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Abstract

Mucosal vaccine delivery systems have paramount importance for the induction of mucosal

antibody responses. Two studies were conducted to evaluate immunogenicity of inactivated

AIV antigens encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). In

the first study, seven groups of specific pathogen free (SPF) layer-type chickens were

immunized subcutaneously at 7-days of age with different vaccine formulations followed by

booster vaccinations two weeks later. Immune responses were profiled by measuring anti-

body (Ab) responses in sera and lachrymal secretions of vaccinated chickens. The results

indicated that inactivated AIV and CpG ODN co-encapsulated in PLGA NPs (2x NanoAI

+CpG) produced higher amounts of hemagglutination inhibiting antibodies compared to a

group vaccinated with non-adjuvanted AIV encapsulated in PLGA NPs (NanoAI). The tested

adjuvanted NPs-based vaccine (2x NanoAI+CpG) resulted in higher IgG responses in the

sera and lachrymal secretions at weeks 3, 4 and 5 post-vaccination when immunized subcu-

taneously. The incorporation of CpG ODN led to an increase in Ab-mediated responses and

was found useful to be included both in the prime and booster vaccinations. In the second

study, the ability of chitosan and mannan coated PLGA NPs that encapsulated AIV and

CpG ODN was evaluated for inducing antibody responses when delivered via nasal and

ocular routes in one-week-old SPF layer-type chickens. These PLGA NPs-based and sur-

face modified formulations induced robust AIV-specific antibody responses in sera and lach-

rymal secretions. Chitosan coated PLGA NPs resulted in the production of large quantities

of lachrymal IgA and IgG compared to mannan coated NPs, which also induced detectable

amounts of IgA in addition to the induction of IgG in lachrymal secretions. In both mucosal

and subcutaneous vaccination approaches, although NPs delivery enhanced Ab-mediated

immunity, one booster vaccination was required to generate significant amount of Abs.

These results highlight the potential of NPs-based AIV antigens for promoting the induction

of both systemic and mucosal immune responses against respiratory pathogens.
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Introduction

Avian influenza viruses (AIV) are classified into low pathogenic and highly pathogenic viruses.

Low pathogenic avian influenza (LPAI) viruses cause mild clinical signs and may affect egg

production [1], whereas highly pathogenic avian influenza (HPAI) viruses cause massive influ-

enza outbreaks and mortality in chickens [2]. However, various host and environmental fac-

tors may determine the pathogenicity of LPAI viruses [3]. In countries where both pathotypes

circulate in poultry, whole inactivated and viral vectored vaccines are recommended to reduce

the incidence and risks associated with AIV [4,5]. When administered parenterally, the sys-

temic immunity induced by these vaccines provide partial to complete protection from disease

progression, but generally does not prevent infection and virus shedding from infected birds

[6,7]. This indicates the need to improve the immunogenicity and efficacy of existing AIV vac-

cines, which can be achieved by selecting adjuvants with superior ability to induce innate and

adaptive immune responses [8,9], by exploring appropriate routes of vaccination [10] and by

optimizing vaccine delivery methods [11–13].

CpG-ODN is one of the potent vaccine adjuvants identified for increasing the efficacy of

many vaccines including AIV vaccines [14,15]. By interacting with Toll-like receptor (TLR) 21

in chickens [16] and TLR9 in mammals [17], CpG ODN triggers innate signaling pathways,

which lead to cytokine and chemokine induction, which in turn, orchestrate adaptive immu-

nity [18]. In addition to innate immune system cells, cells of the adaptive immune system are

also activated by CpG ODN [19]. Previously, we have also shown that encapsulation of CpG

ODN in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) enhances

and sustains its adjuvant property and promotes high avidity antibody production when deliv-

ered with inactivated AIV [11].

AIV vaccines triggering mucosal immune responses along the intestine and the respiratory

tract are ideal for preventing AIV transmission cycle by blocking virus replication at the pri-

mary sites of infection [20]. Mucosal vaccination (via oral, ocular and respiratory routes) is not

an efficient way for delivery of non-replicating and subunit vaccines because of impaired vac-

cine uptake by immune cells due to various physiological barriers. Mostly, vaccines adminis-

tered to mucosal surfaces are captured by the mucus for clearance by epithelial barriers and by

proteolytic degradation [21,22] before interacting with the mucosal-associated lymphoid tis-

sues [23,24].

Much has been learned from nanotechnology assisted mucosal vaccine delivery for induc-

ing mucosal and systemic immune responses. These methods have advantages of prolonging

antigen presentation, antigen dose sparing effects and protecting antigens from proteolytic

degradation by mucosal enzymes [25,26]. Poly(D,L-lactide-co-glycolide) (PLGA), a biodegrad-

able polymer approved for delivery of pharmaceuticals in humans has been widely used for the

production of micro- and nano-particles (NPs) for entrapping or adsorbing vaccines [13].

