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Abstract

Concern is growing that business enterprises focus primarily on their economic activities

while disregarding the adverse environmental and social effects of these activities. To con-

tribute to the literature on this matter, this study investigates a novel bi-objective inventory

allocation planning problem with supplier selection and carbon trading across multiple peri-

ods under uncertainty. The concepts of a carbon credit price and a carbon cap are proposed

to demonstrate the effect of carbon emissions costs on inventory allocation network costs.

Demands of manufacturers, transport price, and defect rate of materials that should be

rejected are set as random variables. We combine normalized normal constraint method,

differential evolution algorithm, and uncertainty simulation to deal with the complex model.

One representative case shows the effectiveness and practicability of this model and pro-

posed method. The Pareto frontier is generated by solving the bi-objective model. We

extend the results of numerical examples in large scale problems, and compare the solution

method results with exact solutions. The environmental objective across the inventory allo-

cation network varies with changes of the carbon cap and the carbon credit price.

Introduction

The need for environmental awareness has influenced the worldwide economy, including sup-

ply chain network planning. Owing to the urgency of global warming, low-carbon economic

activities have attracted widespread attention. How supply chain managers make decisions to

balance operating costs and low-carbon efficiency under carbon cap and carbon trading mech-

anism has become an important research field that highlights the need to achieve carbon emis-

sion reduction. As the global low carbon emission reduction becomes an increasingly serious

matter, the uncertainty and complexity of the environment make higher demands on the flexi-

bility and efficiency of the supply chain management. Inventory allocation management con-

sidering low carbon under uncertainty has become a proposition that needs to be studied in

the process of value creation in supply chain.

In the logistics project, the transportation process is the main process of producing carbon

emissions. Optimal decision making through model optimization is the common plan of
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supply chain. Several models has been established and studied previously [1–4]. Moncer and

Rami [5] presented a carbon footprint minimization model, an operational cost minimization

model, and a hybrid economic and environmental minimization model to determine the opti-

mal lot sizing and allocation quantities. Tien and Bhaba [6] designed a pull system inventory

with imperfect-quality items; their study investigates various tax systems and numerical cases

illustrate that the different carbon tax policies lead to different inventory strategies, and the lot

size and order frequency depend on the discount policies and the carbon tax systems. Zhang

and He [7] proposed a multi-modal logistics model with time window to minimize total cost

and carbon emissions cost by determining the optimal transportation mode and investment

selections. Demir and Tolga [8] studied the bi-objective pollution vehicle routing problem,

and proposed an effective trade-off between the two contradictory objective of minimizing

fuel consumption and delivery time. Li and Su [9] investigated three carbon policies: carbon

tax policy, cap-and-trade policy, and joint cap-and-trade policy. They constructed models

under different carbon policies and optimal solutions were obtained. Kyoto Protocol, a world-

wide agreement ratified by the United Nations, is the most prominent international frame-

work that outlines emissions trading schemes and a carbon credit market to minimize carbon

emissions [10].

An uncertain competitive environment requires inventory allocation management to be

flexible and efficient. Enterprises need to not only reduce their storage and distribution cost,

but also ensure that downstream manufacturers are not unduly affected by out-of-stock

materials at a critical time. Without proper control, interests will be damaged and the entire

supply chain may disrupt [11]; therefore, supplier selection, supply chain inventory and dis-

tribution management have become important to supply chain efficiency [12–14]. Armin

and Saba [15] proposed a bi-objective mathematical model to maximize the score of all sus-

tainable suppliers according to preference weights and minimize the total cost. Kijung et al.

[16] applied an information-based multi-attribute and multi-objective decision-making

approach for supplier selection and order allocation. Seda and Ender [17] proposed a multi-

objective optimization model for supplier selection and inventory planning, which mini-

mizes the conflicting objectives of operation cost and supplier risk. Time management has

also become crucial, especially when multiple time periods are involved [18]. Rezaei et al.

[19] extended the multi-objective non-linear mixed integer models for multi-period alloca-

tion planning problems that involved multiple suppliers and materials which may be defec-

tive obey the probability distribution. Khan et al. [20] proposed an inventory model with

single supplier and single manufacturer to evaluate the effect of varying percentages of defec-

tive goods, storage costs, and disposal schemes. To better analyze the current research, we

used NoteExpess to analyze the literatures in Web of Science with the key words: selection

allocation, low carbon allocation, inventory allocation. The comparison of the annual distri-

bution of these key words were presented in Fig 1. It can be seen from the Fig 1 that the

inventory allocation planning problem considering carbon emissions and supplier selection

is getting more and more attention.

In the traditional inventory allocation model, important parameters, such as manufacturers’

demand, transport price, and defect rate are set as certain values. However, the weather, traffic,

and equipment failures are typical uncertainties, which are considered to be random. When

these parameters have the random nature with a known distribution, the randomness uncer-

tainty is used. The stochastic programming is the most common method to face this uncer-

tainty [21, 22]. When historical data is available and we can estimate probability distribution

of uncertain parameters, stochastic programming is used as the mathematical programming.

Uncertainty mentioned above exist in the inventory allocation problem. Thus, the manufac-

turers’ demand, transport price and defect rate are set as random variables.

