed. GutFeelingKB consists of 157 organisms which fall into sixty

distinct genera, as seen in S2 Table which is arranged by species. The full table can be down-

loaded at https://hive.biochemistry.gwu.edu/gfkb. Members of the Firmicutes and Bacteroi-

detes phyla make up a majority of the bacterial species that were present in the human

Baseline human gut microbiota profile in healthy people and standard reporting template

PLOS ONE | https://doi.org/10.1371/journal.pone.0206484 September 11, 2019 8 / 25

https://hive.biochemistry.gwu.edu/gfkb
https://doi.org/10.1371/journal.pone.0206484


intestinal microbiota. A total of 155 bacterial and 2 archaeal organisms were identified in

healthy samples. In summary, the healthy human gut microbiome consists of 8 phyla, 18 fami-

lies, 23 classes, 38 orders, 59 genera and 109 species. 63 (40%), 32 (20%) and 31 (19.7%) mem-

bers belongs to Firmicutes, Actinobacteria and Bacteroidetes, respectively which make up a

majority of the bacterial species. More than half of Firmicutes are members of the Clostridia

(20.3%) class, which is the most abundant class, followed by Bacteroidia (18.5%), Bifidobacter-

iales (16.6%), Enterobacterales (14%) and Lactobacillales (14%). All of members of Clostridia

in the samples are members of Clostridiales order and all of Bacteroidia belongs to Bacteroi-

dales, these two are the most abundant orders. There are 27 organisms which are members

of Bifidobacteriaceae family, and 26 of them belongs to Bifidobacterium longum, which is the

most abundant species.

With respect to core species concept, 84 out of 109 organisms are present in all of the sam-

ples (Table 2). These 84 could feasibly be a core organisms list for the human gut, but for this

paper the focus is on creating a comprehensive list of organisms found in healthy individuals.

Supplementary file S3 Fig shows the exponential decrease of new organisms identified in each

additional sample. Supplementary file S7 Table provides a list of 129 organism clusters that are

similar to the organisms (similarity based on computational clustering of proteomes at 75%

co-membership threshold [34]) in GutFeelingKB. This could serve as a supplement the Gut-

FeelingKB to avoid the misidentification of highly-similar organisms. All these 863 organisms

comprise an expanded set of microbes that can be present in a healthy human gut.

Several researchers have focused on the reference genes of the gut microbiome rather

than organisms [43,44], but organisms have their own clinical significance in treatment.

When Yatsunenko et al. analyzed 531 healthy samples from Venezuela, rural Malawi and US

metropolitan areas and mapped their reads to 126 microbial species, they found Fusobacteria

that were not mapped to our list. On the other hand, Spirochaetes, Planctomycetes identified

in this study were not shown in their list [45]. Of the organisms reported in their study, forty

genera map to our list at the species level. Unmapped species include organisms such as Acti-

nomyces odontolyticus, Bacteroides capillosus, Bacteroides uniformis. Nishijima et al. iden-

tified 26 major genera in healthy Japanese [46]. Twenty of the 26 genera they listed mapped

to the list from this study, the unmapped genera belong to existing GutFeelingKB families

and are Dorea, Dialister, Succinatimonas, Butyrivibrio, Coriobacteriaceae, and Phascolarcto-
bacterium. Qin et al. grouped 66 clusters representing cognate bacterial species for healthy

and liver cirrhosis patients [47], and the lowest taxonomy level of cluster in this study is

strain. Thirty-six of these clusters map to GutFeelingKB in the taxonomy levels higher than

species and all of them map to existing GutFeelingKB families. These studies of healthy

microbiome diversity from around the world suggest there is significant regional heteroge-

neity in the health gut microbiome at species/strain level, but reasonable consistency at

higher taxonomic levels.

In a study conducted to demonstrate the feasibility of accurate detection of clinically rele-

vant prokaryotic targets [20], Almonacid et al. showed that it was practical to identify 28 spe-

cific targets (14 species and 14 genera) based on sequencing of the 16S rRNA marker gene,

which is an important clinical application when considering the cost of a test. Adapting one

of their supplementary files (https://doi.org/10.1371/journal.pone.0176555.s003), we were able

to determine that 75 of the organisms listed in GutFeelingKB can be mapped to Almonacid

et al.’s clinical targets. The mapping was done by identifying UniProt Proteome IDs [35] and

the RPG [34] cluster that best matched the organism described. If the organism was not pres-

ent in GutFeelingKB, then we reference our supplementary file S7 Table to see if the organism

was present in one of the RPG clusters that are represented by the organisms in GutFeelingKB.

