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Abstract

Ostreid oysters (the ‘true oysters’) represent a large and commercially important family of

bivalve molluscs. Several species, such as the Pacific oyster (Magallana gigas), the Ameri-

can oyster (Crassostrea virginica), the European oyster (Ostrea edulis) and the Sydney

rock oyster (Saccostrea glomerata), are currently farmed at a large scale. However a num-

ber of other species may also be suitable for commercial-scale aquaculture. One such spe-

cies is the ‘black-lip oyster’, a large Saccostrea species of uncertain taxonomic affinity found

in northern Australia. Here, phylogenetic analysis of the COI gene places this oyster within a

clade identified in a previous study of Japanese Saccostrea species, ‘Saccostrea lineage J’.

To facilitate comparisons between this oyster and the better-studied S. glomerata, de novo

transcriptomes were generated from larval stages and adult tissues of both species. Pat-

terns of orthology indicated an expansion of repetitive elements within Saccostrea genomes

when compared to M. gigas and C. virginica, which may be reflected in increased evolution-

ary rates and/or genome sizes. The generation of high-quality transcriptomes for these two

commercially relevant oysters provides a valuable resource for gene identification and com-

parison of molecular processes in these and other mollusc species.

Introduction

Aquaculture of ostreid oysters is a significant industry worldwide, with an estimated value of

$US6.6 billion per annum (2016 data, [1]). Within Australia, the majority of production is

focused on two species, the native Sydney rock oyster (Saccostrea glomerata), and the intro-

duced Pacific oyster (Magallana gigas, formerly Crassostrea gigas) [2]. Production of each of

these species is hampered by mass mortality events due to disease outbreaks, and significant

effort is being expended towards selective breeding of disease resistant lines for both species

[3–6]. An additional suggested course of action is to investigate other native species for aqua-

culture potential [7], which, depending on the species, may facilitate the establishment of the

industry in new coastal regions (for example, the tropics).
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A prime candidate for tropical oyster aquaculture in Australia is the ‘black-lip’ oyster, a

large Saccostrea species currently farmed on a small scale in Bowen, Queensland (John Colli-

son, personal communication) and Darwin, Northern Territory [8]. The taxonomic status of

this oyster is poorly defined, and it is variably reported in the literature as ‘Saccostrea echinata’
[8, 9] or ‘Striostrea (Parastriostrea) mytiloides’ [2, 10]. Given that unambiguous identification

of Saccostrea oysters is challenging based on morphology alone [11, 12], and that no molecular

data exists for the species, this designation must be treated as tentative at this stage. It is

assumed that the species currently farmed is the same as that reported from Magnetic Island,

Queensland [9, 13], New Caledonia [14], and Palau [15].

Aquaculture of the black-lip oyster has largely relied on natural catch of juvenile oysters

(spat), and the lack of established hatchery protocols for this species is a major impediment to

expansion of production. Recent reports indicate that the poor larval survival previously expe-

rienced in hatchery trials [9, 14] has largely been overcome, however settlement rates remain

low [8]. Current hatchery production protocols have been adapted from those developed for

the Sydney rock oyster (Saccostrea glomerata) [16], and may not be optimal for black-lip oys-

ters. Differences in settlement processes could be expected given that black-lip oysters are typi-

cally found as isolated individuals on mangrove roots and rocks [13, 17], whereas S. glomerata
is found in large aggregations [18]. Settlement of marine pelagobenthic invertebrates is a

tightly regulated molecular process, whereby larvae at a particular genetically-determined

developmental state (competence) are receptive to particular internal or external cues that ini-

tiate metamorphosis [19]. Improved understanding of this process in the black-lip oyster will

be critical for the successful hatchery production of this species.