Bi-objective IAPSSCT under uncertainty
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In the current study, a bi-objective inventory allocation planning model with supplier

selection and carbon trading (IAPSSCT) under uncertainty was proposed. Random variables

included demands of manufacturers, transportation price, and material defect rate. In bi-

objective optimization, one solution cannot satisfy every objective, simultaneously. Previous

research provides a variety of methods to generate the Pareto frontier [23], such as weighting

method, �-constraint method, and normalized normal constraint method. Normalized normal

constraint (NNC) method, proposed by Messac et al. [24], obtains an evenly spaced Pareto

solution by constructing a series of single-objective optimization problems after normalized

processing of the feasible region of multi-objective optimization [25]. Among numerous heu-

ristic and metaheuristic algorithms, the differential evolution (DE) algorithm has been proven

to be a competitive contender for NP-hard optimization, such as logistics management [26]

and production scheduling [27], as well as in the field of multi-level and multi-period optimi-

zation [28, 29]. The selection of fundamental control parameters including population size L,

crossover probability CR, and mutation scale factor F, will severely affect the convergence of

basic DE. In this condition, the basic DE can easily to fall into local minima, and convergence

slows down. The core procedure to improve DE performance is to select the appropriate muta-

tion strategy and control parameters. The mutation operator is then improved to make the

results effectively drop out of local regions and converge rapidly to the optimal direction [30].

The followings are the main contributions of this study. (1) A bi-objective inventory alloca-

tion planning model with supplier selection and carbon trading (IAPSSCT) under uncertainty is

proposed to find the trade-off between economic and environmental objective by determining

Fig 1. The comparison of the annual distribution of key words.

https://doi.org/10.1371/journal.pone.0206282.g001
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supplier selection, purchase quantity, inventory quantity, and allocation quantity. (2) Given the

subjective and objective uncertainties in reality, the manufacturers’ demand, transport price,

and defect rate are considered as random variables, which characterizes the uncertainty of

the inventory allocation problem. (3) To address the complexity of the model, Pareto frontier is

generated by NNC–DE. (4) By analyzing the simulation results, we discussed the impact of the

carbon cap and carbon credit prices on environmental objective and inventory allocation deci-

sions, and provide suggestions for decision makers.

The rest of this paper is organized as follows: Section 2 presents the key problem statement

and problem assumptions. Section 3 proposes the mathematical bi-objective IAPSSCT model

under uncertainty. The algorithm combined with NNC and DE is proposed in Section 4. A

case study is presented in Section 5 to verify the effectiveness and efficiency of the model, and

the influence of carbon cap and carbon credit price on the environmental objective and the

decisions of inventory allocation are discussed. Finally, Section 6 is the conclusion of this

paper and the directions for future research.

Key problem statement

Inventory allocation management with good quality and carbon emission control is essential

in a supply chain to achieve an efficient supplier–manufacturer network. This inventory allo-

cation problem involves multiple suppliers that can provide multiple materials. Different sup-

pliers offer the same types of materials with defect rates at varying prices. One type of material

should be purchased from one supplier, and one supply hub stores one type of materials; thus,

the number of supply hubs is the same as the number of materials types. In this system, multi-

ple manufacturers order all types of materials.

In many inventory allocation models, all materials are deemed to be of suitable quality;

in the real world, however, several materials are defective, and the percentage is uncertain. In

this supplier–manufacturer network, purchase, inventory, and allocation are periodical, each

period includes purchase, inventory, and allocation process [31, 32]. The flow of materials is

described in Fig 2. At the beginning of the period, supply hub operator select proper suppliers

where they purchase materials. Suppliers deliver the materials to the corresponding supply

hub, and the materials are placed in stores after being inspected. The inspection entails classi-

fying materials as suitable or defective. The defective materials found during the screening

process are returned to the suppliers. For convenience, the suppliers take back the defective

Fig 2. The flow of materials in supplier–manufacturer network.

https://doi.org/10.1371/journal.pone.0206282.g002

Bi-objective IAPSSCT under uncertainty

PLOS ONE | https://doi.org/10.1371/journal.pone.0206282 November 28, 2018 4 / 25

https://doi.org/10.1371/journal.pone.0206282.g002
https://doi.org/10.1371/journal.pone.0206282


materials as a batch in the next period [33, 34]. When defective materials are present, materials

shortage is likely to occur. Therefore, a penalty cost is considered for the loss due to the possi-

ble shortage. All materials are arranged and then distributed to each manufacturer according

to their demand.

In the supplier–manufacturer network considered in this study, the manufacturers’

demands may be affected by weather, emergencies, and other factors, and may also be uncer-

tain because of the manufacturers’ subjective judgment. In actual logistic transportation,

weather, traffic congestion, and unexpected events are the main objective factors that affect

the transportation cost and these factors are considered random. In addition, the defect rate is

uncertain due to the complexity of the production process and instability of the material trans-

portation and loading process. Thus, the manufacturers’ demands, unit transport price and

defect rate are set as random variables.

The main factor for carbon emissions is transport emission, and the carbon emissions

which generated from suppliers’ plants usually reflect in the pricing of materials. The price of

materials includes cost of carbon emissions in raw materials processing [35–37]. Thus, the

transportation-related emissions have been focused in this inventory-allocation problem.

The transportation distance is a direct influence factor of environmental objective, and the

location of suppliers directly affects the transportation distance of suppliers to the supply hub.

Consequently, the suppliers’ selection is the indirected factor that affects the environmental

objective.

With environmental regulations on carbon cap by the government, carbon emissions

from transportation should be kept below a certain level. Through the carbon cap and carbon

trading, carbon emissions can be measured by economic indicators. The environmental

objective of the proposed supplier–manufacturer network depends on whether the allocation

of carbon footprint is in accordance with the established carbon emissions reduction targets.

At the end of the final period, the actual carbon emission is measured, and the emissions that

exceeded the appointed target are offset by the carbon footprint that the company purchased

from carbon trading market [38]. For the remaining carbon emissions, alternatively, the

manufacturer earns carbon credits that can be sold in the carbon market. The excess carbon

emissions emitted in the process of transportation become the cost of the supplier–manufac-

turer network, and the remainder is converted into the supplier–manufacturer network

revenue.