The results of our mapping against this study is included as a supplementary table (S11 Table).
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Table 2. List of 109 baseline species and their GenBank accessions found in healthy human gut.

Organism name GenBankAC Organism name GenBankAC Organism name GenBankAC

Acidaminococcus fermentans (Bac/Firmicute)

(1001;0.042)

CP001859 Clostridium saccharolyticum (Bac/

Firmicute)

(100;0.24)

CP002109,

FP929037

Odoribacter splanchnicus (Bac/

CFB_bac)

(100;1.12)

CP002544

Acidaminococcus intestine (Bac/Firmicute)

(100;0.09)

CP003058 Coprococcus catus (Bac/Firmicute)

(100;0.37)

FP929038 Ornithobacterium rhinotracheale (Bac/

CFB_bac)

(100;0.11)

CP006828

Acidovorax sp KKS102 (Bac/Beta-proteo)

(100;0.01)

CP003872 Coprococcus sp ART55/1 (Bac/

Firmicute)

(100;0.68)

FP929039 Oscillibacter valericigenes (Bac/

Firmicute)

(100;0.05)

AP012044

Adlercreutzia equolifaciens (Bac/ActnBac)

(100;0.07)

AP013105 Cutibacterium acnes (Bac/ActnBac)

(100;0.004)

CP003084 Paenibacillus sabinae (Bac/Firmicute)

(100;0.01)

CP004078

Akkermansia muciniphila (Other Bacteria)

(91.84;0.70)

CP001071 Eggerthella lenta (Bac/ActnBac)

(100;0.04)

CP001726 Paeniclostridium sordellii (Bac/

Firmicute)

(100;0.02)

LN679998,

LN681234

Alistipes finegoldii (Alistipes finegoldii)

(100;1.27)

CP003274 Eggerthella sp. YY7918 (Bac/ActnBac)

(100;0.01)

AP012211 Parabacteroides distasonis (Bac/

CFB_bac)

(100;2.30)

CP000140

Alistipes shahii (Bac/CFB_bac)

(100;1.75)

FP929032 Enterococcus faecium (Bac/Firmicute)

(100;0.04)

CP003351,

CP006620,

CP006030

Parvimonas micra (Bac/Firmicute)

(100;0.01)

CP009761

Anaerococcus prevotii (Bac/Firmicute)

(100; 0.003)

CP001708 Enterococcus hirae (Bac/Firmicute)

(96.94;0.004)

CP003504 Porphyromonas asaccharolytica (Bac/

CFB_bac)

(98.98;0.01)

CP002689

Anaerostipes hadrus (Bac/Firmicute)

(100;0.55)

FP929061 Escherichia coli (Bac/Gamma-proteo)

(100;1.87)

CP009859,

CP010816,

CP000948,

CP001637,

CP000970,

CP000243,

CP009166,

CP002291,

CP003297,

CP007394,

AP009378,

AE014075,

CP010371,

CP002729,

CP007799,

CP001396,

CP009789,

CP004009,

CP007390,

FN649414,

CP009167,

HG941718

Porphyromonas gingivalis (Bac/

CFB_bac)

(100;0.01)

AP009380

Bacillus methanolicus (Bac/Firmicute)

(100;0.01)

CP007739 Escherichia coli O104:H4 (Bac/Gamma-

proteo)

(96.94;0.04)

CP004009 Prevotella dentalis (Bac/CFB_bac)

(100;0.08)

CP003368,

CP003369

Bacteroides cellulosilyticus (Bac/CFB_bac)

(100;3.38)

CP012801 Escherichia coli O83:H1 (Bac/Gamma-

proteo)

(95.92;0.06)

CU651637 Prevotella denticola (Bac/CFB_bac)

(98.98;0.04)

CP002589

Bacteroides dorei (Bac/CFB_bac)

(100;17.44)

CP007619,

CP009057

Ethanoligenens harbinense (Bac/

Firmicute)

(100;0.01)

CP002400 Prevotella intermedia (Bac/CFB_bac)

(100;0.07)

AP014597,

CP003502,

CP003503,

AP014598

Bacteroides fragilis (Bac/CFB_bac)

(100;3.47)

FQ312004,

CR626927,

AP006841,

AP006842,

CR626928

Eubacterium eligens (Bac/Firmicute)

(100;0.65)

CP001104,

CP001105,

CP001106

Prevotella melaninogenica (Bac/

CFB_bac)

(100;0.24)

CP002122,

CP002123

(Continued)
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Table 2. (Continued)