Molecular approaches can likewise be applied to other aspects of oyster husbandry, and

have already demonstrated promise for the improvement of S. glomerata production. A selec-

tive breeding program for faster growth and disease resistance was initiated in New South

Wales in 1990 [4, 20, 21]. Genes encoding anti-oxidant enzymes were shown to be differen-

tially expressed between disease-resistant and wild-type oysters, highlighting the potential for

marker-assisted selection [22]. Molecular techniques have also yielded tools for the manipula-

tion of broodstock condition, a development of critical importance for the hatchery produc-

tion of selected animals [23]. Given that the black-lip and S. glomerata belong to the same

genus it is possible that some of the molecular techniques developed may be directly transfer-

rable between the species.

The development of these molecular approaches relies on the availability of sequence data

for the species of interest. A number of transcriptome studies have been performed for S. glo-
merata, investigating gene expression in different tissues and under different environmental

conditions and stressors [23–28]. None of these transcriptomic studies have incorporated lar-

val samples, therefore genes expressed exclusively in larval stages will not be identified in these

transcriptomes. Aside from S. glomerata, transcriptome data exists only for one other Saccos-
trea species, S. palmula [29], limiting capacity for comparative analyses between taxa.

This study presents comprehensive transcriptomes derived from larval stages and adult tis-

sues of both the black-lip and Sydney rock oysters. The transcriptomes were deemed to be of

high quality, based on assembly completeness and comparison of universal benchmarking sta-

tistics against whole genome assemblies ofM. gigas and Crassostrea virginica. Patterns of

orthology were compared between the Saccostrea transcriptomes generated here and predicted

proteins from the Crassostreinae (M. gigas and C. virginica) genomes. This revealed that the

Saccostrea lineages possess a larger repertoire of repetitive elements, particularly within the

LINE, SINE and Penelope classes. The transcriptomes presented here will provide a valuable

resource not only for improvement of oyster production, but also for investigation into the

evolution of life-history traits in oysters.
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Materials and methods

Animal sources, husbandry, and sample collection

All samples were taken during commercial hatchery runs conducted at Aquafarms Queens-

land Pty Ltd, Hervey Bay, Australia. Adult black-lip and S. glomerata were supplied from

commercial oyster farms in Bowen, Queensland, and Port Stephens, New South Wales, respec-

tively. Oyster spawning and larval culture followed the methods outlined in [16]. Briefly, oys-

ters were induced to spawn via temperature and salinity treatments. Individuals that had

begun spawning were removed and kept separate until spawning was complete, and eggs and

sperm from all individuals pooled separately prior to fertilisation. Larvae were stocked in 5,000

L tanks containing aerated filtered sea water (FSW) at an initial concentration of 19 (black-lip)

or 26 (S. glomerata) larvae mL-1, and were maintained at 27˚C ± 2˚C (black-lip) or 25˚C ± 2˚C

(S. glomerata). Larvae were drained on to mesh screens and transferred to a clean 5,000L tank

daily, and were periodically screened to remove the slowest growers. Feeding was initiated at

approximately 16 hours post fertilisation (hpf), and consisted of Pavlova lutheri, Tisochrysis
lutea, Chaetoceros calcitrans and Chaetoceros muelleri, at varying concentrations depending on

larval age. Settlement induction was performed using epinephrine bitartrate once larvae had

reached the pediveliger stage and were able to be retained on a 200 μm mesh screen (day 24 for

the black-lip, day 21 for S. glomerata).

Embryos and larvae (~50 per stage) were sampled at least once daily, with more frequent

sampling within the first 24 hours and at settlement. Small (<0.25 mg) samples were also

taken from various tissues from two S. glomerata and three black-lip adults. All samples were

taken in to microcentrifuge tubes containing 1ml RNAlater (Sigma), stored at 4˚C for 24

hours, and then -20˚C until RNA extraction. Details of all samples are provided in S1 Table.