The following assumptions are made in this study: (1) Material demands, transportation

costs, and the defect rate of material in each period are set as random variables [18]. (2) The

time span of each period is indistinguishable [17]. (3) Shortage is allowed and a penalty cost is

applied to diminish economic losses on account of shortages [39]. (4) Suppliers who have been

selected are responsible for the costs incurred in returning defective materials [35]. (5) Every

material type has a corresponding supply hub with a maximum storage capacity [40]. (6) The

order lead time is negligible [37]. (7) Manufacturers’ material demands are independent of

one another and are fixed within a period [18].

Modeling

A mathematical model formulation for IAPSSCT that considers randomness is constructed in

this section.

Notations

To facilitate our model, notations are defined as follows:

Bi-objective IAPSSCT under uncertainty
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Indices

i: index for periods; i 2C = {0, 1, . . ., I − 1}

t: index for materials; t 2 F = {1, 2, . . ., T}

s: index for suppliers; s 2 Θ = {1, 2, . . ., S}

n: index for manufacturers; n 2 O = {1, 2, . . ., N}

m: price break point index; m 2P = {1, 2, . . ., M}

Decision variables

wtis: a binary variable indicating whether a supplier is chosen. If supplier s is chosen, then

wtis = 1; otherwise, wtis = 0

xtis: purchase quantity of material t from supplier s in the (i + 1)th period

lti: stock level of material t in the beginning of the (i + 1)th period

ytin: allocation quantity of material t from supply hub t to manufacturer n in the (i + 1)th

period

Parameters

gti : unit transport price of material t per kilometer in the (i + 1)th period

mtin : demand for material t at manufacturer n in the (i + 1)th period

uti : demand for material t in the (i + 1)th period

qts : defect rate of material t from supplier n in the (i + 1)th period

Pmax
t : maximum purchase quantity of material t in the (i + 1)th period

Pmin
t : minimum purchase quantity of material t in the (i + 1)th period

Qmax
t : maximum stocks limit of material t

St: original stock level of material t at the beginning of the initial period

Tt: final stock level of material t at the end of the entire process

Kt: unit holding cost of material t

Lt(s): actual stock function for material t in the entire process

Dt: distance between supplier t and the corresponding supply hub

Dtn: distance between supply hub t and manufacturer n

dt: inspection fee of material t

rt: unit refund of defective material t

σt: unit shortage fee of defective material t.

ctm: unit cost of material t from a supplier at mth price break point

stm: mth price break point for the material t in the (i + 1)th period

B: total budget of a manufacturer for the planning horizon

ξc: fuel consumption per kilometer for transportation vehicle

Bi-objective IAPSSCT under uncertainty
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ξe: CO2 emission of unit gasoline fuel for transportation vehicle

C: carbon cap over the network

$: carbon credit price per ton

Objective functions

The model consists of economic and environmental objectives.

Economic objective. The economic objective function describes the cost of the entire sup-

plier–manufacturer network. The goal of a supply hub operator is to determine the supplier

selection, purchase quantity, inventory level, and allocation quantity of each material in each

period to minimize the total supplier–manufacturer network costs. The total network costs

comprise of purchasing, inventory, penalty, and transportation costs.

In general, a manufacturer orders materials under several discount policies [41]. In this

model, the incremental quantity discount policy (IQD) is considered. In the IQD, the purchase

costs of material t in the corresponding period depend on the purchased amount. The price

discount point can be described as:

s:t:

ct1 st1 � xtis < st2

ct1st1 þ ðxtis � st2Þct2 st2 � xtis < st3

..

. ..
.

ct1st1 þ ct2st2 þ � � � þ ctMðxtis � stMÞ stM � xtis:

8
>>>>>>>><

>>>>>>>>:

If the supplier is chosen, then wtis = 1. Therefore, the purchase cost (FPC) under IQD is

FPC ¼
X

s

X

t

X

i

½
X

m

ðstmþ1 � stmÞctm þ ðxtis � stMÞctM�wtis

8s 2 Y; i 2 C; t 2 F; m 2 P:
ð1Þ

Materials with the defect rate, qts , are inspected before being transported to the supply hub,

after which all defective materials are returned to the supplier and a return cost is requested.

Let FIC be the inventory cost, ∑t∑i Ktlti be the holding cost, ∑s∑t∑i xtiswtis dt be the inspection

cost, and
P

s

P
t

P
ixtiswtisqts rt be the return cost when defective materials are returned to the

corresponding suppliers. Thus,

FIC ¼
X

t

X

i

Ktlti þ
X

s

X

t

X

i

xtiswtisdt �
X

s

X

t

X

i

xtiswtisqts rt

8i 2 C; t 2 F:
ð2Þ

The transportation distances between suppliers, supply hubs, and manufacturers vary, so does

supplier selection in different periods.
P

s

P
t

P
igtiDtxtiswtis calculates the delivery cost from

selected suppliers to supply hubs, and
P

t

P
i

P
ngtiDtnytin calculates the delivery cost from sup-

ply hubs to every manufacturer. If manufacturers’ demands can be satisfied, then ytin ¼ mtin ;

thus, transportation cost (FTC) is

FTC ¼
X

s

X

t

X

i

gtiDtxtiswtis þ
X

t

X

i

X

n

gtiDtnytin

8s 2 Y; i 2 C; t 2 F; n 2 O:
ð3Þ

A penalty cost is applied when the demand for material t cannot be satisfied.

Bi-objective IAPSSCT under uncertainty
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uti � lti � ð1 � qtsÞxtis is the shortage quantity of material t in period i, and σt is the unit short-

age cost. Let FPeC be the penalty costs for material t, which can be determined as follows:

FPeC ¼
X

s

X

t

X

i

stwtis½uti � lti � ð1 � qtsÞxtis� 8s 2 Y; i 2 C; t 2 F: ð4Þ

The economic objective function of inventory allocation network is

minF1 ¼ min½FPC þ FIC þ FTC þ FPeC�; ð5Þ

Environmental objective. The environmental objective is to minimize the carbon emis-

sion during the transportation process. The environmental objective under the carbon cap and

trade policy are the penalties/rewards in carbon-constrained scenario. ∑s∑t∑i Dtξcξextiswtis rep-

resents transport emissions from suppliers to supply hubs, ∑s∑t∑i Dtξcξextisqtswtis represents

transport emissions for defective materials from supply hubs to corresponding suppliers, and
P

t

P
i

P
nDtnxcxemtin represents transport emissions from supply hubs to every manufacturer.