Organism name GenBankAC Organism name GenBankAC Organism name GenBankAC

Bacteroides helcogenes (Bac/CFB_bac)

(100;0.50)

CP002352 Eubacterium limosum (Bac/Firmicute)

(100;0.03)

CP002273 Prevotella ruminicola (Bac/CFB_bac)

(100;0.06)

CP002006

Bacteroides ovatus (Bac/CFB_bac)

(100;7.72)

CP012938 [Eubacterium] rectale (Bac/Firmicute)

(100;6.21)

FP929042,

FP929043,

CP001107

Prevotella sp oral taxon 299 (Bac/

CFB_bac) (100;0.06)

CP003666

Bacteroides salanitronis (Bac/CFB_bac)

(100;0.48)

CP002530 [Eubacterium] siraeum (Bac/Firmicute)

(100;0.75)

FP929044,

FP929059,

Raoultella ornithinolytica (Bac/

Gamma-proteo)

(100;0.01)

CP004142

Bacteroides sp. CAG:98 (Bac/CFB_bac)

(100;8.89)

CP008741 Faecalibacterium prausnitzii (Bac/

Firmicute)

(100;3.52)

FP929045,

FP929046

Roseburia hominis (Bac/Firmicute)

(100;0.69)

CP003040

Bacteroides thetaiotaomicron (Bac/CFB_bac)

(100;3.78)

AE015928,

AY171301

Faecalitalea cylindroides (Bac/

Firmicute)

(100;0.15)

FP929041 Roseburia intestinalis (Bac/Firmicute)

(100;1.15)

FP929049,

FP929050

Bacteroides vulgatus (Bac/CFB_bac

(100;14.99)

CP000139 Fermentimonas caenicola (Bac/

CFB_bac)

(100;0.01)

LN515532 Rubinisphaera brasiliensis (Bac/

Plnctmy)

(70.41;0.0002)

CP002546

Bacteroides xylanisolvens (Bac/CFB_bac)

(100;4.92)

FP929033 Gardnerella vaginalis (Bac/ActnBac)

(91.84;0.002)

CP001849 Ruminococcus bicirculans (Bac/

Firmicute)

(100;2.54)

HF545616,

HF545617

Barnesiella viscericola (Bac/CFB_bac)

(100;0.33)

CP007034 Gordonibacter pamelaeae (Bac/

ActnBac)

(100;0.03)

FP929047 Ruminococcus bromii (Bac/Firmicute)

(100;0.83)

FP929051

Bifidobacterium adolescentis (Bac/ActnBac)

(97.96;0.46)

CP007443,

CP010437,

AP009256

Haemophilus parainfluenzae (Bac/

Gamma-proteo)

(100;0.10)

FQ312002 Ruminococcus champanellensis (Bac/

Firmicute)

(100;0.04)

FP929052

Bifidobacterium animalis (Bac/ActnBac)

(100;0.03)

CP009045 Intestinimonas butyriciproducens (Bac/

Firmicute)

(100;0.24)

CP011307 Ruminococcus sp SR1/5 (Bac/

Firmicute)

(100;0.68)

FP929053

Bifidobacterium bifidum (Bac/ActnBac)

(100;0.31)

CP010412,

CP001840,

CP002220,

CP001361

Klebsiella aerogenes (Bac/Gamma-

proteo)

(91.84;0.01)

FO203355,

CP002824

Ruminococcus torques (Bac/Firmicute)

(100;0.97)

FP929055

Bifidobacterium breve (Bac/ActnBac)

(97.96;0.01)

CP006715,

CP006713

Klebsiella michiganensis (Bac/Gamma-

proteo)

(93.88;0.002)

CP004887 Sphingobacterium faecium (Bac/

CFB_bac)

(95.92;0.04)

LK931720

Bifidobacterium dentium (Bac/ActnBac)

(85.71;0.01)

AP012326 Klebsiella pneumoniae (Bac/Gamma-

proteo)

(88.78;0.01)

CP009208 Streptococcus mitis (Bac/Firmicute)

(100;0.02)

FN568063

Bifidobacterium kashiwanohense (Bac/

ActnBac)

(100;0.13)

AP012327,

CP007456

Klebsiella variicola (Bac/Gamma-

proteo)

(90.82;0.01)

CP001891 Streptococcus parasanguinis (Bac/

Firmicute)

(100;0.04)

CP002843,

CP003122

Bifidobacterium longum (Bac/ActnBac)

(100; 0.74)