DNA extraction and COI sequencing of the black-lip

A small piece of adductor muscle (~0.25 mg) was dissected from three adult black-lip individu-

als for DNA extraction. Extractions were performed using a standard NETS/phenol chloro-

form protocol. PCR amplification of a partial COI sequence was performed using the primers

LCO1490 and HCO2198 [30], 10ng of DNA template, and Taq polymerase (NEB) with the fol-

lowing cycling conditions: an initial denaturation at 94˚C for two minutes, 30 cycles of 94˚C

for 30 seconds, 48˚C for 30 seconds, and 68˚C for 45 seconds, followed by a final extension of

68˚C for 10 minutes. Resulting products were gel purified and submitted to the Australian

Genome Research Facility, Brisbane, for Sanger sequencing in both directions using the PCR

primers.

Phylogenetic analysis

Resultant COI sequences were trimmed to remove the primer and aligned with other partial

ostreid COI sequences (downloaded from NCBI) using the program Aliview [31]. The align-

ment was manually trimmed to the minimal length of the majority of the records (538 bp) and

shorter sequences were removed (S1 Alignment). Phylogenetic analysis was performed using

RAxML 8.2.11 [32] using the GTR (general time reversible) substitution model with the CAT

model of rate heterogeneity and 100 nonparametric bootstrap replicates. Phylogenetic trees

were visualised using FigTree [33].

Transcriptome sequencing, assembly, and quality assessment

For each species, RNA extractions from embros/larvae and adult tissues were performed sepa-

rately and pooled prior to preparation of sequencing libraries. A minimum of 20 individual
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embryos or larvae from each sampled stage were pooled in to three separate extractions to

maximise coverage of the entire larval timecourse. Samples were homogenised using glass pes-

tles in 1 mL of TRI Reagent (Sigma) and extractions performed as per the manufacturer’s

instructions, using 1-bromo-3-chloropropane for phase separation. Precipitation of RNA was

performed using 0.25 mL of isopropanol and 0.25 mL of high salt precipitation solution (0.8 M

sodium citrate and 1.2 M sodium chloride). RNA was shipped to Macrogen (Seoul, Korea) and

assessed for quality on an Agilent 4200 Tapestation High Sensitivity ScreenTape before library

preparation using a TruSeq Stranded mRNA LT Sample Prep Kit. Libraries were sequenced

on a HiSeq 2500 to generate ~80,000 100 bp paired-end reads. Quality of the resulting data

was assessed using FastQC 0.11.3 [34].

Transcriptome assembly was performed using Trinity 2.4.0 [35], with quality trimming via

Trimmomatic and without normalisation of reads. Transcriptome quality assessment was per-

formed by 1) determining the level of representation of reads within the assembly by mapping

using Bowtie2 2.0.2 [36], and 2) determining the proportion of full-length transcripts via

BLAST+ 2.3.0 [37] alignment of sequences in the SwissProt non-redundant database [38]

against the assemblies, both as outlined in the Trinity documentation. Analysis of assembly

completeness was performed using BUSCO v3 [39] and the metazoa_odb9 dataset (created 13/

02/2016), analysing open reading frames identified within transcripts by TransDecoder 5.3.0

[35]. Results for the transcriptomes generated here were compared against whole genome data

from the oystersM. gigas [40] (PRJNA276446) and C. virginica [41](PRJNA379157).

Transcriptome annotation was conducted via sequence homology searching of transcripts

against the Swissprot database by BLAST [42], the PFAM database [43] by hmmscan [44], and

association with Gene Ontology (GO) terms [45], all within the Trinotate 3.1.1 workflow

(https://github.com/Trinotate/Trinotate.github.io/wiki) [46].