As defined, ξc is the fuel consumption (l/km) of a transportation vehicle, and ξe is the CO2

emission (kg/l) from gasoline. Thus, the carbon emissions of vehicles per kilometer are

denoted by ξcξe(kg/km). C is the carbon cap during transport, and the carbon credit price ($)

should be considered for the purchase and sale of carbon credits [40, 42]. Therefore, F2 is the

carbon emissions costs of material t across the entire supplier–manufacturer network as fol-

lows:

minF2 ¼ $ð
X

s

X

t

X

i

Dtxcxextiswtis þ
X

s

X

t

X

i

Dtxcxextisqtswtis

þ
X

t

X

i

X

n

Dtnxcxemtin � CÞ 8s 2 Y; i 2 C; t 2 F n 2 O:
ð6Þ

Constraints

State equation: The quantity connection between adjacent periods can be presented as a state

equation. Constraint (7) defines the connection among inventory level, purchase quantity, and

demand. lt(i+1) is zero, when demand for material t cannot be satisfied [43].

ltðiþ1Þ ¼ lti þ xtisð1 � qtsÞ � uti ; or ltðiþ1Þ ¼ 0 ð7Þ

Original and final constraints: In practical scenario, the original and final constraints can be

generally set as zero.

lt0 ¼ St ¼ 0; 8t 2 F; ð8Þ

ltðI� 1Þ ¼ Tt ¼ 0; 8t 2 F: ð9Þ

Budget constraint: The manufacturers have budget constraint including purchase cost, inven-

tory cost, transport cost, and penalty cost. Therefore, economic objective should be within the

budget.

FPC þ FIC þ FTC þ FPeC � B

8s 2 Y; i 2 C; t 2 F; m 2 P; n 2 O:
ð10Þ

Capacity constraints: The order amount for material t in each period must be within constraint

Bi-objective IAPSSCT under uncertainty
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(11):

Pmin
t � xtis � Pmax

t ; or xtis ¼ 0: 8s 2 Y; i 2 C; t 2 F: ð11Þ

The inventory level lti should satisfy the constraint (12):

0 � lti � Qmax
t 8i 2 C; t 2 F: ð12Þ

Supplier selection constraints: Every material should be purchased from one supplier, and

every supplier can provide all types of materials. There should be at least one selected supplier

and there should be no more selected suppliers than the material species. Therefore, the num-

ber of selected suppliers should be between one and T.

1 �
X

s

wtis � T 8s 2 Y; i 2 C; t 2 F: ð13Þ

Binary variable constraint: Since the wtis is binary variable, it should satisfy the constraint (14):

wtis ¼ f0; 1g 8s 2 Y; i 2 C; t 2 F: ð14Þ

Non-negative constraint: Except for wtis, other decision variables should be non-negative.

xtis; lti; ytin � 0 8s 2 Y; i 2 C; t 2 F n 2 O: ð15Þ

Solution method

Normalized normal constraint method for bi-objective model

In this paper, the economic and environmental objectives are conflicting. In economic objec-

tive, if the supplier with lower price is selected, the purchase cost can be minimized, but this

supplier may be far from the corresponding supply hub. According to ∑s∑t∑i Dtξcξextiswtis, the

distance between supplier and supply hub has crucial influence on carbon emission. A longer

distance leads to higher carbon emission as well as carbon emission cost. In the environmental

objective, by contrast, supplier near the supply hub is chosen, then the carbon emission cost

can be minimized, but the purchase price of the materials may be higher than the price set by

other suppliers.

Under this circumstance, decision makers have to make trade-off solutions between the

two objectives. The weighting, constraint, and normalized normal constraint (NNC) methods

are effective to generate the Pareto solution. The NNC method was proposed by Mattson in

2003; this method presents a clear methodology for obtaining an evenly spaced Pareto solution

for bi-objective problems. The core idea of the NNC method is to construct a series of single-

objective optimization problems after normalized processing of the feasible region of bi-objec-

tive optimization, and then search for the Pareto solution one by one according to the direc-

tion of the Utopia line. The advantage of this method is that the evenly spaced and complete

Pareto non-inferior solution can be obtained.

The procedure of the of NCC method for the bi-objective model is presented in Fig 3,

and the details can be found in [24]. The first step is solving the two objective functions and

obtaining the two anchor points. Then, the objectives and feasible region are normalized,

the utopia line vector is obtained, and the increment is normalized. After the utopia line

point (Xpj) is generated, the bi-objective model can be transformed into two single-objective

models (16) with constraints (7) (15) and additional constraint of N 1ðm � XpjÞ
T
� 0 and

m ¼ ½m1ðxÞ � m2ðxÞ�
T
. The Pareto points of the original bi-objective optimization problem are

Bi-objective IAPSSCT under uncertainty
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obtained by solving these two single-objective optimization models by utopia line points Xpj.

minF2

s:t:

constraintð7Þð15Þ

N 1ðm � XpjÞ
T
� 0

m ¼ ½m1ðxÞ m2ðxÞ�
T
;

ð16Þ

The last step is calculating the value of the single-objective function for each Pareto solution,

and the non-normalized design metrics can be obtained by

m ¼ ½m1l1 þ m1ðx1�Þ m2l2 þ m2ðx2�Þ�
T
.