AP014658,

CP002286,

CP011964,

CP000605,

LN824140,

AP010890,

AP010889,

AP010888,

CP002010,

FP929034,

CP006741,

CP002794,

CP009072

Lachnoclostridium phytofermentans

(Bac/Firmicute)

(100;0.09)

CP000885 Streptococcus pasteurianus (Bac/

Firmicute)

(100;0.02)

AP012054

Bifidobacterium thermophilum (Bac/ActnBac)

(100;0.005)

CP004346 Lactobacillus acidophilus (Bac/

Firmicute)

(93.88;0.003)

CP005926 Streptococcus salivarius (Bac/

Firmicute)

(100; 0.09)

CP009913,

FR873482,

CP002888,

FR873481

(Continued)
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Twelve of the 28 clinical targets were unable to be resolved with GutFeelingKB. Only two

of these were genera, with the rest being a species level classification. Both of the genera are

positively associated with abnormal GI states (Salmonella with Diarrhea [48] and Fusobac-
terium with Irritable Bowel Syndrome [49]. Of the ten species, five were positively associated

with diarrhea or IBD (Vibrio cholerae, Salmonella enterica, Streptococcus sanguinis, Desulfo-
vibrio piger, and Anaerotruncus colihominis). Only one of the species listed, Collinsella
aerofaciens, did not have a reference proteome (https://www.uniprot.org/help/reference_

proteome).

It is expected that while other studies will find additional organisms, GutFeelingKB can

provide a reference list and abundance information that can provide a starting point for com-

parative analysis of samples from healthy individuals from around the world and can also help

better understand observed differences due to disease, therapy, and diet.

Organism abundance in individual samples. Data interoperability is a perennial chal-

lenge in bioinformatics [50]. This problem is further magnified when considerations are made

for data from samples collected in distant locations at different times. In the case of HMP, sam-

pling was done in Houston, TX and St. Louis, MO during 2008–2012. All GW samples were

collected from the DC Metro Area in 2016. One way to test the compatibility of these data

sets was to run a Between-Class Analysis (BCA) on all samples from each of the projects. Data

from our three, separate projects fell into the expected three classic enterotypes [51] instead of

clustering by project set (S4 Fig). Had the data clustered by project, sampling location, or year,

they may not have been compatible for inclusion in the same database. However, we believe

that these data do not show a sampling bias and can be leveraged for joint analysis. The sample

and participant information are presented in Table 1.

Table 2. (Continued)

Organism name GenBankAC Organism name GenBankAC Organism name GenBankAC

Blautia obeum (Bac/Firmicute)

(100;0.51)

FP929054 Lactobacillus paracasei (Bac/Firmicute)

(100;0.01)

AP012541 Streptococcus sp I-P16 (Bac/Firmicute)

(100;0.01)

CP006776

butyrate-producing bacterium SM4/1 (Bac/

Firmicute)

(100;0.13)

FP929060 Lactobacillus rhamnosus (Bac/

Firmicute)

(92.86;0.01)

CP003094 Streptococcus suis (Bac/Firmicute)

(100;0.02)

CP000837

butyrate-producing bacterium SS3/4 (Bac/

Firmicute)

(100;0.36)

FP929062 Lactobacillus ruminis (Bac/Firmicute)

(100;0.16)

CP003032 Streptococcus thermophilus (Bac/

Firmicute)

(100;0.05)

CP000024,

CP000419,

CP006819

Campylobacter coli (Bac/Delta-Epsilon-

proteo)

(100;0.01)

CP007180 Lactococcus lactis (Bac/Firmicute)

(96.94;0.01)

CP006766 Tannerella forsythia (Bac/CFB_bac)

(100;0.06)

CP003191

Campylobacter hominis (Bac/Delta-Epsilon-

proteo)

(97.96;0.003)

CP000776 Leuconostoc citreum (Bac/Firmicute)

(93.88;0.003)

DQ489736 Treponema succinifaciens (Other

Bacteria)

(100;0.03)

CP002631

Candidatus Methanomassiliicoccus intestinalis

(Arch/Euryar)

(34.69;0.01)

CP005934 Mageeibacillus indolicus (Bac/

Firmicute)

(100;0.01)

CP001850 Veillonella parvula (Bac/Firmicute)

(100;0.05)

CP001820

Citrobacter freundii (Bac/Gamma-proteo)

(84.69;0.02)

CP007557 Megamonas sp Calf98-2 (Bac/

Firmicute)

(100;0.02)

FP929048

Clostridioides difficile (Bac/Firmicute)

(1.02;2.10)

CP003939,

CP010905

Methanobrevibacter smithii (Arch/

Euryar)