Delivering PLGA NPs-based vaccines through the oral and nasal routes improved the immu-

nogenicity of several recombinant and conventional vaccines derived from human and veteri-

nary pathogens [27–29]. PLGA NPs are flexible and tunable in that their outer surface can be

modified with other polymers such as chitosan or poly(β-amino esters) for more effective

mucosal vaccine delivery [30,31]. The mucoadhesive property of chitosan and its derivative N-

trimethyl chitosan allows better interactions of nanoparticles with mucus, which then

improves the residence time of vaccines on mucosal surfaces and, thus, over time facilitates

cellular uptake of antigens [32,33]. Furthermore, recent studies have shown that chitosan can

act as a strong innate response inducer by activation of stimulator of interferon gene (STING)

pathways [34], which have significant implications for orchestrating antigen-specific adaptive

immune responses and as standalone antiviral agent [35]. Additionally, for the induction of
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potent and long lasting immune responses, molecules which can target mucosal antigen pre-

senting cells (APCs) can be covalently attached to PLGA NPs [36]. In mouse experiments,

mannan coated PLGA NPs improved the immunogenicity of mucosal vaccines [37]. Mannan

may bind to mannose receptors on APCs or Microfold cells (M cells) residing at the inductive

sites of the respiratory or intestinal tracts [24]. In the current study, we hypothesized that com-

bined nasal and ocular administration of inactivated AIV antigens encapsulated in PLGA NPs

with surface modifications confers mucosal and systemic antibody responses in specific patho-

gen free chickens in a prime-boost vaccination strategy.

Materials and methods

Animal experiments

Two experiments were conducted in this study. In the first experiment, in which subcutaneous

vaccination was used, seven-days-old specific pathogen free (SPF) layer-type chickens (CFIA,

Ottawa, Canada) were assigned to 7 groups (n = 6/group). Experimental groups and their

description are presented in Table 1. The vaccine formulations used in this study consisted of

20 μg of PLGA encapsulated AIV and 1.8–2.1 μg CpG ODN per dose in 100 μL PBS. The doses

for AIV and CpG ODN were selected based on our previous work [15,38,39]. Primary vaccina-

tion was done at 7 days of age, followed by the secondary vaccination at 21 days of age. Both

primary and secondary vaccinations were administered subcutaneously in the neck region.

Blood and lachrymal secretions were collected at weeks 1, 2, 3, 4 and 5 post-primary vaccina-

tion for antibody detection.

In the second experiment, in which mucosal vaccination was used, seven-days-old SPF

layer type chickens (CFIA, Ottawa, Canada) were assigned to 5 groups (n = 8/group). Vaccina-

tion schemes and doses were the same as the first experiment. However, in this experiment, all

vaccine doses were administered via the ocular and nasal routes (Table 1).

In all experiments, chickens were maintained in the animal isolation facility of the Ontario

Veterinary College, University of Guelph. Animal experiments were approved by the Univer-

sity of Guelph Animal Care Committee. Accordingly, chickens were kept in groups in

enriched isolators and supplied with feed and water ad libitum. At the end of the experiments,

chickens were euthanized humanely using carbon dioxide inhalation.

Table 1. Study design showing experimental groups and vaccination protocols.

Experiment 1 (Subcutaneous vaccination) Experiment 2 (Mucosal vaccination)

Groups Prime vaccines Booster vaccines Groups Prime vaccines Booster vaccines

1 NanoAI NanoAI 1 NanoAI+CpG NanoAI+CpG

2 NanoAI NanoAI+CpG 2 Mannan-NanoAI Mannan-NanoAI

3 NanoAI+CpG No booster 3 Chitosan-NanoAI Chitosan-NanoAI

4 NanoAI+CpG NanoAI 4 Inactivated AIV Inactivated AIV

5 NanoAI+CpG NanoAI+CpG 5 Mock Nano Mock Nano

6 Virosomes Virosomes

7 Mock Nano Mock Nano

NanoAI = PLGA NPs encapsulating AIV alone; NanoAI+CpG = PLGA NPs co-encapsulating AIV and CpG ODN; Virosome = AIV-virosome; Mock Nano = non-

encapsulating PLGA NPs; Mannan-NanoAI = PLGA NPs co-encapsulating AIV and CpG ODN and surfaced modified with mannan; Chitosan-NanoAI = PLGA NPs

co-encapsulating AIV and CpG ODN surfaced modified with chitosan; Whole-virus inactivated AIV vaccine formulated with squalene-based oil-in-water adjuvant

called AddaVax (InvivoGen, San Diego, CA, USA) is referred as Inactivated AIV. Virosomes were used as a control for subcutaneous route of vaccination and to

produce antisera.

https://doi.org/10.1371/journal.pone.0206324.t001
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Avian influenza virus inactivation

The formalin inactivated whole avian influenza virus antigens were prepared as indicated in a

previous study. At first, H4N6 (A/Duck/Czech/56) was propagated to passage four and five in