Orthology and enrichment analysis

To reduce sequence redundancy present within the transcriptomes, TransDecoder was first

used to identify the longest potential open reading frame per transcript using the -single_bes-

t_orf command. The dataset was further filtered to retain only the single longest isoform per

Trinity ‘gene’. These predicted protein datasets, generated for each species, were then analysed

along with predicted proteins from theM. gigas and C. virginica genomes using Orthofinder

2.2.3 [47] to identify groups of potentially orthologous proteins and their corresponding

genes. From this analysis, genes within the Saccostrea-specific orthogroups were analysed for

overrepresentation of ‘biological process’ GO categories using a hypergeometric test within

the BiNGO plugin [48] of Cytoscape [49]. The analysis was performed in both directions, i.e.,

using the S. glomerata transcripts from the Saccostrea-specific orthogroups against the com-

plete annotation of the S. glomerata predicted protein dataset as a reference, and again using

the S. lin. J transcripts against the complete annotation of the S. lin. J dataset. Enrichments

with an adjusted p-value of less than 0.01 (Benjamini and Hochberg FDR correction) in both

species were deemed to be significant.

Analysis of repetitive elements

Analysis of repetitive element content was performed using RepeatMasker 4.0.7 [50] by align-

ing sequences against RepBase (RepBase-20170127)[51]. The analysis was performed for S. glo-
merata and the black-lip using the reduced ‘single longest isoform per gene’ dataset outlined

above, and all predicted genes from theM. gigas and C. virginica genomes. The parameters for

the analysis were: -q -species ’fungi/metazoa group’.
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Results and discussion

Description and identification of the ‘black-lip’ oyster

The black-lip oysters used in this study were farmed adults sourced from wild-caught spat in

Bowen, Queensland, Australia. The oysters were large (70–84 mm in diameter), and character-

ised by a dark outer surface of the right (upper) valve, a distinct black margin around the inner

surface of the right valve, thick shell, prominent chomata, and a dark mantle margin (“black-

lip”) (Fig 1).

Fig 1. Morphology of the black-lip oyster. The sample has been stored in ethanol, causing some shift in colour within

the internal soft tissues. A. Upper surface of the right valve, showing intense dark pigmentation. The outer shell layer

has been chipped away at the umbo (arrowhead). B. Inner surface of the right valve. The dark outer shell margin is

sharply separated from the white internal surface by large, obvious chomata (ch). The mantle edge is darkly pigmented

(m). C. Outer surface of the deeply-cupped left valve. D. Inner surface of the left valve, showing a dark outer shell

margin and obvious chomata, and dark pigmentation in the mantle E. Inner surface of the left valve of a second

specimen, with soft tissues removed to display the adductor scar (arrowhead). Scale bar = 10mm.

https://doi.org/10.1371/journal.pone.0206417.g001
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A 649 bp fragment of the COI gene was sequenced from three adult black-lip oysters. All

three sequences were identical (NCBI accession MH822839). Phylogenetic analysis recovered

major clades largely congruent with that of previous studies [11, 12, 52] (Fig 2, S1 Fig), placing

the black-lip oyster within ‘Lineage J’ as nominated by Sekino and Yamashita [12]. The black-

lip is therefore designated as ‘Saccostrea lin. J’ henceforth. Other oysters within lineage J were

collected from Japan (Okinawa), Malaysia (Sabah) and Taiwan, suggesting a broad tropical

Indo-Pacific distribution for this lineage. In both this analysis and that of Sekino and Yama-

shita [12] lineage J falls as a sister clade to all other sequenced Saccostrea lineages, albeit with

low support.

Transcriptome sequencing and assembly

To obtain representative transcriptomes for both S. glomerata and S. lin. J, RNA from larval

stages and adult tissues were pooled prior to library generation, high-throughput sequencing,

and transcriptome assembly. Raw sequence files and assembled transcripts have been depos-

ited in NCBI under BioProject PRJNA487836. Although similar numbers of raw reads (~80

million) were obtained for both libraries, significantly more assembled transcripts were

obtained for S. glomerata than S. lin. J (Table 1). Despite this, the median contig length and

contig N50 were higher for the S. lin. J assembly, indicating that the higher transcript count

may reflect a more fragmented assembly for S. glomerata. Overall, these quality statistics are

similar to those of other recent bivalve transcriptomes sequenced using similar techniques [26,

53].