(39.80;0.07)

CP000678

1 Percentage of samples this organism is present in.
2 Average percent relative abundance of this organism.

https://doi.org/10.1371/journal.pone.0206484.t002
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Many studies have focused on higher taxonomy nodes, providing little abundance infor-

mation about specific species or strains. Fig 2 shows the abundance of phyla to highlight how

baseline gut microbiome results from this study can be used to compare results from past

studies. Abundance sheet with the lowest taxonomy node broken down to the strain level,

where applicable, is provided so that other scientists can use the results for comparison pur-

poses. Average abundance, standard deviation, maximal and minimal abundance excluding

the organisms with the 0% abundance (S9 Table) provides additional metrics. In terms

of average abundance of organisms, 4 phyla have abundance above 1%, these are Actinobac-

teria (1.82± 3%), Bacteroidetes (73.13 ± 22.16%), Firmicutes (22.2 ± 18.66%) and Proteobac-

teria (2.15 ± 10.39%). Bacteroidia (72.97 ± 22.14%) under Bacteroidetes, Actinobacteria

(1.67 ± 2.94%) under Actinobacteria, Gammaproteobacteria (2.12 ± 10.38%) under Proteo-

bacteria, Clostridia (21.35 ± 17.87%) under Firmicutes are the only four classes that have aver-

age abundance larger than 1%. Bacteroidaceae (65.58 ± 21.84%) is the most abundant family,

followed by Lachnospiraceae (11.46 ± 11.06%) and Ruminococcaceae (8.38 ± 10.48%). Odori-

bacteraceae, Rikenellaceae, Bifidobacteriaceae, Enterobacteriaceae and Tannerellaceae are

the five other families with abundance above 1%. Bacteroides is the most abundant genus in

human gut microbiome (65.58 ± 21.84%) with sample SRS016585 having the smallest abun-

dance (0.37%) while SRS013215 has the largest abundance (98.82%). Bacteroides includes 9

species and 7 of them have abundance greater than 1%. Bacteroides dorei is the most domi-

nant species with a 17.44 ± 8.74% abundance.

Out of 98 samples analyzed, only 53 samples had archaea. Bacteroidetes, Proteobacteria,

Spirochaetes, Actinobacteria, Firmicutes phylum are present in all samples. The abundance of

Bacteroidetes is greater than 10% in 97 of 98 samples. Bacteroides is present in all the samples

with an abundance ranging from 0.37% to 98.82%. Within Bacteroides, Bacteroides fragilis is

present in all the samples. The range of Bifidobacterium abundance in all the samples ranges

from 0.004% to 12.21%, Bifidobacterium longum abundance from 0.003% to 10.30% and Bifi-
dobacterium bifidum BGN4 strain is present in 96 of 98 samples. A total of 84 out of 109 species

are present in all of the samples.

It has been shown that Bacteroides is the most abundant genus in Spain, China, Sweden,

US, Denmark and France from samples collected from healthy individuals [46]. Bacteroides
maintain a generally beneficial relationship with the host when retained in the gut but can

also be opportunistic pathogens. When they escape the gut environment, they can cause signif-

icant pathology, including bacteremia and abscess formation in multiple body sites [52]. Bac-
teroides fragilis protects animals from colitis induced by Helicobacter hepaticus, a commensal

Fig 2. Stacked bar plot of phylogenetic composition of all microbiome taxa in this study collapsed at the phyla level in fecal samples.

Green bars represent Firmicutes and the blue represent Bacteroidetes, the two most abundant bacterial families. For aesthetic purposes the

samples (n = 98, bottom) were sorted according to their composition of Bacteroidetes and Firmicutes to demonstrate how the baseline gut

microbiome results from this study could be used in conjunction with results from past studies.

https://doi.org/10.1371/journal.pone.0206484.g002
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bacterium with pathogenic potential [53]. A large proportion of the B. fragilis genome is

responsible for carbohydrate metabolism, including the degradation of dietary polysaccharides

[54]. Bifidobacterium has been reported to be present in almost all healthy human fecal sam-

ples. Members of Bifidobacterium are among the first microbes to colonize the human gastro-

intestinal tract and are believed to exert positive health benefits on their host [55]. Many

species of Bifidobacterium are commonly used as probiotics due to their health promoting

properties [56]. Certain Bifidobacterium longum strains have been used as probiotics against

enterohemorrhagic Escherichia coli infection due to the production of acetate, a short chain

fatty acid, which upregulates a barrier function of the host gut epithelium [57]. In general, they

are able to survive in particular ecological niches due to competitive adaptations and metabolic

abilities through colonization of specific appendages. There are 12 strains under Bifidobacter-
ium longum species. One strain, BBMN68 has been isolated from the feces of a healthy cente-

narian living in an area of BaMa, Guangxi, China, known for longevity [58]. Another strain

of Bifidobacterium, BGN4, was shown to prevent CD4(+) CD45RB (high) T-cell mediated

inflammatory bowel disease by inhibition of disordered T cell activation in BGN4-fed mice

[59]. Despite the well-established health benefits, the molecular mechanisms responsible for

these traits remain to be elucidated.