10-day-old embryonated SPF eggs via the allantoic route to obtain large quantities of allantoic

fluid. Typically, allantoic fluid harvested from embryonated chicken eggs 72 hr post-inocula-

tion with 4 hemagglutination units (HAU) of H4N6 attained a 50% tissue culture infective

dose (TCID50)/mL of 2.87x107 in MDCK cells. This allantoic fluid containing H4N6 harvested

from embryonated SPF eggs 72 hr post-infection was diluted with HNE buffer and inactivated

by formalin (final concentration 0.02%) for 72 hr at 37˚C and was subjected to ultracentrifuga-

tion at a speed of 90,000 × g for 2 hr in 30% sucrose cushion using a SW32 Ti rotor (Optima L-

80 XP—Beckman Coulter, Inc.) [40]. The pellet was dissolved with HNE buffer (pH 7.4) and

further ultracentrifuged in sucrose gradients (10%/60%) at 154,000 × g for 4 hr in a SW32 Ti

rotor. The hemagglutination activity and protein concentration were determined by hemag-

glutination and BCA (Thermo Scientific, Rockford, IL) assays, respectively. Formalin inacti-

vated antigenic preparation from the last ultracentrifugation step was ten-fold serially diluted

and inoculated into 10-day-old embryonated SPF eggs and incubated for 72 hr. Three conse-

cutive passages were further conducted in the same way as in above. The presence or absence

of infectious particles in allantoic fluid collected from all passages were evaluated by determin-

ing HA activity and TCID50 in MDCK cells [15].

Preparation and surface modifications of PLGA NPs

AIV and CpG ODN-loaded PLGA NPs were prepared as described previously [11,41]. Briefly,

CpG ODN (class B CpG ODN 2007, phosphorothioate backbone modified, 5'-TCGTCGT
TGTCGTTTTGTCGTT-3') and polyethylenimine (branched, 25 kD) complex was made as

described [42]. This complex (250 μL) and inactivated AIV (1250 μg /250 μL) were sonicated

in 2500 μL of 4.5% PLGA solution. PLGA (Resomer1 RG 503H, free carboxylic acid, 24–38

kD) was dissolved in dichloromethane. The resulting solution was sonicated in 6.25 mL of 2%

polyvinyl alcohol. Similarly, PLGA NPs encapsulating inactivated AIV only (without CpG

ODN) and mock PLGA NPs (non-encapsulating) were produced [43]. The emulsions were

stirred for 4 hr for dichloromethane to evaporate. The PLGA NPs were pelleted at 20,000 × g

for 30 minutes at 4˚C, washed 3 times in DNase/RNase free water, resuspended, snap frozen

and lyophilized.

The surface of PLGA NPs encapsulating AIV and CpG ODN were coated with mannan by

carbodiimide conjugation [36,44]. Briefly, non-lyophilized PLGA NPs pellet (5 mg/mL) was

dissolved in 2-(N-morpholino)ethanesulfonic acid buffer (MES buffer; 0.11 M; pH 5.2) and

treated with 765 μg 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC)

and 2.295 mg N-hydroxysulfosuccinimide (s-NHS) (for each 10 mL containing 50 mg PLGA

NPs) for 30 minutes at room temperature with mild agitation for activating the carboxylic acid

on PLGA NPs. After washing with 1x cold PBS to remove the activating molecules and bypro-

ducts such as urea, the pellet was resuspended in 10 mL MES buffer and 100 mg mannan

(derived from Saccharomyces cerevisiae) was added, and further incubated for 2 hr at room

temperature with gentle stirring. Finally, the preparation was washed 3 times in water and

lyophilized. Chitosan coated PLGA NPs encapsulating AIV and CpG ODN were produced as

indicated [45]. Non-lyophilized PLGA NPs (100 mg), were resuspended in 5 mL of 0.5% chito-

san solution (medium molecular weight chitosan, 75–85% deacetylated and dissolved in 1%

glacial acetic acid, pH 5) and stirred for 4 hr to allow surface deposition of chitosan onto the

PLGA NPs. The dispersion was washed 3 times and lyophilized for use. All major reagents and

chemicals were from Sigma-Aldrich.
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Characterization of PLGA NPs

The size and surface charge of PLGA NPs, and encapsulation efficiency of CpG ODN were

determined as described in our previous work [41]. The encapsulation efficiency of AIV anti-

gen was determined as described in a previous work [46].

In vitro release assay

A three-week in vitro release of AIV from the PLGA NPs was determined as previously

described [47]. Briefly, 20 mg/mL PLGA NPs encapsulating AIV was re-suspended in PBS

(containing 0.01% sodium azide salt) and incubated at 37˚C with constant shaking. At prede-

termined time intervals, the suspension was centrifuged at 20,000 × g for 30 minutes. The

supernatant was collected and the pellet was resuspended in 1 mL PBS and further incubated.

The amount of protein released into the supernatant was determined using the BCA assay.