Transcriptome quality assessment and annotation

Alignment of raw reads back to the Trinity assemblies revealed that 91.76 and 85.05 percent of

paired reads aligned concordantly to the de novo transcriptomes for S. lin. J and S. glomerata,

respectively, indicating a high read representation within each assembly. The degree to which

assembled transcripts were likely to be full length was assessed by aligning each sequence in

the Swissprot non-redundant database against the transcriptome via BLAST. For the 12358

Swissprot sequences with BLAST hits in the S. lin. J assembly, 4150 (33.6%) had at least one

transcript that aligned along the entire sequence, whereas 3465 (23.9%) of the Swissprot

sequences appeared to be represented by a full-length transcript in the S. glomerata assembly.

Transcriptome completeness was assessed using the Benchmarking Universal Single-Copy

Ortholog (BUSCO) assessment tool [39]. De novo transcriptomes were compared against

whole genome protein data fromM. gigas and C. virginica. The S. glomerata transcriptome

lacks 8 BUSCOs, equal to the number missing from theM. gigas genome and less than that

missing from C. virginica (Table 2). Even fewer BUSCOs (4) were lacking from the S. lin. J
transcriptome. One BUSCO, EOG091G0GA7, was missing from all four oyster datasets, indi-

cating that this gene (encoding a putative N-6 adenine-specific DNA methyltransferase) may

have been lost from the ostreid lineage. Overall, these results indicate that the transcriptomes

reported here provide good coverage of the total gene content of these species.

Analysis of orthologous sequences

The high degree of transcript redundancy within the transcriptome datasets indicated via

BUSCO analysis necessitated filtering of sequence data with the aim of retaining only one tran-

script per gene for downstream orthology and enrichment analysis. To achieve this, the longest

open reading frame was selected per Trinity ‘isoform’, followed by selection of the longest iso-

form per Trinity ‘gene’. It should be noted that filtering by this method does remove some

Australian black-lip and Sydney rock oyster transcriptomes
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Fig 2. Maximum likelihood phylogenetic analysis of Saccostrea COI sequences. Bootstrap values>50 are given on branches, and the scale bar indicates the number

of substitutions per site. The clade containing Striostrea,Dendostrea,Magallana and Crassostrea COI sequences is used as an outgroup. Lineages have been designated

(where possible) following Lam and Morton [11] and Sekino and Yamashita [12]. The Bowen black-lip COI sequence (circled in inset) falls within ‘Lineage J’ with

strong support.

https://doi.org/10.1371/journal.pone.0206417.g002

Australian black-lip and Sydney rock oyster transcriptomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0206417 October 25, 2018 7 / 15

https://doi.org/10.1371/journal.pone.0206417.g002
https://doi.org/10.1371/journal.pone.0206417


valid sequences, as reflected by a larger number of missing BUSCOs for these datasets (7 and

33 missing BUSCOs for S. lin. J and S. glomerata, respectively).

Orthology analysis performed on this filtered dataset revealed that 15,117 orthogroups

(inferred set of genes descended from a single ancestral gene) were shared between all four spe-

cies (Fig 3). An additional 5,719 orthogroups were shared exclusively by the two Saccostrea
species, whereas only 461 were shared exclusively byM. gigas and C. virginica. This large dif-

ferential was unexpected and possibly reflected the differences in sequencing methodology (i.
e., transcriptome vs whole genome) for these species, rather than a true biological difference.

To investigate this further, GO-term enrichment was performed to gain insight into the puta-

tive functions of orthogroups shared exclusively between the two Saccostrea species.

Enrichment analysis

Potential functional enrichment within the Saccostrea-specific orthogroups identified above

was investigated by assessing the representation of GO categories (based upon Swissprot

BLAST results) within this subset of transcripts against the whole transcriptome annotation.

43 GO categories were enriched within the Saccostrea-specific orthogroups using an adjusted

p-value of less than 0.01 (Table 3). Of these, 11 represented terminal (non-parent) GO terms.

