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Abstract

Background & aim

Liver metastasis has been found to affect outcome in prostate, pancreatic and colorectal

cancers, but its role in lung cancer is unclear. The 5 year survival rate remains extensively

low owing to intrinsic resistance to conventional therapy which can be attributed to the

genetic modulators involved in the pathogenesis of the disease. Thus, this study aims to

generate a model for early diagnosis and timely treatment of liver metastasis in lung cancer

patients.

Methods

mRNA expression of 15 genes was quantified by real time PCR on lung cancer specimens

with (n = 32) and without (n = 30) liver metastasis and their normal counterparts. Principal

Component analysis, linear discriminant analysis and hierarchical clustering were con-

ducted to obtain a predictive model. The accuracy of the models was tested by performing

Receiver Operating Curve analysis.

Results

The expression profile of all the 15 genes were subjected to PCA and LDA analysis and

5 models were generated. ROC curve analysis was performed for all the models and the

individual genes. It was observed that out of the 15 genes only 8 genes showed significant

sensitivity and specificity. Another model consisting of the selected eight genes was gener-

ated showing a specificity and sensitivity of 90.0 and 96.87 respectively (p <0.0001). More-

over, hierarchical clustering showed that tumors with a greater fold change lead to poor

prognosis.
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Conclusion

Our study led to the generation of a concise, biologically relevant multi-gene panel that sig-

nificantly and non-invasively predicts liver metastasis in lung cancer patients.

Introduction

Lung cancer is the foremost reason for mortality and morbidity globally and its incidence is

vastly increasing [1]. The high mortality rate can be attributed to late diagnosis and increased

metastatic potential of the disease. In several cases, multiple metastases from primary lung can-

cer to different organs develop at a clinically early stage or at the time of diagnosis [2, 3]. More-

over, 30–40% patients with advanced lung cancer develop liver metastases resulting into an

increased morbidity and low survival rate [4, 5]. The treatment for metastatic lung cancer clin-

ically consists of systemic therapy encompassing cytotoxic and/or molecularly-targeted agents

and palliative radiotherapy for symptomatic management. But the life expectancy of lung car-

cinoma patients depends on the extent of the disease and the response to chemotherapy [6].

However, currently no curative therapy exists for patients suffering from lung cancer liver

metastasis and thus treatment and prevention is of utmost importance for the management of

this disease [5, 7, 8].

An emerging field of cancer research is to discover therapy for carcinomas that develop

drug resistance and form distant metastasis. Prognostic biomarkers are anticipated to be bene-

ficial for prediction of the probable course of lung cancer liver metastases that prominently

leads to the aggressiveness of the disease. Moreover, multiple biomarkers are known to be

involved in the pathogenesis of the disease and thus the detection of these multiple prognostic

biomarkers may increase the diagnostic sensitivity and specificity over the use of individual

markers. Recently promising strategies for such biomarker discovery have been known that

consists of microarray-based profiling at the DNA and mRNA levels, and also mass-spectrom-

etry-based profiling at the protein and peptide levels [9].

Recent studies have focused on the identification of biological markers that may be helpful

in the prediction of early recurrence and death in advanced stage lung cancer patients. A prog-

nostic biomarker panel in lung cancer patients have also been developed using molecular sub-

staging and oncogenic factors to improve risk stratification of the TNM staging system [10,

11]. Contradictorily newer methods for predicting lung cancer metastasis involves feature

(gene) selection and classifier design. Feature selection identifies a subset of differentially-

expressed genes that are potentially relevant in distinguishing the disease from the normal

samples. However, one of the principal difficulties in investigating microarray classification

and gene selection is the availability of only a small number of samples, compared to the large

number of genes in a sample [12]. Besides, hierarchical clustering [13] is also one of the most

commonly used approaches in microarray as well as gene expression studies. Conversely, hier-

archical clustering (or any purely correlative technique) cannot alone provide a rational bio-

logical basis for disease classification [14]. Therefore, multivariate analysis comprising of

principal component analysis (PCA) and linear discriminant analysis (LDA) is also conducted

to reduce and obtain a linearity of the massive data reproduced [15].