Moreover, in this study, ELISA plates were coated with the supernatants collected during the

release assay (similar amount of heat killed AIV also used to coat plates for comparison) to

evaluate if the entrapped AIV antigen reacts with antibodies from chickens vaccinated with

virosomes derived from the same AIV strain.

In vitro phagocytosis of PLGA NPs

Phagocytosis of PLGA NPs was assessed using chicken bone marrow derived dendritic cells

(BM-DCs). The BM-DCs were generated from mononuclear cells isolated from the femur of 3

weeks old SPF chickens as previously described [48], however, in our protocol we used recom-

binant chicken GM-CSF (50 ng/mL) and IL-4 (10 ng/mL) (Kingfisher Biotech, Inc. Saint Paul,

MN) for mononuclear cells differentiation. The uptake of mannan coated PLGA NPs encapsu-

lating rhodamine was evaluated by immunofluorescence microscopy.

Virosome preparation and characterization

A virosome-based AIV vaccine was prepared as described previously [39]. Briefly, purified

AIV (5 mg/mL) obtained by sucrose gradient ultracentrfigugation as indicated in previous sec-

tion was UV-irradiated and virus envelope was solubilized with Octaethylene glycol (C12E8,

pH 7.3), which was then followed by membrane reconstitution using methanol activated resin

Bio-beads SM-2 (Bio-Rad laboratories) for virosome production [49,50]. Protein compositions

of virosomes were determined by SDS-PAGE (Thermo Scientific) and Coomassie Brilliant

Blue (Thermo Scientific) staining. The morphology of both viruses and virosomes was charac-

terized and examined in FEI Tecnai G2 F20 transmission electron microscopy. The mean par-

ticle size distribution and zeta potential were determined by dynamic light scattering with a

Malvern Nano ZS (Malvern Instruments). CpG ODN-polyethylenimine complex was added

before envelope reconstitution to enhance CpG ODN encapsulation. Virosomes were solubi-

lized with IGEPAL CA-630 (Octylphenoxy poly(ethyleneoxy)ethanol) (Sigma Aldrich) to

release entrapped CpG ODN for quantification of CpG ODN encapsulation as described pre-

viously [41].

Hemagglutination inhibition

Briefly, 4 HA units of H4N6 virus were added to two-fold serially diluted serum samples and

incubated for 30 minutes. Subsequently, 0.5% chicken red blood cells were added and the

results were read after 30 minutes. The hemagglutination inhibition (HI) titres were deter-

mined as the reciprocal of the samples resulting in complete inhibition of hemagglutination of

chicken red blood cells [15].
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Enzyme-linked immunosorbent assay

AIV antigen-specific IgG, IgM and IgA in serum samples and lachrymal secretions were deter-

mined as previously described, with some modifications [11,15]. Briefly, 96-well polystyrene

plates (Nunc, Maxisorp) were coated (125 ng/well) with virosomes prepared from H4N6.

After blocking with PBS containing Tween-20 and 25% fish gelatin, diluted sera and lachrymal

secretions were added and plates were incubated for 1 hr. Each sera and lachrymal secretions

were assayed in duplicate. Horseradish peroxidase (HRP)-conjugated goat anti-chicken IgG or

HRP-goat anti-chicken IgM (Bethyl Laboratories, Montgomery, Texas) was added for detect-

ing IgG or IgM, respectively. Then, ABTS peroxidase substrate (Kirkegaard and Perry Labora-

tories Gaithersburg, Maryland, USA) was added and plates were further incubated. The

reaction was stopped with 1% SDS and the plates were read with an ELISA plate reader at 405

nm (Bio-Tek Instruments, Winooski, Vermont USA).

For IgA determination in the lachrymal secretions, mouse anti-chicken IgA (AbD Serotec,

Kidlington, Oxford, UK) was used as a primary antibody and HRP-goat-anti-mouse IgG (H/

L) (AbD Serotec; Kidlington, Oxford, UK) as detecting antibody. Otherwise, all steps remain

similar to IgG detections. All incubations were done at room temperature.

Interferon (IFN)-γ assay

At day 35 post-primary vaccination (experiment 1), spleen mononuclear cells were isolated

using Histopaque density gradient and were seeded into 48-well plates at a cell density of

2×105 cells/mL in complete RPMI-1640 medium (Invitrogen, Burlington, ON). The cells (in

triplicates) were stimulated for 72 hr with heat killed H4N6 (100 ng/well) and IFN-γ concen-

tration in cell supernatants was determined using the chicken IFN-γ CytoSet kit (Invitrogen,

CA, USA) according to the manufacturer’s instructions.

Statistics

The data obtained from ELISA assays in all in vivo experiments were analyzed using general

linear models of SAS with chicken as the experimental unit (SAS 188 9.3, Cary, NC) and com-

parisons were made within a defined single time points. Duncan’s Multiple Range test was

used when a significant difference was observed among the groups. Kruskal-Wallis (a non-

parametric) test was used to analyze data on in vitro assays and on hemagglutination inhibition

(HI) titers. A value of P<0.05 was considered significant.