A number of these enriched terms are associated with repetitive elements (e.g., DNA inte-

gration, DNA-mediated transposition, RNA-mediated transposition), indicating the potential

expansion of these elements in Saccostrea species in relation toM. gigas and C. virginica
genomes. To investigate this further, RepeatMasker was used to identify and classify transpos-

able elements in each of the four datasets. This analysis detected higher proportions of retroe-

lements in Saccostrea lineages, particularly within SINE, Penelope, and LINE classes (Fig 4). S.

glomerata had the highest overall proportion of repetitive elements (3.20%), and appears to

have undergone an additional expansion of the Gypsy/DIRS1 class of LTR elements. The total

proportion of repetitive element content within Saccostrea genomes is likely to be even higher

than that reported here, as transcriptomics can only reveal elements that are transcriptionally

active. As repetitive element content is positively correlated with genome size [54], these

results may also indicate larger genomes for Saccostrea species when compared to that of C.

virginica (estimated at 675 Mb, [55]) andM. gigas (estimated between 545 and 637 Mb, [40]).

Alternatively, the higher proportion of repetitive elements found in Saccostrea genomes may

reflect an underestimation of repetitive element content in C. virginica andM. gigas genomes,

as masking of repetitive regions prior to gene prediction in whole-genome annotation (e.g.,

page 18 Supplementary Information in reference [40]) may preclude accurate identification.

Transposable elements are major sources of genetic variation within genomes (reviewed in

[56]). The composition of transposable elements can vary even between closely related species,

likely the result of differential timing and rates of proliferation events, accumulation of

Table 1. Assembly statistics for S. lin. J and S. glomerata transcriptomes.

S. lin. J S. glomerata
Raw reads (paired-end) 80,450,850 79,209,388

Total number of Trinity ‘genes’ 120621 180564

Total number of assembled transcripts 216545 375022

GC content (%) 38.30 38.73

Contig N50 1508 1109

Median contig length (nt) 446 400

Total assembled bases (nt) 185,573,484 266,516,557

https://doi.org/10.1371/journal.pone.0206417.t001
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mutations, horizontal transfer, and differential rates of transposable element removal. In some

cases, differential transposable element proliferation has been implicated as a major driver of

the speciation process itself (reviewed in [57]). Penelope elements, in particular, are associated

with chromosomal rearrangements and mutations in hybrids of different genetic populations

(hybrid dysgenesis), and in the induction of other transposable elements [58]. Penelope expan-

sions have been reported in other bivalves, for example, inMytilus galloprovincialis [59] and

Ostrea edulis [60], and may therefore have major implications for the evolution of bivalve

genomes.

Table 2. BUSCO results for both Saccostrea species compared to Crassostreinae whole-genome data.

S. lin. J S. glomerata M. gigas C. virginica
Complete BUSCOs 968 924 963 960

Complete and single-copy BUSCOs 534 420 685 538

Complete and duplicated BUSCOs 434 504 278 422

Fragmented BUSCOs 6 46 7 2

Missing BUSCOs 4 8 8 16

https://doi.org/10.1371/journal.pone.0206417.t002

Fig 3. Patterns of gene orthology in oyster species. Number of orthogroups shared between Saccostrea lineage J, Saccostrea glomerata,Magallana gigas, and

Crassostrea virginica. 15117 orthogroups are shared between all four species, and 5719 orthogroups are shared exclusively between the two Saccostrea species.

https://doi.org/10.1371/journal.pone.0206417.g003
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Conclusion

This study presents high-quality transcriptomes derived from embryos, larvae, and adult tis-

sues of two Saccostrea species, S. glomerata and S. lineage J. Analysis of gene orthology patterns

between these transcriptomes and whole genome data from the oystersMagallana gigas and

Crassostrea virginica demonstrated an expansion of repetitive elements within the Saccostrea
lineage, possibly revealing an important mechanism for the generation of genetic diversity

Table 3. GO categories enriched in Saccostrea-specific orthogroups.