This study aimed to acquire a definite model that could be used to predict liver metastasis

in patients suffering from advanced stage lung carcinoma. Here, we examined the differential

expression profile of a multi gene panel specific for liver metastasis that we obtained in our

previous study published in Meta Gene [16] in primary lung cancer (PL; n = 30) and lung
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cancer with liver metastasis patients (ML; n = 32) and normal lung tissues (NL). The gene

expression data acquired by real time PCR was subjected the data to multivariate analysis like

PCA and LDA which ultimately led us to the generation of a specific model. We further inves-

tigated the potential of the model that we generated to predict the onset of liver metastasis by

ROC curve analysis and found that out of the 5 models generated model 4 holds impressive

potential for prediction of liver metastasis from primary lung cancer patients. Further, we

studied the individual sensitivity, specificity and cut-off values of each gene that were impli-

cated in the model.

Methods

Patients

Sampling was done during routine Fine Needle Aspiration Cytology (FNAC) procedure as a

part of diagnostic workup carried out at The Gujarat Cancer & Research Institute. 30 speci-

mens of primary lung cancer and 32 tissue specimens from patient histo-pathologically con-

firmed for liver metastasis were collected with prior consent. The median age of the patients

was 60 years at diagnosis, ranging from 30 to 82. The study was approved by the Institutional

ethics committee of The Gujarat Cancer and Research Institute and written consent was

obtained from all the patients with the approval of the consent procedure from the ethics com-

mittee. Clinico-Pathological characteristics including tumor location, age, gender, habit, stage,

and differentiation was noted in each case.

Quantitative Real-time PCR

Tissue samples were stored in RNA later immediately after FNAC biopsy. Total RNA was iso-

lated using RNeasy tissue kit (Qiagen 74106) according to the manufacturer’s instructions.

RNA extracted from normal lung and liver (Agilent Technologies, USA & Clontech, Takara

Bio Company, USA) was used as control for the study. RNA integrity was examined by gel-

electrophoresis on 1% formaldehyde gel. The concentration of the isolated RNA was quanti-

fied with Qubit 3.0 Fluorometer (Invitrogen by Life Technologies,CA, USA). 1.0 μg total RNA

was reverse transcribed to cDNA using the cDNA archive kit (Applied Biosystems–ABI; Cat

no: 4368813) in 50μl reaction volume following manufacturer’s instructions. Real-time PCR

was performed in a final volume of 20 μl containing 10 μl Brilliant III Ultra-Fast SYBR Green

QPCR Master Mix (Agilent Technologies, USA), 0.5 μl (200 nM) each of the forward primer &

reverse primer, and 2 μl cDNA. β-actin was used as a housekeeping gene in each set of experi-

ment. The list of all the primers used for the study (CXCL12, CXCR4, CK7, CDH1, CTNNB1,

CLDN4, HIF1A, MMP9, VEGFA, OPN, CDKN2A, TGFBR2, MUC16, TP53, CD44v6 and β-

actin) are shown in Table 1. Quantitative PCR using Sybr Green chemistry was carried out in

AriaMX (Agilent Biosystem) in a 96-well reaction plate format with at the following cycling

conditions: 1 cycle of 3 min at 95˚C for the initial denaturation step and 40 cycles of 5 s at

95˚C for the denaturation step, 20 s at 60˚C for the annealing and extension step. Melting

curve analysis was performed following the amplification in order to ensure positive amplifica-

tion of the target gene rather than non-specific products or primer dimmers. The relative fold

change in expression was calculated using the ΔΔCT method. All experiments were performed

in triplicate independently and average CT value was used for further calculations.

Hierarchical clustering

To investigate whether the expression profile in the primary tumor can specifically identify

metastatic status, hierarchical unsupervised clustering was performed using the hcluster
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method of R package “amap” and the plot was generated using the heatmap.2 function of

“gplots” package. Absolute Pearson and Pearson distances were used to calculate gene and

sample distances respectively and gene linkages were done using the Ward algorithm. Inter-

study normalization was done with the Bioconductor package “inSilicoMerging” using an

Empirical Bayes method.