Results

PLGA NPs and virosome characterization

Previously, PLGA NPs encapsulating various classes of TLR ligands and AIV antigens were

generated and their effects on innate immune system cells and efficacy for vaccine delivery

were assessed [11,41]. The encapsulation efficiency of inactivated AIV in PLGA NPs ranged

from 62–67%. To improve the efficacy of PLGA NPs as a mucosal vaccine delivery system, two

types of surface modifications were applied to these nanoparticles. In one of the preparations,

the surface of nanoparticles was coated with chitosan. Dynamic light scattering analysis indi-

cated that chitosan coated nanoparticles had a net positive surface charge of +31 mV and a size

of about 819 nm in diameter. Non-surface modified nanoparticles were relatively smaller in

size and showed net negative surface charge (-36 mV). The size of mannan coated nanoparti-

cles was about 719 nm in diameter with a net negative surface charge (-30 mV) and were

found efficiently phagocytosed by DCs (data not shown).
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The release of AIV antigen from the PLGA NPs showed a characteristic burst release in the

first 24 hr followed by a sustained release over a three-week period when incubated at 37˚C

with agitation (Fig 1). We observed cumulative burst release of about 35% of encapsulated

antigens within 24 hr and by week 3 over 85% of the encapsulated antigens were released.

Moreover, the released AIV antigens displayed hemagglutinating activity and reacted in an

ELISA assay with positive serum samples obtained from chickens vaccinated with virosomes.

The virosomes prepared for this study were further characterized by transmission electron

microscopy. Lipid vesicles with spikes protruding from their membranes were commonly observed.

Spike density as demonstrated by the presence of protruding electron dense materials from the

native virus envelope was greater compared to spike density on vesicles (data not shown). Previous

studies also revealed the incorporation of about 40% of the initial viral membrane proteins and

approximately 50% of the initial viral lipids in the newly formed virosomes [51]. The diameter of

the virosomes and the spherical virus was very similar, 89 nm for the virus and 90 nm for the viro-

somes. Virions with filamentous shapes and occasionally irregular morphology were also detected

as in previous works [52]. Importantly, the virosomes maintained HA structural integrity.

Antibodies generated in chickens by subcutaneously administered PLGA NPs

Chickens immunized subcutaneously with AIV and CpG-ODN co-encapsulated in PLGA NPs

(referred as 2x NanoAI+CpG) produced relatively higher HI titers (�1:32) compared to a

Fig 1. In vitro antigen release profile. A predetermined quantity of PLGA NPs encapsulated AIV in PBS (pH 7.4) was incubated at

37˚C with constant shaking. The supernatants were collected at different time points and the amount of antigen (AIV) released from

the NPs was assayed with BCA. The assay was conducted twice and results were presented as mean ± SEM.

https://doi.org/10.1371/journal.pone.0206324.g001
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group immunized with AIV encapsulated in PLGA NPs (referred as 2x NanoAI), a group vac-

cinated with NanoAI and boosted with NanoAI+CpG (NanoAI/NanoAI+CpG) and with

another group that received only the priming dose with NanoAI+CpG at weeks 3, 4 and 5

post-primary vaccination (p<0.05) (Fig 2A). Moreover, a vaccination scheme with NanoAI

+CpG prime and NanoAI boost (NanoAI+CpG/NanoAI) resulted in HI titers (�1:32) compa-

rable to 2x NanoAI+CpG. Chickens immunized with a vaccine formulation that lacked the

adjuvant component (2xNanoAI) had very low HI titer (�1:8) similar to the group that

received only a priming dose (NanoAI+CpG). The 2x virosomes (primed and boosted with

virosomes) induced the highest HI titers at all time points (p<0.05). At week 1 post-primary

vaccination, detectable HI titers were not observed in all groups.

Fig 2. Serum HI (A), serum IgM (B) and IgG (C), and lachrymal IgG responses (D). SPF chickens were vaccinated subcutaneously with PLGA NPs

formulated AIV vaccines and virosomes. Serum samples and lachrymal secretions were collected weekly for antibody determination. Data shown were

mean ± SEM, (n = 6/group). P<0.05 was considered significant. Different letters within a defined single-time point show significant differences

between groups, while identical letters within a defined single time point show no statistically significant differences between groups. The cut-off value

for ELISA was set as the mean OD value of the Mock Nano sera plus 2 standard deviations (SD) to ensure that 95% of the OD-values for the Mock

Nano sera sample fell within this range.

https://doi.org/10.1371/journal.pone.0206324.g002
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To further test the immunogenicity of encapsulated AIV, AIV-specific IgM and IgG were

determined in serum samples and lachrymal secretions. The results revealed that the inclusion

of CpG ODN in the vaccine formulation, particularly 2x NanoAI+CpG and NanoAI+CpG/

NanoAI induced higher serum IgM (OD-values of 1.8 and 1.4, respectively) at week 3 post-pri-

mary vaccination compared to formulations lacking CpG ODN such as 2x NanoAI or a group

primed with NanoAI and boosted with NanoAI+CpG (NanoAI/NanoAI+CpG) (Fig 2B)

(p<0.05) indicating the importance of including CpG ODN both in the prime and boost or at

least in the priming dose for inducing a higher Ab response. The latter two groups had the low-

est serum IgM at all time points. IgM responses decreased for all vaccines by weeks 4 and 5

post-primary vaccinations. As expected, the positive control, 2x virosomes, induced the high-

est serum IgM responses at all time points investigated.