GO Term Description Terminal GO term S. lin. J
P value

(adj)

S. glomerata
P value

(adj)

0006278 RNA-dependent DNA biosynthetic process 3.61E-17 8.46E-23

0015074 DNA integration Y 2.94E-16 5.17E-15

0032196 transposition 2.94E-16 5.04E-19

0015969 guanosine tetraphosphate metabolic process Y 1.74E-12 4.87E-32

0034035 purine ribonucleoside bisphosphate metabolic process 1.21E-11 2.13E-30

0006259 DNA metabolic process 1.34E-11 1.26E-13

0071897 DNA biosynthetic process 1.78E-11 5.62E-17

0006313 transposition, DNA-mediated Y 9.23E-11 1.11E-11

0034032 purine nucleoside bisphosphate metabolic process 6.10E-10 6.83E-27

0033875 ribonucleoside bisphosphate metabolic process 6.10E-10 6.83E-27

0033865 nucleoside bisphosphate metabolic process 6.10E-10 6.83E-27

0006310 DNA recombination 4.74E-09 5.19E-13

1901068 guanosine-containing compound metabolic process 1.15E-08 8.46E-23

0046128 purine ribonucleoside metabolic process 7.01E-08 3.16E-21

0042278 purine nucleoside metabolic process 1.04E-07 7.58E-21

0009119 ribonucleoside metabolic process 1.26E-06 8.70E-19

0045599 negative regulation of fat cell differentiation Y 5.13E-05 2.82E-05

0090084 negative regulation of inclusion body assembly Y 6.26E-05 3.84E-05

0009116 nucleoside metabolic process 7.24E-05 1.04E-16

0048147 negative regulation of fibroblast proliferation Y 8.86E-05 5.70E-04

0090083 regulation of inclusion body assembly 1.67E-04 5.17E-05

0070373 negative regulation of ERK1 and ERK2 cascade Y 1.76E-04 1.50E-04

0007155 cell adhesion 1.82E-04 5.37E-04

0022610 biological adhesion 2.07E-04 6.32E-04

0032197 transposition, RNA-mediated 2.24E-04 8.49E-06

1901657 glycosyl compound metabolic process 2.24E-04 1.01E-14

1901017 negative regulation of potassium ion transmembrane transporter activity 3.33E-03 6.90E-05

0045760 positive regulation of action potential 3.79E-03 2.59E-04

1903817 negative regulation of voltage-gated potassium channel activity 3.79E-03 1.19E-04

1901380 negative regulation of potassium ion transmembrane transport 3.88E-03 1.50E-04

0001171 reverse transcription 4.65E-03 1.72E-05

0032199 reverse transcription involved in RNA-mediated transposition Y 4.65E-03 1.72E-05

1902259 regulation of delayed rectifier potassium channel activity 5.62E-03 1.19E-04

0009150 purine ribonucleotide metabolic process 6.08E-03 2.58E-11

0045598 regulation of fat cell differentiation 7.34E-03 3.00E-03

0006163 purine nucleotide metabolic process 7.34E-03 4.90E-11

0043267 negative regulation of potassium ion transport 7.34E-03 3.21E-04

https://doi.org/10.1371/journal.pone.0206417.t003
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within these genomes. The transcriptomes developed in this study extend the molecular data

available for ostreid bivalves, and provide a valuable resource for future comparative genomics

of these commercially important species.

Supporting information

S1 Alignment. Trimmed sequence alignment used for phylogenetic analysis, in FASTA for-

mat.

(FA)

Fig 4. Repetitive element content of oyster genomes as assessed by searches against RepBase. Saccostrea species

possess a greater proportion of retroelements within their genomes, particularly within the SINE, LINE, and Penelope
classes. Additional expansion of the Gypsy/DIRS1 LTR class is evident in S. glomerata.

https://doi.org/10.1371/journal.pone.0206417.g004
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