Principal component analysis

To obtain a reliable model for prediction of liver metastasis, data was analyzed statistically by

applying Principal Component Analysis (PCA) method using SPSS 20.00 statistical software

(Chicago, IL, USA). Data dimensionality was reduced by using an orthogonal transformation

to convert correlated variables into uncorrelated variables, which are termed principal compo-

nents. PCA has a lower or equal number of principal components compared to the number of

original variables. PCA score was obtained using the following formulae:

PCA score ¼ C1V1þ C2V2þ C3V3þ C4V4þ C5V5þ � � � þ CnVn

where C1, C2, C3 . . . Cn are coefficients of each of the variables and V1, V2, V3 . . . Vn are the

values of original variables

PCA score was generated for each individual patient. Multivariate Cox regression analysis

was used to define the variables included in the PCA analysis. To scrutinize the performance

of the new PCA-based method, the distribution of accuracy, specificity, and sensitivity was

studied. For this, patient stratification process was simulated 100 times by resampling. The

patients were divided into primary lung cancer set (30 patients, 48%) and liver metastatic test

set (32 patients, 52%) groups. PCA was applied to the data sets to determine the coefficient of

each variable, and a PCA score was generated for each patient. The data sets were then strati-

fied into groups based on the mean value of the PCA scores. Accuracy, specificity, and sensitiv-

ity were calculated as follows:

Accuracy ¼ ðTP þ TNÞ=ðTN þ TPþ FPþ FNÞ

Sensitivity ¼ ðTPÞ=ðTP þ FNÞ

Table 1. Sequences and primer sets used for real time PCR.

Gene Forward Primers Reverse Primers

CXCL12 5’ -AAGCCCGTCAGCCTGAGCTA-3’ 5’ -TTAGCTTCGGGTCAATGCACAC-3’

CXCR4 5’-AATAAAATCTTCCTGCCCACC-3’ 5’-CTGTACTTGTCCGTCATGCTTC-3’

CK7 5’-GACATCGAGATCGCCACCTAC-3’ 5’-ATTGCTGCCCATGGTTCCC-3’

CDH1 50-GACTCGTAACGACGTTGCAC-30 50 -GGTCAGTATCAGCCGCTTTC-30

CTNNB1 50-TGGATACCTCCCAAGTCCTG-30 50-CAGGGAACATAGCAGCTCGT-30

CLDN4 50-AGATGGGTGCCTCGCTCTAC-30 50-CCAGGGAAGAACAAAGCAGA-30

HIF-1α 5’–ACAGCCTCACCAAACAGAGCAG-3’ 5’–CGCTTTCTCTGAGCATTCTGCAAAGC-3’

VEGFA 5’-CTTGCCTTGCTGCTCTACC-3’ 5’-CACACAGGATGGCTTGAAG-3’

MMP9 5'-GAGTGGCAGGGGGAAGATGC-3' 5'-CCTCAGGGCACTGCAGGATG-3'

p53 50-CCGTGTTGGTTCATCCCTGTA-30 50-TTTTGGATTTTTAAGACAGAGTCTTTGTA-30.

OPN 50- ACTCGTCTCAGGC CAGTTG-30 50-CGTTGGACTTGGAAGG- 30

CDKN2A 5’-CCCAACGCACCGAATAGT-3’ 5’-GGGGATGTCTGAGGGACCTT-3’

TGFβR2 5’-GTAGCTCTGATGAGTGCAATGAC-3’ 5’-CAGATATGGCAACTCCCAGTG-3’

MUC16 5’-CTGAGACCCCAACATCCTTG-3’ 5’-GGTCACTAGCGTTCCATCAG-3’

β- actin 5’-TGACGTGGACATCCGCAAAG-3’ 5’-CTGGAAGGTGGACAGCGAGG-3’

https://doi.org/10.1371/journal.pone.0206400.t001
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Specificity ¼ ðTNÞ=ðFP þ TNÞ

where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative,

respectively.

Statistical analyses and the PCA algorithm were performed using SPSS 20.00 software and a

p-value of< 0.05 was considered statistically significant [17].

Linear discriminant analysis & receiver operating characteristics curve analysis

Linear Discriminant Analysis (LDA) was used to determine whether mRNA expression pat-

terns could accurately discriminate liver metastasis in an independent data set. The accuracy

of the predicted model was calculated using 1000 repetitions of a random partitioning process

to regulate the number and proportion of false discoveries [18]. For diagnostic accuracy and

discriminating metastatic tumor from primary tumor, a held-out test set from each database

was utilized to evaluate the performance of each of the different classifiers. Receiver operator

characteristics curves (ROC) were generated and AUCs of each classifier were calculated using

MedCalc (Belgium, Europe). To understand the false positives and/or weaknesses of our classi-

fiers, images frequently misclassified by the classifiers were also reviewed.