Some potential pathogenic species appear in healthy samples in this study and the samples

collected by Yatsunenko et al. [45]. Streptococcus mitis, a strain that can cause severe clinical

symptoms in cancer patients [60] was also identified. It is likely that organisms such as S. mitis
are opportunistic pathogens. There are several strains of Escherichia coli, for which the major-

ity of strains are generally considered a harmless intestinal inhabitant. E. coli is one of the first

bacterium to colonize human infants and is a lifelong colonizer of adults [61], although patho-

genic strains of E. coli have been implicated in the etiology of health problems such as Crohn’s

disease and ulcerative colitis [62].

Dietary data and nutrient correlative analysis

In comparing bacterial species to nutrient data using MaAslin, several interesting patterns

were observed. Bifidobacterium was positively correlated with dietary protein intake (Fig 3a),

specifically vegetable protein, as well as dietary fiber, specifically soluble fiber, present in vege-

tables such as broccoli, brussel sprouts, beans, peas, asparagus and beans, which also contain

vegetable protein. Akkermansia (Fig 3b) was shown to be positively associated with saturated

fat intakes and is negatively correlated with total polyunsaturated fatty acids (PUFA). Not sur-

prisingly, it was also positively correlated with linoleic acid, as this particular omega-6 PUFA is

found abundantly in oils (e.g. soybean oil, vegetable oil) used in processed food. Bacteriodes
ovatus was positively correlated with daily calorie intake (Fig 3c), as well as body weight (Fig

3d), and waist circumference. The table of results (see supplementary file S10 Table) demon-

strates the range of correlation for features that have been measured. Cosine Similarity

Coefficient analysis (see supplementary file S11 Table) identified correlation for features and

organisms with the observations similar to MaAslin. For example, characteristics such as fat

intake and BMI correlate with members of Akkermansia. Similarly, the impact of Vitamin A

or beta carotenes has positive inductive correlation across all the Bifidobacterium (Fig 4).

As microbiome science moves closer to the clinic, it will be imperative both to have tools

for analysis and the quick understanding of a microbial population. It is envisioned that

such analyses provide the foundation for clinical reporting. While each organism in an entire

microbiome sample isn’t immediately actionable, it does allow for both the close tracking of

microbial modulation and the better understanding of how the microbiome tracks with health

states and therapy. This will be further applicable as evidence-based medicine approaches
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microbiome science, and microbiome science becomes as important to clinical treatment as

genomic medicine. Preliminary microbiome analyses are increasingly yielding interesting

results in complex diseases such as cancer. For example, in colorectal cancer patients, carci-

noma-enriched bacteria, B. massiliensis, B. dorei, B. vulgates, Parabacteroides merdae, A. fine-
goldii and B. wadsworthia, is positively correlated with red meat consumption and negatively

correlated with fruit and vegetables consummation [63]. It is expected that as the number and

size of these studies increase, the need for baseline human gut microbial profile in healthy peo-

ple and standard reporting template will become essential.

Contigs from unaligned reads (microbial dark matter). On average, 50% of the reads

from an individual sample could not be aligned to any sequence in Filtered-nt. These unaligned

reads were assembled into contigs. Previous work has shown that creation of contigs from

unaligned short reads can be used to better understand the actual sequence space represented

in metagenomics samples [64]. This “microbial dark matter” remains to be elucidated. Using

BLAST against NCB-nt sequences did not yield any significant matches. Given that the average

protein-coding density of bacterial genomes is 87% with a typical range of 85–90% [65], and

the organisms in our reference list range in size from 1.89–6.17 Mb, contigs less than 10Kb

were excluded. This value would mean that any single sequence would cover at the very least

0.16% of the organism’s genome, or 0.19% of an organism’s coding region. The goal here was