By 2 weeks post-primary vaccination, 2x NanoAI+CpG, NanoAI+CpG and NanoAI+CpG/

NanoAI resulted in higher IgG in serum (Fig 2C) and lachrymal secretions (Fig 2D) compared

to those two groups vaccinated with AIV encapsulated in PLGA NPs, but lacking the adjuvant

component (p<0.05). The 2x NanoAI and NanoAI/NanoAI+CpG had the lowest IgG in both

serum and lachrymal secretion at multiple time points investigated indicating the absence of

CpG ODN in both prime and boost or its absence in the prime dose impaired Ab responses.

Compared to all other nanoparticle groups, 2xNanoAI+CpG, and NanoAI+CpG primed and

NanoAI boosted groups (NanoAI+CpG/NanoAI) mounted higher serum IgG (OD values of

3.1) as well as higher lachrymal IgG (OD-values of 2.5), particularly at weeks 4 and 5 post-pri-

mary vaccination (p<0.05). At these latter time points, IgG responses in these two groups

approached that of virosome group. All vaccines (nanoparticle-based and virosomes) delivered

through the subcutaneous route did not elicit detectable amounts of IgA in serum samples and

lachrymal secretions of all vaccinated groups.

In vitro stimulation of splenocytes

Although not significantly different from other vaccine formulations, splenocytes from 2xNa-

noAI+CpG immunized chickens produced larger quantities of IFN-γ upon re-stimulation

with heat killed AIV (Fig 3).

Antibodies generated in chickens by mucosally delivered PLGA NPs

Mucosal application of surface modified PLGA NPs induced higher amounts of antibody

responses, constituting both systemic and mucosal responses. At week 4 post-primary vaccina-

tion, both chitosan coated PLGA NPs encapsulating AIV and CpG ODN (Chitosan-NanoAI)

and mannan coated PLGA NPs (Mannan-NanoAI) induced higher HI titers compared to

PLGA NPs encapsulating AIV and CpG-ODN (NanoAI+CpG) and the vaccine containing

inactivated whole-virus (Fig 4A) (p<0.05). Chitosan-NanoAI and Mannan-NanoAI induced

large amounts of HI (�1:64) at weeks 3 and 5 post-primary vaccination.

Immunogenicity of surface modified PLGA NPs encapsulated AIV and CpG ODN was fur-

ther assessed by evaluating mucosal and systemic IgG and IgA responses. Chitosan-NanoAI

and Mannan-NanoAI, administered via combined nasal and ocular routes induced higher

amounts of serum IgG (OD-values of 1.6) from week 3 post-primary vaccination compared to

the other two groups (Fig 4B). At week 2 post-primary vaccination, each of the four vaccine

formulations did not induce significant amounts of serum as well as lachrymal antibodies.

Regarding lachrymal IgG production, the three vaccine formulations namely, NanoAI+CpG,

Mannan-NanoAI and Chitosan-NanoAI induced higher responses starting by week 3 post-pri-

mary vaccination (p<0.05). These groups induced significantly higher lachrymal IgG (OD-val-

ues ranging from 1.5–2.2) by week 4 and 5 post-primary vaccinations compared to inactivated
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AIV formulated with squalene-based oil-in-water adjuvant, also called AddaVax (Fig 4C).

Mucosal delivery of PLGA NPs decorated with chitosan induce large quantities of IgA (OD-

values ranging from 1.25–1.4) at weeks 3 and 4 post-primary vaccinations compared to the

rest of the groups; still the other polymer based particulate vaccines induced detectable IgA at

later time points (Fig 4D).

Discussion

Recent studies in pigs and chickens have shown an increase in the immunogenicity of inacti-

vated influenza vaccines encapsulated in PLGA NPs or chitosan NPs [11,43,53]. In the present

Fig 3. Evaluation of IFN-γ production by in vitro stimulated splenocytes with heat killed AIV. Splenocytes were harvested on day 35 post-primary

vaccination from SPF chickens immunized subcutaneously with PLGA NPs based AIV vaccines and virosomes. They were stimulated with heat killed AIV

(100 ng/well) for 72 hr and IFN-γ was measured in the cell supernatants. Results represent mean ± SEM. P<0.05 was considered significant.

https://doi.org/10.1371/journal.pone.0206324.g003
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study, we showed that inactivated AIV and CpG ODN encapsulated in PLGA NPs induced

higher lachrymal IgG and serum antibody (IgG, IgM and HI) upon subcutaneous delivery.