Results

Gene expression pattern in metastases versus those of primary tumors

In order to find a gene expression pattern that can discriminate metastatic tumors from pri-

mary tumors, differentially expressed genes between liver metastases and primary lung adeno-

carcinomas were identified as depicted in Fig 1. Among these genes, CXCL12, CXCR4, CK7,

CDH1, CTNNB1, CLDN4, HIF1A, MMP9, CDKN2A, TP53, OPN and CD44v6 were upregu-

lated (�2 fold differently expressed) whereas VEGFA, TGFBR2 and MUC16 were downregu-

lated (< 2fold differently expressed) in primary tumors as compared to normal lung tissue. On

the other hand CXCR4, CLDN4, MMP9, OPN, TP53, CDKN2A, MUC16 and CD44v6 were

Fig 1. Gene expression in primary lung tumors, advanced stage lung cancer with liver metastasis, as well normal

liver tissue were analyzed by quantitative RT-PCR.

https://doi.org/10.1371/journal.pone.0206400.g001
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upregulated (�2 fold differently expressed) and CXCL12, CK7, CDH1, CTNNB1, HIF1A,

VEGFA and TGFBR2 were downregulated (< 2 differently expressed) in lung cancer with

liver metastasis as compared to primary tumor and Normal lung tissue. When we compared

the expression of the above mentioned genes between both the cohorts–primary and meta-

static we found that CLDN4, MMP9, OPN, CDKN2A, TP53, MUC16 and CD44v6 showed

significant up-regulation and VEGFA and TGFBR2 showed significant downregulation in

liver metastatic patients as compared to primary lung cancer. CXCR4, CK7, CDH1, CTNNB1

and HIF1A showed significant upregulation in primary lung cancer as compared to liver

metastasis. The detailed gene expression fold changes for all the patients included in the study

are provided in the S1 Table and S2 Table for metastasis and primary tumor respectively.

Hierarchical clustering

A query was generated whether the selected 15 genes would be useful in classifying primary

tumors into groups that have different potential to develop liver metastasis or not. This could

only be anticipated to happen if the gene expression profile associated with metastasis is

already present in a subset of cells in the primary tumors. The expression of the 15 genes was

therefore used in hierarchical clustering to classify a group of 30 non-metastatic tumors as

depicted in Fig 2. The tumors were clustered into two distinct groups, based on their expres-

sion profile in primary and metastatic tissue as highly correlating or not correlating with each

other. We predicted that the tumors with a greater fold change in gene expression profile

would have a worse prognosis may be due to disease progression to metastasis. In patients

with primary lung tumors (PL) where follow-up data were available, 50% primary tumors

developed metastases, whereas from the other 50% only 25% developed metastases.

Construction of a Gene Expression–Based Outcome Predictor Model and

Analysis of Sensitivity and Specificity

In all five PCA models for lung cancer were constructed using the marker expression as vari-

ables (CXCL12, CXCR4, CK7, CDH1, CTNNB1, CLDN4, HIF1A, VEGFA, MMP9, MUC16,

Fig 2. Unsupervised hierarchical clustering of 30 primary lung cancer samples and 32 advanced stage lung cancer

liver metastatic samples based on 15 differentially expressed genes at a false discovery ratio level of 0.05. Tumor

identification appears at the top of the figure and each column represents gene expression of a single tumor. UniGene

cluster ID or gene ID or ORESTES is shown in each row. The colored bar indicates the variation in gene expression in

target samples as compared to reference cells i.e., red, more expressed and white, less expressed in target samples. The

black lines of the dendrogram stand for the support for each clustering. The metric used was Euclidean distance, with

complete linkage for distance between clusters.

https://doi.org/10.1371/journal.pone.0206400.g002

Multi gene algorithmic model for liver metastasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0206400 November 1, 2018 6 / 14

https://doi.org/10.1371/journal.pone.0206400.g002
https://doi.org/10.1371/journal.pone.0206400


TGFBR2, TP53, OPN, CDKN2A, and CD44v6) as shown in Fig 3. The PCA scores plot showed

that the primary cancer group and metastatic group samples were scattered into different

regions in Model 4. Further the model was subjected to Linear Discriminant analysis and a lin-

ear equation for the proposed model was obtained.