Fig 3. Correlation between bacterial organism and nutrient data. (A) Bifidobacterium is positively correlated with dietary protein intake,

specifically vegetable protein, present in vegetables such as broccoli, brussel sprouts, beans, peas, asparagus and beans. (B) Akkermansia is

positively associated with body mass index (BMI). (C) Bacteriodes ovatus is positively correlated with daily calorie intake. (D) Bacteriodes ovatus
is negatively correlated with body weight.

https://doi.org/10.1371/journal.pone.0206484.g003
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Fig 4. The range of correlation for all features that have been measured for each of the GW samples. Each line is a

graph of the min and max values using a Cosine Similarity coefficient correlation. A positive value means strong

correlation, and a negative value means strong anticorrelation, whereas zero means absolutely no correlation. Given

the size of sample pool of 16, 0.7 is taken as the marginal threshold for evidence of some degree of correlation. Each

feature that had a correlation with any organism is highlighted in blue. For example, some characteristics such as fat

intake have anticorrelation with members of Campulobacter jejuni and Eubacterium family.

https://doi.org/10.1371/journal.pone.0206484.g004
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to reduce the number of false positive contigs. Using this approach unaligned reads were

assembled into 1,467,129 contigs of which 46,095 have a length greater than 10Kb. After build-

ing the contigs, sequences greater than 10,000 nucleotides were saved into the same file, and

each header was formatted to indicate the sample number, gender, age, and ethnicity of the

source. The file is available for download at https://hive.biochemistry.gwu.edu/prd/gfkb//

content/unalignedContigsGFKB-v2.0.fasta. These contigs are ideal for new primer design for

detailed analysis of the gut microbiome.

The unaligned reads were used for contig assembly post-alignment to minimize risk of

loosing informative contigs to consensus sequences which may map partially to the organisms

in GutFeelingKB. This was confirmed in an experiment where all the reads were assembled

first, then the contigs were mapped to the genomes from GutFeelingKB. This step resulted in

much smaller number of contigs over 10 KB. Most likely some of the dark matter contigs are

from bacteriophages. Using the pre-assembly method, one could potentially identify novel

bacteriophages and associate the phage with their host organism.

FecalBiome Reporting Template

The known effects of the microbiome on health status are growing rapidly and have already

spawned FDA approved products at various biotech firms [66]. Some firms have even begun to

report microbial composition data to consumers. The formats and parameters for generation of

these reports are non-standardized, limiting their research value. It is necessary to standardize

the way that the microbiome is discussed in research and, eventually, in the clinic; the earlier

this standardization occurs, the more effective it will be as microbiome science becomes a tool

for general research and microbiome medicine moves as close to clinic as genomic medicine.

Since there is a need for a cycle moving from bench to bedside and back again, there is value in

building a clinical-style report on top of a research tool with the ability to easily cross between

the two [67]. In that vein, FecalBiome Template is presented (Fig 5)—a general reporting tem-

plate for microbiome research. It is composed of three domains: Sample, Patient, and Result;

these results are drawn from information from a given microbiome sample which is then com-

pared to the contents of the GutFeelingKB. The template was drafted in the spirit of comprehen-

sive metabolic panel (CMP) lab test (https://www.accesalabs.com/downloads/quest-lab-test-

sample-report/Comprehensive-Metabolic-Panel-Test-Results.jpg; https://medlineplus.gov/ency/

article/003468.htm). This report is also intended to serve as a snapshot of a research project,

allowing colleagues and collaborators across labs to share high level information in a rapid man-

ner. It is not uncommon for sample collection, sequencing, and analysis to happen at different

locations with different research groups each having a stake in the data produced. In a research

setting, the template can serve as a coversheet for shared data, accompanying sequence data to

give collaborators a look at their data without having to write scripts for visualizations. This

report is designed to be generalizable to any human microbiome. Researchers and clinicians

should determine a threshold for the number of organisms reported depending on the circum-

stances of their investigation. Recommendation from this study is reporting of the organisms

that comprise the top 50% (sorted based on abundance) of identified microbes from an individ-

ual’s sample. Any threshold of organisms to report in the domains can be set by the user to fit

their purposes. Information about sample abundance, average abundances for a microbe, as well

as information about those microbes from the literature is included on this report.