Differential evolution algorithm for transformed single objective model

Based on the differential evolution (DE) proposed by Storn and Price [44] in 1997, DE has

been gradually applied to many fields, especially in science and engineering [45]. DE is a

algorithm that uses population size L of D − dimensional vectors to do random search [26].

Through crossover, mutation, and selection operations, each target vector is perturbed into a

trial vector. Crossover, mutation, and selection procedure are introduced in the subsequent

sections.

Fig 3. Solution procedure of NNC method.

https://doi.org/10.1371/journal.pone.0206282.g003

Bi-objective IAPSSCT under uncertainty

PLOS ONE | https://doi.org/10.1371/journal.pone.0206282 November 28, 2018 10 / 25

https://doi.org/10.1371/journal.pone.0206282.g003
https://doi.org/10.1371/journal.pone.0206282


Encoding and decoding strategies. To apply DE to solve IAPSSCT, the relationship

between vector supplier selection and purchase quantity must be defined. The vector in encod-

ing procedure comprises of (s + t)i components. The first si − dimensions of each vector

describes different suppliers. The last ti − dimensions represent t materials and i periods. Each

vector is decoded into the supplier selection and purchase quantities of each material in every

periods in each iteration. The encoding procedure begins with initializing population size L of

(s + t)i dimensional vectors randomly. The evolution of the population occurs mainly through

the operations of mutation, crossover, and selection until the finishing criteria are met. The

decoding process consists of three steps. First, a supplier selection list is constructed based on

the geographical locations of suppliers. Second, the purchase quantity matrix is built. The last

step is to establish the inventory level matrix, which can be realized using the state equation

based on the results of the second step. The procedures of encoding and decoding strategies is

presented in Table 1.

Mutation strategy. The mutation procedure for target vector, Xi,j,G, is applied to built a

mutant vector, Vi,j,G. The mutation vector of generation G, Vi,j,G, are composed of three sto-

chastically selected vectors from a present population both mutually exclusive and not the

same as their related mutation vectors. A mutant vector can be created in accordance with

Eq (17), where Xr1,j,G, Xr2,j,G, and Xr3,j,G are the three stochastically selected vectors. The scale

factor, F, which can be generated based on Eqs (18) and (19), is used to scale the differential

variation (Xr2,j,G − Xr3,j,G) and is a parameter of DE. The procedures of crossover strategy is

presented in Fig 4A.

Vi;j;G ¼ Xr1;j;G þ FðXr2;j;G � Xr3;j;GÞ ð17Þ

F ¼ F0 � 2� namd ð18Þ

namd ¼ expð1 � Gm=ðGm þ 1 � GÞÞ: ð19Þ

Table 1. Encoding and decoding procedure of IAPSSCT.

Input: i: sets of periods; i 2C = {0, 1, . . ., I − 1} t: sets of materials; t 2 F = {1, 2, . . ., T}

s: sets of suppliers; s 2 Θ = {1, 2, . . ., S} n: sets of for manufacturers; n 2 O = {1, 2, . . ., N}

mtin : demand for material t at manufacturer n in the (i + 1)th period mtin � Nðm;s2Þ

uti : demand for material t in the (i + 1)th period uti ¼
P

nmtin

xtis: purchase quantity of material t from supplier s in the (i + 1)th period

wtis: If supplier s is selected, then wtis = 1; otherwise, wtis = 0.

Output: ytin: allocation quantity of material t from supply hub t to manufacturer n in the (i + 1)th period.

lti: stock level of material t in the beginning of the (i + 1)th period.

Step 1 ytin 0, i 2C, t 2 F n 2 O, lti 0, i 2C, t 2 F
Step 2 While i = 1: I, t = 1: T do

Generate xtis � uti , randomly.

Step 2.1 The purchase amount is matched to the price discount point of supplier.

wtis 1; The supplier with lowest price is selected by comparing each purchase price of the

discount point.

Step 2.2 Generate a distance matrix between selected suppliers and supply hubs.

Step 2.3 Generate a distance matrix between between supply hubs and manufacturers.

Step 2.4 Generate a defect rate (qts ) matrix according to selected suppliers.

Step 3 Generate ytin and lti based on state equation ltðiþ1Þ ¼ lti þ xtisð1 � qts Þ � uti .

end

https://doi.org/10.1371/journal.pone.0206282.t001
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Crossover strategy. The trial vector, XDEi,j,G, is constructed by the mutant vector, Vi,j,G,

crossing with the target vector, Xi,j,G. The diversity of perturbation parameter vectors can be

enriched by crossover strategy. Exponential and binomial crossovers are the two predominatly

applied crossover schemes.CR, defined as crossover probability, controls the part of a parame-

ter crossed from the mutation vector in each dimension. Specifically, the trial vector, XDEi,j,G,

is more approximate to the target vector, Xi,j,G, when crossover probability is smaller. By con-

trast, the trial vector, XDEi,j,G, is more approximate to the mutant vector, Vi,j,G, when crossover

probability is higher. The trial vector can be generated according to Eq (20). The procedures of

crossover strategy is presented in Fig 4B.

XDEi;j;G ¼

(
Xi;j;G; if randi;j � CR or j ¼ randj

Vi;j;G; if randi;j > CR or j 6¼ randj:
ð20Þ

Selection strategy. The target vector of the G + 1 generation, Xi,j,G+1, is constructed by

selecting the target vectors, Xi,j,G+1, or trial vector, XDEi,j,G, that produces a superior result

compared with other methods. The target vector of the G + 1 generation can be generated

according to Eq (21).

Xi;j;Gþ1 ¼

(
XDEi;j;G; if gðXDEi;j;GÞ � gðXi;j;GÞ

Xi;j;G; otherwise:
ð21Þ

Overall procedure of DE. The overall procedure for DE can be described based on the

preceding sections, the details of which are as follows:

Step 1: The parameters, L, G0, Gm, F0, and CR, are initialized.