Equation : ðCoefficient of Gene1 � expression of Gene1Þ
þ � � � . . . . . . . . . :ðCoefficient of GeneN � expression of GeneNÞ

ROC analysis was performed for all the 5 proposed models and the details are mentioned in

Table 2. ROC analysis, which was performed, using the values, determined by the PCA model,

and confirmed the robustness of the PCA model 4. Area under the curve (AUC) for model-4 was

0.975 with specificity and sensitivity of 90% and 96.87% respectively (Fig 4), which demonstrated

a good discriminative value for lung cancer liver metastasis. In order to determine if the multigene

signature has any practical application, we performed ROC analysis for individual genes as seen

in Fig 5 and the sensitivity, specificity & AUC are mentioned in Table 3. From the ROC curve

analysis of individual genes we further speculated that a more precise model for prediction of lung

liver metastasis could be formed with the 8 gene (CXCL12, CK7, CDH1, CD44v6, HIF1A,

Fig 3. Principal component analysis (PCA) indicative of the variability of the gene expression data within each of

the two patient groups. The x, y, and z axes are the first, second, and third components that together capture most of

the variability.

https://doi.org/10.1371/journal.pone.0206400.g003

Table 2. ROC curve details for all the PCA models.

Model Name Associated Criteria Sensitivity Specificity Significance

P (area = 0.5)

Youden Index J Area under the curve 95% CI

Model 1 >26.93393745 40.63 76.67 0.8461 0.1729 0.515 0.384 to 0.644

Model 2 �8.574554323 78.12 90.00 <0.0001 0.6813 0.827 0.710 to 0.911

Model 3 �3.151672989 31.25 100.0 0.0159 0.3125 0.667 0.535 to 0.781

Model 4 >18.46076597 96.87 90.00 <0.0001 0.8688 0.975 0.899 to 0.998

Model 5 >11.93832043 68.75 86.67 0.0067 0.5542 0.703 0.574 to 0.812

https://doi.org/10.1371/journal.pone.0206400.t002
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MUC16, CTNNB1 and TGFBR2) algorithm as described in Fig 6 and Table 4. Moreover, it was

observed that Model– 4 came out as the best model that can be used for predicting liver metastasis

with the highest AUC of 0.975 a Specificity and Sensitivity of 90% and 96.87% respectively show-

ing good discriminative ability between primary and metastatic tumors.

Discussion

Recent studies have stated that different tumors metastasize to preferred secondary sites,

depending on organ-susceptibility to specific cells but the molecular basis of organ tropism,

Fig 4. Receiver Operating Characteristic Curve analysis comparing the various predictive models based on the 15

gene panel.

https://doi.org/10.1371/journal.pone.0206400.g004

Fig 5. Receiver Operating Characteristic Curve analysis of the individual 15 genes in patients with primary lung

cancer with and without liver metastasis.

https://doi.org/10.1371/journal.pone.0206400.g005
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one of the foremost hallmarks of cancer, still remains unclear. In 1889, Stephen Paget pro-

posed the ‘seed and soil’ hypothesis. This theory clearly states that the molecular interaction

between metastatic cells (seeds) and stromal microenvironment (soil) plays a critical role in

the development of the multi-complex metastatic cascade [19, 20]. During the complex cas-

cade the tumor cells from the primary site disseminate and enter into the circulation from

where they colonize into the secondary organs to develop distant metastatic tumors. The can-

cer cells when homing to the specific target organ for the metastatic cascade to be successful

must interact with the distant microenvironment which might initiate the activation or in acti-

vation of the genes in a coordinated fashion [5, 21]. These changes reflect the interaction

between tumor cells as well as the host cells in the ‘microenvironment’ of the target organ.

Table 3. ROC curve analysis of the individual genes.