Chitosan and mannan coated PLGA NPs induced higher lachrymal IgG and IgA as well as

serum antibody when delivered in a prime-boost strategy by the ocular and nasal routes. In

both mucosal and parenteral vaccination approaches, although NPs delivery enhanced Ab-

mediated immune responses, at least one booster vaccination was required to generate signifi-

cantly higher amounts of antibody responses. Previously, it has been reported that nasal vacci-

nation of mice with influenza encapsulated in PLGA NPs without surface modification

induced lower IgA in nasal washes due to rapid clearance of the particles from the nasal

mucosa [54]. Moreover, mucosal delivery (via aerosol, intranasal and pulmonary routes) of

inactivated AIV vaccines combined with conventional and molecular adjuvants failed to

Fig 4. Serum HI titers (A) and serum IgG (B), and lachrymal IgG (C) and IgA (D) induced by surface modified PLGA NPs formulated AIV vaccines

after nasal and ocular applications. One-week-old SPF chickens were vaccinated mucosally with nanoparticle formulated AIV vaccines or with whole-virus

inactivated vaccine. Serum samples and lachrymal secretions were collected weekly for antibody determination. Data shown were mean ± SEM (n = 8/

group). P<0.05 was considered significant. Different letters within a defined single time point show significant differences between groups, while identical

letters within a defined single time point show no statistically significant differences between groups.

https://doi.org/10.1371/journal.pone.0206324.g004
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induce mucosal IgA in chickens [55–57]. However, a combination of appropriate delivery

vehicles, adjuvants and repeated booster vaccinations may influence AIV vaccine efficacy

administered through the mucosal routes. A cationic polymer, polyethyleneimine, and a sub-

unit vaccine derived from HA1-2 of H7N9 elicited serum IgG and IgA in the nasal washes of

chickens [58]. Our previous work, also showed lachrymal IgA production in chickens upon

repeated (at least three times) aerosol delivery of inactivated AIV combined with CpG ODN

encapsulated in PLGA NPs [59].

Co-encapsulation of vaccines and adjuvants in our study may ensure physical contacts

between antigens and adjuvants in the same NPs. Following phagocytosis by APCs, vaccines

and adjuvants can be released simultaneously for efficient antigen presentation and co-stimu-

lation. The released CpG ODN from the NPs may sustain innate immune stimulation [41] for

further shaping adaptive immune responses. The current study also demonstrated that CpG

ODN inclusion in primary vaccination is critical for inducing better immune responses. This

may be explained in such a way that B cells stimulated through Toll-like receptors in the pri-

mary vaccination may require minimal adjuvants during the boost to undergo proliferation,

differentiation and antibody production. Following intra-nasal administration in mice, CpG

ODNs were found to recruit DCs to the nasal epithelial cells forming transepithelial dendrites

(TEDs), which may facilitate the capture of inactivated AIV from the nasal mucosal surfaces

[60]. In mice, Yin and co-workers also reported the formation of TEDs in the intestine by

orally administered CpG ODN and such adjuvant property may have implications for the gen-

eration of antigen-specific mucosal immunity [61].

Generally, mucosal vaccination has low efficiency for non-replicating and subunit vaccines

compared to parenteral vaccination, because in the case of mucosal vaccination, vaccine

uptake is impeded by the various anatomical and physiological barriers present along the

mucosal surfaces. Therefore, incorporating cationic polymers [33] and M cells- or APCs-tar-

geting molecules [37,62] to modify the surfaces of PLGA NPs entrapping both AIV and CpG

ODN may enhance delivery of the cargo to mucosal APCs. M cells, present within the follicle-

associated epithelium that overlies the mucosal-associated lymphoid tissues (the major induc-

tive site of mucosal immunity), sample antigens present on mucosal surfaces and shuttle these

antigens to APCs for presentation to CD4+ and CD8+T cells [63,64]. Results of previous stud-

ies in mice support our findings in that M cell-targeted PLGA-lipid NPs encapsulating a TLR-

ligand and a vaccine antigen boost mucosal immunity [36,37]. In addition to polymeric NPs,

mannosylated niosomes encapsulated tetanus toxoid administered orally in rats elicited a sig-

nificant amount of secretory IgA (sIgA) in mucosal secretions as well as systemic antibody

responses [65]. In chickens, there is evidence for the presence of M cells in the follicular epithe-

lium that overlies the gut-and bronchus-associated lymphoid tissues as well as in the bursa of

Fabricius [66,67]. The presence of choanal cleft in chickens results in the ingestion of substan-

tial amounts of intranasally administered vaccines and in such scenario, M cells residing in the

Peyer’s patches or cecum may be involved in vaccine antigen sampling [67]. Recent study

showed induction of mucosal immune responses to recombinant viral vaccine containing M

cell targeting motif delivered orally in chickens [68]. In our recent study, we showed that orally

administered CpG ODN encapsulated in PLGA NPs induced the expression of higher levels of

cytokines and host defense peptide genes in the ileum and cecal tonsils [69]. Although the pro-

portions of M-cells in mucosal tracts (gut and respiratory tracts) of chickens are not known,

an approximate 5% of the epithelial cells in the intestinal tracts in humans and 10% in mice

constitute M cells [70].