Step 2: The vectors, X0 = {X1,1, X1,2, . . ., X1,L}, are randomly initialized according to initializa-

tion strategy.

Step 3: The initial particles are calculated to generate the fitness value according to the trans-

formed single objective.

Step 4: Three vectors, namely, Xr1,j,G, Xr2,j,G, and Xr3,j,G, are selected randomly.

Step 5: A new mutant vector is generated based on Eq (17).

Step 6: A new trail vector is generated based on Eq (20).

Step 7: The fitness value is calculated, and the next generation of target vectors are selected

based on Eq (21).

Fig 4. The procedures of mutation and crossover strategies. (A) The procedures of mutation strategy. (B) The procedures of crossover strategy.

https://doi.org/10.1371/journal.pone.0206282.g004
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Step 8: If G = Gm − 1, then G = G + 1 and proceed to Step 9. Otherwise, G = G + 1 and then

return to Step 4.

Step 9: The optimal result and optimal vector are determined.

Step 10: The optimal vector is decoded, and wtis, xtis and lti (for t = 1, 2, . . ., T, i = 0, 1, 2, . . ., I
− 1, s = 1, 2, . . ., S), are output.

Case study

Case presentation

To illustrate model performance and demonstrate the effect of carbon cap and carbon credit

price on the environment cost, the proposed NCC-DE are applied to a case. We applied the

proposed model and solution method to electronic industry with consideration of carbon

emission.

The Beijing–Tianjin–Hebei region is an important gathering region of the electronic infor-

mation industry in China. There are a number of mature industrial parks in Beijing, which

have competitive advantages in attracting investment and product research and development.

Tianjin has a competitive advantage in the manufacture of electronic components, integrated

circuits and mobile communication equipment. The development degree of the electronic

information industry in Hebei is relatively low, but its potential is huge, which creates favor-

able conditions for the advantageous industries to undertake the Beijing–Tianjin area. The

geographic distribution of the raw material suppliers, supply-hubs, and electronic manufactur-

ers in the Beijing–Tianjin–Hebei region is shown as Fig 5. Raw materials suppliers and elec-

tronic manufacturers are distributed in the periphery of Beijing, Tianjin, and Hebei Province,

and are relatively scattered, and supply-hubs is distributed around Tianjin. Specifically, in this

case, including five suppliers of raw materials: Chengde high-tech industrial development

zone (CH–T), Yutian electronic components industrial park (YT–E), Gaobeidian technology

industrial park (GBD-T), Qianan technology industrial park (QA–T), Baiyangdian technology

industrial park (BYD–T); four supply-hubs: Jinghai Tuanbo technology industrial park

(JHTB–T), Wuqing economic and technological development Zone (WQ–E), Tianjin Binhai

Fig 5. The geographic distribution of the material suppliers, supply-hubs, and electronic manufacturers.

https://doi.org/10.1371/journal.pone.0206282.g005
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new area (TJBH-N), Baodi ZOL (BD-Z); and five electronic manufacturer: Tangshan high-

tech industrial development zone (TS-H), Caofeidian cooperation development demonstra-

tion zone (CFD–C), Beijing economic and technological development zone (BJ–E). Baoding

high-tech industrial development zone (BD–H), Qinhuangdao economic and technological

development zone (QHD–E).

We investigated three electronic components companies CH, CY and YT to collect relevant

data needed for this study. The data was collected between May 2015 and March 2016. We also

interviewed with five experts at Beijing–Tianjin–Hebei development research center and elec-

tronic information industry bodies to obtain information about transport and environmental

impact on electronic information industry. Supply hubs in Beijing–Tianjin–Hebei region are

the third-party business entity of inventory and allocation for manufacturers. The procure-

ment of materials among electronic enterprises is completed by the supply hubs. The supply

hub operator selected a suitable supplier for each material and decide the purchase quantity,

inventory level, and allocation quantity of each material.

The present case involves five suppliers (S1, S2, S3, S4, S5), four materials (T1, T2, T3, T4),

four supply-hubs (D1, D2, D3, D4) and five manufacturers (R1, R2, R3, R4, R5). Five periods

are considered in the proposed supplier–manufacturer network, and every period lasts one

month. The demand for each material for each month of each manufacturers is shown in

Table 2. Purchase information and material inventory information are presented in Tables 3

and 4. The distribution information is provided in Table 5, and distance among suppliers,

Table 2. Demand information of materials.

Month index (i)
i = 1 i = 2 i = 3 i = 4 i = 5

u1i u11 � Nð12:82; 0:77Þ u12 � Nð9:97; 0:68Þ u13 � Nð11:51; 0:76Þ u14 � Nð12:48; 0:79Þ u15 � Nð11:60; 0:78Þ

u2i u2i � Nð19:40; 1:23Þ u22 � Nð20:25; 1:31Þ u23 � Nð22:30; 1:59Þ u24 � Nð21:79; 1:45Þ u25 � Nð22:59; 1:76Þ

u3i u31 � Nð22:27; 1:57Þ u32 � Nð21:74; 1:48Þ u33 � Nð20:10; 1:35Þ u34 � Nð22:26; 1:57Þ u35 � Nð22:90; 1:58Þ

u4i u41 � Nð29:17; 2:25Þ u42 � Nð29:54; 2:24Þ u43 � Nð29:67; 2:26Þ u44 � Nð29:15; 2:23Þ u45 � Nð31:32; 2:38Þ

https://doi.org/10.1371/journal.pone.0206282.t002

Table 3. Purchasing information of materials.