Model Name Associated Criteria Sensitivity Specificity Significance

P (area = 0.5)

Youden Index J Area under the curve 95% CI

CD44v6 >27.66519140 96.87 90 <0.0001 0.8688 0.965 0.884 to 0.995

CXCL12 �1.578258295 100 100 <0.0001 1 1 0.942 to 1.000

CXCR4 �6.535661813 65.62 70 0.0147 0.3563 0.671 0.540 to 0.785

CDH1 �0.901250463 90.62 100 <0.0001 0.9063 0.992 0.927 to 1.000

CDKN2A �2.060984041 53.13 93.33 0.0103 0.4646 0.682 0.552 to 0.795

CK7 �0.649169294 100 100 <0.0001 1 1 0.942 to 1.000

CLDN4 >17.28761168 46.88 100 0.0048 0.4688 0.699 0.569 to 0.809

CTNNB1 �0.698984967 96.87 100 <0.0001 0.9688 0.997 0.936 to 1.000

HIF1A �0.766664172 96.87 96.67 <0.0001 0.9354 0.996 0.934 to 1.000

MMP9 >40.36407708 34.38 90 0.2545 0.2438 0.584 0.452 to 0.708

MUC16 >1.972465409 96.87 100 <0.0001 0.9688 0.995 0.930 to 1.000

OPN >13.70534430 40.63 76.67 0.8689 0.1729 0.512 0.382 to 0.642

TP53 >57.81345285 40.63 76.67 0.8904 0.1729 0.510 0.380 to 0.640

TGFBR2 �0.105112052 90.62 53.33 <0.0001 0.4396 0.774 0.650 to 0.871

VEGFA �0.23815950 81.25 66.67 0.0159 0.4792 0.678 0.547 to 0.791

https://doi.org/10.1371/journal.pone.0206400.t003

Fig 6. Receiver Operating Characteristic Curve analysis comparing the various prediction models based on the 8

gene panel after filtering the non-correlating genes.

https://doi.org/10.1371/journal.pone.0206400.g006
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High–throughput technologies are capable of extensive analysis of mRNA, miRNA as well

as protein expression profiles on a larger scale with higher sensitivity as compared to the con-

ventional techniques. Recent studies of lung cancer metastasis, with clinical genomic or prote-

omic approaches have identified subgroups of tumors that differ in terms of tumor type,

histologic subclass, and patient survival allowing prediction of regional Lymph Node (LN)

metastasis but not distant metastasis [22]. The study concluded the possibility that gene signa-

tures from mRNA expression profiling can predict early metastasis and clinical outcome

occurring in lung adenocarcinoma patients. However, to be used in clinical practice such as in

preoperative chemotherapy, biopsy specimens should be collected from the primary tumor for

gene expression analysis. Successful application of such a technique has already been reported

by Borczuk et al. [23].

Numerous multi-gene signatures from mRNA expression profiling are capable of predict-

ing LN metastasis in various primary malignancies together with the extent of the metastasis

in distant sites. Contradictorily, the site of metastasis such as brain, bone, liver and lung cannot

be identified with these multi gene signatures alone because of the heterogeneity amongst the

primary and metastatic tumor. Even though mRNA expression panels are established from

microarray data sets some individual genes in the panel might not be useful for predicting

metastasis because of the complexity of most types of cancer and the compound nature of gene

functions. Thus, it is desirable that gene panels representing the characteristic gene expression

profiles of metastasis are selected and their interactions interpreted as a whole. Furthermore,

because our ultimate goal is prediction of liver metastasis from primary lung cancer for new

patients with the model developed from the fixed data, the model’s robustness is essential for

the classification algorithm. Owing to this reason, we categorically used a modified model con-

structed from a series of known classification algorithms [24].

In this study we used a previously established multi-gene panel for generating a model

specific for prediction of liver metastasis. We generated the model using PCA and LDA and

further calculated the accuracy of the model generated by ROC curve analysis that showed

accuracy greater than 85%. Moreover, the clustering data also showed a significance (p<

0.0001) amongst the gene expression patterns of the different genes and their association with

primary as well as metastatic tumor. Thus, the eight gene panel (CXCL12, CK7, CDH1,

CTNNB1, CD44v6, MUC16, TGFBR2 and HIF1A) can be a highly significant predictor of

liver metastasis outcome independent of the standard prognostic criteria. The eight-gene

panel obtained after profiling genes across multiple pathways robustly predicted clinical out-

come. Additionally, the ability of this panel to accurately predict recurrence in the liver inde-

pendent of stage of the primary tumor is likely to be a useful enhancement to routine staging.