Compared to mannan coated PLGA NPs, chitosan coated PLGA NPs induced higher AIV-

specific mucosal antibodies, particularly of IgA isotype. Other studies have demonstrated that

chitosan NPs improve the immunogenicity of an intranasally administered DNA vaccine
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against Newcastle disease virus [71]. The enhanced mucosal immunity resulting from chitosan

coated PLGA NPs may be attributed to the residence time of the NPs in the respiratory tract,

which prolongs interactions between NPs and mucus for facilitating NPs permeation through

the mucosa for better antigen uptake and presentation [32,72]. In contrast, NPs prepared from

PLGA alone are negatively charged and lack electrostatic interactions with the negatively

charged sialic acid groups of mucin and as such, induce little or no mucosal IgA responses

[73]. In mice, AIV encapsulated in a chitosan-poly-(ε-caprolactone) NPs were found to induce

higher IgG2a antibodies when administered intranasally, and such responses persisted for a

longer time due to a slow-release of antigens from the NPs [74]. Although we did not assess

secretory IgA (sIgA) in the intestinal washes, experiments in mice indicated significant

amounts of sIgA production in the intestines and respiratory tracts for intranasally adminis-

tered polyester coated PLGA-NPs [31]. The distant mucosal immunity as well as systemic

immunity induced following mucosal application of NPs-based vaccines are believed to be due

to trafficking of APCs phagocytizing NPs for presenting antigens to B and T cells residing in

other lymphoid tissues [75]. Cationic NPs have been shown to increase mucosal antibody pro-

duction following pulmonary or intranasal administration mainly due to transfection of resi-

dent APCs [74]. Triggering of innate responses involving pro-inflammatory cytokines [35]

and type I IFNs [34] by chitosan, may enhance the maturation and activation of professional

APCs, which are essential for eliciting adaptive immunity to vaccines. Although the role of

para-cellular absorption in vaccine uptake is unclear, cationic NPs in general have been found

to open the tight junctions between epithelial cells [76].

Towards developing novel mucosal vaccine and adjuvants, several studies have evaluated

particulate vaccine uptake by immune system cells residing on mucosal surfaces and the mag-

nitude and quality of immune responses elicited [77]. To this end, a study in chickens recov-

ered antigen coated polystyrene NP beads from the nasal-associated lymphoid tissues (NALT)

and esophagus following intranasal administration [78]. When applied ocularly, most beads

were recovered from the inductive mucosal sites including NALT, conjunctival-associated

lymphoid tissues (CALT), Harderian glands and trachea [78]. The uptake of lipopolysaccha-

rides or AIV-coated nanobeads by mononuclear phagocytic cells of the respiratory tract in

chickens resulted in the upregulation of major histocompatibility complex (MHC) class II and

costimulatory molecules, both having relevance in antigen processing and presentation [77].

Another study has also identified an efficient transport of NPs through the follicle-associated

epithelium of the nasal cavity and most NPs were found to be deposited in the lymphoid folli-

cles of the NALT and such transport of NPs has been found to be increased by incorporation

of CpG ODN or sodium cholate [79]. Even if we did not evaluate particle trafficking, particu-

late materials may enter the cells through multiple cross-talk pathways (endocytic and autop-

hagy pathways), often recycling of NPs between the early- and late-endosomes and lysosomes

for degradation [80] may enhance antigen presentation through MHC class I or II molecules

In AIV infections, protective antibody-mediated immune responses developed on mucosal

surfaces following mucosal vaccination may be of paramount importance for inhibiting the

binding of the virus to host cell receptors at the site of pathogen entry and thus interrupt the

transmission cycle of the virus. However, the systemic immunity induced by parenteral vacci-

nation may not prevent initial virus replication at the port of AIV entry, but may help to coun-

teract virus dissemination [6,7]. Therefore, based on the results presented from the two routes

of immunization, most chickens had detectable antibody-mediated responses and this clearly

verified immunogenicity of PLGA-NPs-based avian influenza antigens. Although IgG sub-

classes that enable to assess the quality of Abs are not defined in chickens, combination of

PLGA NPs delivery system and mucosal application resulted in a higher magnitude of mucosal
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immunity. However, in chickens it remains to be tested whether mucosal IgG and IgA contrib-

ute to protection against AIV.

In conclusion, the results of the present study demonstrated the effectiveness of PLGA

NPs-based and surface modified vaccine formulations in combination with molecular adju-

vants for inducing AIV antigen-specific mucosal and systemic antibody responses in chickens.

In the future, a more comprehensive study of the impact of this delivery system as a platform

for mass vaccination against highly virulent viral respiratory pathogens in a vaccination and

challenge model is warranted.
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