MAT. Price break point Cost MAT. Price break point Cost MAT. Price break point Cost MAT. Price break point Cost

103 stm−1� xtis < stm ctm stm−1� xtis < stm ctm stm−1� xtis < stm ctm stm−1� xtis < stm ctm

S1 T1 4.44� x1i1 < 5.57 2.48 T2 9.03� x2i1 < 10.03 0.18 T3 8.02� x3i1 < 9.72 0.48 T4 12.12� x4i1 < 13.62 0.57

5.57� x1i1 < 6.70 2.45 10.03� x2i1 < 11.02 0.16 9.72� x3i1 < 11.71 0.45 13.62� x4i1 < 15.02 0.54

6.7� x1i1 < 7.83 2.42 11.02� x2i1 < 12.02 0.13 11.71� x3i1 < 13.41 0.42 15.02� x4i1 < 16.52 0.51

S2 T1 4.34� x1i2 < 5.47 2.47 T2 9.23� x2i2 < 10.23 0.19 T3 8.09� x3i2 < 9.79 0.49 T4 12.02� x4i2 < 13.52 0.56

5.47� x1i2 < 6.60 2.45 10.23� x2i2 < 11.22 0.15 9.79� x3i2 < 11.79 0.46 13.52� x4i2 < 15.12 0.53

6.60� x1i2 < 7.83 2.43 11.22� x2i2 < 12.22 0.13 11.79� x3i2 < 13.49 0.44 15.12� x4i2 < 16.42 0.50

S3 T1 4.54� x1i3 < 5.67 2.48 T2 9.15� x2i3 < 10.15 0.19 T3 8.12� x3i3 < 9.82 0.48 T4 12.22� x4i3 < 13.72 0.56

5.67� x1i3 < 6.80 2.44 10.15� x2i3 < 11.18 0.16 9.82� x3i3 < 11.81 0.46 13.72� x4i3 < 15.12 0.54

6.80� x1i3 < 7.83 2.41 11.18� x2i3 < 12.22 0.11 11.81� x3i3 < 13.51 0.42 15.12� x4i3 < 16.62 0.52

S4 T1 4.24� x1i4 < 5.37 2.49 T2 9.19� x2i4 < 10.19 0.18 T3 8.22� x3i4 < 9.92 0.49 T4 12.19� x4i4 < 13.69 0.57

5.37� x1i4 < 6.40 2.45 10.19� x2i4 < 11.19 0.14 9.92� x3i4 < 11.91 0.46 13.69� x4i4 < 15.09 0.55

6.40� x1i4 < 7.53 2.42 11.19� x2i4 < 12.22 0.11 11.91� x3i4 < 13.61 0.41 15.09� x4i4 < 16.59 0.53

S5 T1 4.48� x1i5 < 5.59 2.49 T2 9.10� x2i5 < 10.10 0.19 T3 8.15� x3i5 < 9.85 0.48 T4 12.10� x4i5 < 13.60 0.57

5.59� x1i5 < 6.78 2.47 10.10� x2i5 < 11.10 0.15 9.85� x3i5 < 11.84 0.44 13.60� x4i5 < 15.00 0.54

6.78� x1i5 < 7.93 2.45 11.10� x2i5 < 12.12 0.10 11.84� x3i5 < 13.55 0.43 15.00� x4i5 < 16.60 0.51

https://doi.org/10.1371/journal.pone.0206282.t003
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supply hubs, and manufacturers are provided in Table 6. All random parameters follows a nor-

mal distribution. Fuel consumption (ξc) is 0.245 (l/km), and CO2 emissions for a unit of gaso-

line (ξe) are 2.63 (kg/l). These emission parameters were obtained from [46].

Parameter selection using the Taguchi method

One of the important stages in designing a hybrid algorithm is to adjust the parameters that

can affect the effectiveness of the algorithm. While the adjusting process is hard to perform

manually, the Taguchi experiments is conducted for this purpose. In the Taguchi method, the

factors are divided into two categories: controllable factors and noise factors. Based on the con-

cept of robustness, the Taguchi method tries to minimize the impact of noise factors and deter-

mine the optimal level of important controllable factors. Taguchi method developed signal–

to–noise (S/N) ratio to evaluate whether this type of parameters is robust. In this research

the parameters of the algorithm includes Gm (iteration), L (population size), F (scale factor),

and CR (crossover probability). The set levels for the algorithm parameters are described in

Table 7. The L9(3��3) design in the MINITAB is used for adjusting the parameters. The Tagu-

chi experimental results are presented in Table 8.

According to the Fig 6A the maximum S/N ratio have occurred for the L parameter in level

3, for the Gm parameter in level 1, forthe F parameter in level 1, and for CR parameter in level

1. In the Fig 6B, the minimum Mean appeared at the maximum S/N ratio. Thus, the algorithm

parameters can be adjusted as: L = 25 Gm = 200 F0 = 0.5 CR = 0.8.

Table 4. Inventory information of materials.

Material Inspection fee Storage cost Return price Penalty Defect rate

t dt (CNY) Kt (CNY) rt (CNY) σt(CNY) qts ð%Þ

M1 0.009 9 0.09 0.03 q1s � Nð0:01788; 0:71Þ

M2 0.011 6 0.08 0.02 q2s � Nð0:02112; 0:88Þ

M3 0.012 3 0.03 0.03 q3s � Nð0:00876; 0:91Þ

M4 0.006 2 0.01 0.01 q4s � Nð0:01812; 0:65Þ

https://doi.org/10.1371/journal.pone.0206282.t004

Table 5. Distribution cost from supplier to supply hub.