The genes identified in this study are likely not conventional tumor-derived cancer bio-

markers but rather reflect subtle alterations in gene expression aiding as a systemic response to

disease, probably acting to maintain homeostasis30 or facilitating disease pathology [25].

Thus, for example, one of the biomarker genes identified in this study, the chemokine stromal

Table 4. ROC curve details for the final shortlisted PCA models.

Model Name Associated Criteria Sensitivity Specificity Significance

P (area = 0.5)

Youden Index J Area under the curve 95% CI

Model 1 <-3.16089968 43.75 100.0 0.0077 0.4375 0.689 0.558 to 0.800

Model 2 <-3.96498514 84.37 90.00 <0.0001 0.7438 0.845 0.730 to 0.924

Model 3 �13.19357517 68.75 60.00 0.1096 0.2875 0.617 0.484 to 0.737

Model 4 >15.25019492 96.87 90.00 <0.0001 0.8688 0.975 0.899 to 0.998

Model 5 >23.61467974 53.13 100.0 0.0317 0.5313 0.665 0.533 to 0.780

https://doi.org/10.1371/journal.pone.0206400.t004
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cell-derived factor-1 (SDF-1)/CXCL12 represents a natural ligand for the chemokine receptor

CXCR4. Moreover, CXCL12 possesses angiogenic properties and is known to be involved in

the outgrowth and metastasis of CXCR4-expressing tumors [26]. Furthermore, this axis has

also been recognized as a prognostic marker in several tumors and preclinical models; signify-

ing that metastasis is mediated by CXCR4 activation and migration of cancer cells towards

CXCL12 expressing organs [27]. Another biomarker of interest in carcinogenesis, E- cadherin

(CDH1) a single pass transmembrane protein is involved in epithelial to mesenchymal transi-

tions (EMT) resulting in tumor progression and transition to a more motile and invasive phe-

notype [28, 29]. CTNNB1 also known as β-catenin plays a vital role in the regulation of the E-

cadherin-catenin cell adhesion complex and further functions in growth signalling events,

independently of the cadherin-catenin complex [30]. Recent studies have revealed that nuclear

accumulation of β-catenin during invasive stages of primary tumor may lead to significant

upregulation of this gene and has been significantly associated with liver metastasis from colo-

rectal carcinoma [31].

Mucin -16 (MUC16) also known as CA-125 is the largest membrane associated mucin

which possesses a single transmembrane domain and is a repeating peptide epitope [32]. It pro-

motes cancer cell proliferation, causes inhibition of the anti-cancer immune responses and is

reported to have been upregulated in multiple malignancies [33, 34]. Additionally CK-7 also

known as Keratin-7 (KRT-7) and Transforming growth Factor beta receptor 2 (TGFBR2) are

known to have an active participation in metastasis promotion and progression [35]. HIF1α
also known as Hypoxia Inducing Factor 1α plays an important role in the formation of liver

metastasis. It has been reported that HIF1A overexpression enhances ZEB1 transactivity by

binding to its promoter leading to a loss in E-cadherin and increased cell invasion and migra-

tion [36]. Finally Cluster of Differentiation 44 variant 6 (CD44v6) is known to be a major player

in shedding off cells from the primary tumor to the distant metastatic site. It has been observed

that cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor

1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression by activating the

Wnt/β-catenin pathway, which promotes migration and metastasis [37]. Subsequently the bio-

markers shortlisted for the panel are in some way or other involved in the pathogenesis of liver

metastasis. Therefore, the generated model could aid in the early diagnosis of liver metastasis.

In conclusion, using a multiplexed, molecularly driven approach, we have identified a panel

comprising CXCL12, CK7, CDH1, CTNNB1, CD44v6, MUC16, TGFBR2 and HIF1A that can

predict recurrence in the liver independent of conventional prognostic criteria and identify

patients with lung cancer who will develop liver metastasis despite undergoing definitive sur-

gery and/or treatment. Increasing numbers of alterations in these genes predict poorer prog-

nosis. Additional validation study of this panel prospectively in larger set and alternate sample

source e.g. Cell free nucleic acid, exosomes is necessary to better characterize its ability to iden-

tify patients at higher risk in a non-invasive way. Hence, this multi-gene panel and their associ-

ated pathways may serve as promising outcome predictors and potential therapeutic targets in

lung cancer patients with liver metastasis.
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