As a test case, one sample was taken from the set to determine where it fell relative to

the baseline gut microbial population to show the potential clinical application of this tech-

nology. The final column in the result table includes information about whether a given pop-

ulation of microbes falls within the range expected based on the sample space included in
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Fig 5. FecalBiome Reporting Template. Personal Information section of the report contains information about the individual

who had a sample sequenced, as well as the individual who ordered the sequence. It contains information about the pipeline used

for analysis, as well as the sample number for ease of retrieval. Result section contains microbes representing the most abundant

organisms which comprise the top 50% of inhabitants. Organismal Comment section includes information from the

GutFeelingKB which pertains to the potential function of that organism.

https://doi.org/10.1371/journal.pone.0206484.g005
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GutFeelingKB. The report does not include an explanation for what a particular result

means, as it is premature to tie a specific microbe to phenotype in cases other than infectious

disease, and any result falls to the purview of the requesting physician. With more informa-

tion on the role of the microbiome and its constituent microbes, it will become more feasible

to contrast where a sample from an individual lies within the spectrum of healthy or dysbio-

tic microbes abundance.

All relative abundances were calculated for the individual datasets before quantifying the

relative min, relative max, mean, median, and standard deviation (Fig 3). These statistics were

then transformed into one cohesive report that merged the range, mean, median, and standard

deviation. The statistics were further collapsed by family to generate an overall report that

models a complete metabolic profile. The top most abundant families (Akkermansiaceae, Bac-

teroidaceae, Enterobacteriaceae, Rikenellaceae, and Ruminoccocaceae) had a relative max of

8.03, 12.13, 10.99, 6.89, and 6.31 percent of relative abundance, respectively. This is not sur-

prising considering the Rikenellaceae family is indicative of good gastrointestinal health [68].

Akkermansiaceae is linked to lower rates of obesity and associated metabolic disorders [69].

Bacteroidaceae and Enterobacteriaceae can be linked to acute infective processes but are

otherwise symbionts [70,71], and Ruminococcaceae is known to break down complex carbo-

hydrates especially in people with carb heavy diets [72]. FecalBiome and the underlying Gut-

FeelingKB can have high value to clinicians who hope to assess the gut microbial status of their

patients. The goal of the database and report is to connect lab results with outcomes. At pres-

ent, most known microbiome disease associations are a type of severe dysbiosis caused by a

kind of potentially pathogenic bacteria–the canonical infectious pathogens such as Helicobac-
ter pylori, Vibrio cholerae and others. By determining what species or strain correlate with

good or bad outcomes, this type of research could aid clinicians in developing strategies for

valuable evidence-based treatments.

Conclusion

The metagenomic analysis workflow described in this study involves a sub-sampling-based

method followed by comprehensive mapping of all of the reads to accurately determine the

abundance of microorganisms. The workflow provides a comprehensive snapshot of the

microbial abundance and can easily be used with any state-of-the-art NGS read mapping and

assembly algorithms. The list of baseline organisms identified in the normal human gut has

clinical applicability as microbiome research moves closer to the bedside. The methods, tools

and data from this project can also be used by regulatory scientists to evaluate workflows

related to fecal transplant.

In addition to the workflow, this work lays the foundation for an expansive and modular

database which can aggregate publicly available data as well as data from contributors to push

towards an understanding the baseline human microbiome. This database can serve as a refer-

ence in studies of dysbiosis and microbiome associated with diseases. The user-friendly format

through FecalBiome report, which contains absolute and relative abundance information

about a given sample compared to an average across the entire database allows scientists, clini-

cians, and eventually patients to understand overview of gut microbiome. This work has the

potential to provide a significant impact on regulatory science (e.g., FDA) and standards orga-

nization (e.g., NIST) research efforts in this area. For example, GutFeelingKB can potentially

allow for rapid assessment of the content of human GI replacement products and, ideally, allow

for more expedient review of products. Future studies to advance evidence-based microbiome

medicine can be conducted where potential patients identify which outcomes (such as depres-

sion, bloating, epilepsy, frequency of common colds, cancer, etc.). For example Apte et al. [20]

Baseline human gut microbiota profile in healthy people and standard reporting template

PLOS ONE | https://doi.org/10.1371/journal.pone.0206484 September 11, 2019 19 / 25

https://doi.org/10.1371/journal.pone.0206484


identified 28 disease-related organisms which can be targeted to evaluate the healthy status of

an individual and used to detect disease while FecalBiome report can be used to communicate

the microbiome-related health status of an individual between a clinician and patient. Those

outcomes will become endpoints in clinical trials or observational studies that demonstrate the

effects of various bacteria on the human gut. This type of methodology would tie raw numbers

to health states that are meaningful for the general population, ensuring that data gathered are

relevant to the patient, and therefore the clinician. This could bring a new, patient-centric per-

spective to microbiome data use and allow for a greater scope of health data to sit atop metage-

nomic sequence data. If everyone uses the same set of clinically relevant endpoints, research

will be easily comparable across studies and meta-analysis becomes interoperable.
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