Month index (i)
i = 1 i = 2 i = 3 i = 4 i = 5

g1i g11 � Nð21; 1:4Þ g12 � Nð14; 0:8Þ g13 � Nð15; 0:9Þ g14 � Nð20; 1:3Þ g15 � Nð15; 0:9Þ

g2i g21 � Nð19; 1:2Þ g22 � Nð13; 0:7Þ g23 � Nð17; 1:1Þ g24 � Nð21; 1:4Þ g25 � Nð17; 1:1Þ

g3i g31 � Nð21; 1:4Þ g32 � Nð14; 0:8Þ g33 � Nð15; 0:9Þ g34 � Nð20; 1:3Þ g35 � Nð15; 0:9Þ

g4i g41 � Nð19; 1:2Þ g42 � Nð23; 1:7Þ g43 � Nð27; 2:1Þ g44 � Nð31; 2:3Þ g45 � Nð27; 2:1Þ

https://doi.org/10.1371/journal.pone.0206282.t005

Table 6. Distance among suppliers, supply hubs, and retail stores (km).

Supply hub t & MFR n MFR 1 MFR 2 MFR 3 MFR 4 MFR 5 Supplier 1 Supplier 2 Supplier 3 Supplier 4 Supplier 5

Supply hub 1 (D1) 189.2 180.9 124.6 169.6 304.9 244.9 171.1 257.2 146.9 106.1

Supply hub 2 (D2) 139.4 155.6 85.6 188.5 270.9 186.5 124.2 207.4 123.1 210.1

Supply hub 3 (D3) 170.5 98.8 162.7 244.2 210.3 225.4 142.8 175.3 204.5 221.7

Supply hub 4 (D4) 126.0 169.9 88.1 232.3 206.9 111.1 43.6 133.9 173.8 266.5

https://doi.org/10.1371/journal.pone.0206282.t006
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Result analysis

The experiments represented in this section were conducted using MATLAB R2014a on a

Core i5-5200U, 2.19 GHz clock pulse with 3.88 GB memory, with the aforementioned data to

test the performance of the proposed mathematical model and solution method. The result in

Table 9, Figs 7A, 7B, 8A and 8B are obtained via simulation for 30 times (the carbon cap is

3000 tons, and the carbon credit price ($) is 36.29 CNY/ton in Tianjin in 2016).

Inventory and allocation decisions with carbon trading across multiple periods are critical

for IAPSSCT. Fig 7A illustrates the Pareto frontier of economic and environmental objectives.

The intersection of the utopia line and X axis is the optimal solution of environmental objec-

tive, and the intersection of the utopia line and Y axis is the optimal solution of economic

objective (the two intersections are also the anchor point in the NNC method). As mentioned

in the previous chapter, the utopia line points Xpj are a set of evenly distributed points, and

the Pareto frontier can be generated by optimizing the single objective with constraint

Table 7. The levels for each of the parameters.

Level of factor L Gm F0 CR
1 15 200 0.5 0.8

2 20 250 0.6 0.9

3 25 300 0.7 1.0

https://doi.org/10.1371/journal.pone.0206282.t007

Table 8. Normalized results from the Taguchi experiments.

Exp.No. L Gm F0 CR rep1 rep2 rep3 rep4 rep5

1 15 200 0.5 0.8 3543254 3428129 3487698 3540597 3418757

2 15 250 0.6 0.9 3760987 3750393 3591354 3657725 3676522

3 15 300 0.7 1.0 3570690 3637331 3637331 3524167 3654849

4 20 200 0.6 1.0 3542194 3616531 3646553 3655497 3639408

5 20 250 0.7 0.8 3623913 3690123 3667825 3524319 3666743

6 20 300 0.5 0.9 3542069 3527126 3658842 3554336 3698765

7 25 200 0.7 0.9 3570042 3543272 3612589 3583760 3650989

8 25 250 0.5 1.0 3511213 3439684 3591349 3445364 3454658

9 25 300 0.6 0.8 3672135 3625639 3528508 3543276 3645697

https://doi.org/10.1371/journal.pone.0206282.t008

Fig 6. Results of Taguchi experiments. (A) SNR graph from the Taguchi experiments. (B) Mean graph from Taguchi experiments.

https://doi.org/10.1371/journal.pone.0206282.g006
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N 1ðm � XpjÞ
T
� 0. A spider chart illustrates the floating of purchase quantities with different

Xpj in the five periods. As shown in Fig 7B, with changes in Xpj, the purchase quantities of the

four materials have changed slightly. This condition indicates that the purchase quantities are

not the critical influence factor of the Pareto non-inferiority solution of IAPSSCT.

Table 9. Typical Pareto solutions of inventory allocation planning problem.

Solutions Optimal order quantity Economic Environmental

1 Variable Month index 3.72 × 106 2.14 × 104

i = 0 i = 1 i = 2 i = 3 i = 4

T1 7359.2 S3 5282.3 S3 6794.8 S3 7361.5 S4 4417.3 S4

T2 11257.3 S1 13994.9 S4 9480.9 S1 11144.5 S5 13994.9 S1

T3 14351.8 S4 11596.6 S3 9010.1 S5 9150.8 S5 9264.0 S3

T4 16521.0 S3 17198.9 S5 13994.9 S3 11780.9 S3 13047.8 S5

2 Variable Month index 3.62 × 106 3.39 × 104

i = 0 i = 1 i = 2 i = 3 i = 4

T1 8754.6 S4 5874.2 S3 6984.2 S4 9945.1 S3 7787.3 S3

T2 12321.1 S1 10025.6 S1 9998.6 S4 13658.6 S5 13445.9 S5

T3 13658.2 S3 12663.1 S2 10025.6 S2 10037.9 S4 9587.8 S3

T4 15464.9 S1 14702.1 S5 10998.5 S5 16653.1 S3 15584.2 S3

3 Variable Month index 3.54 × 106 4.53 × 104

i = 0 i = 1 i = 2 i = 3 i = 4

T1 6587.4 S3 8598.7 S2 5569.1 S3 7851.3 S2 4986.2 S3

T2 12258.3 S4 14002.1 S2 13692.7 S4 12988.8 S5 10920.0 S2

T3 11316.4 S3 13211.5 S3 10010.2 S2 13601.3 S3 8475.9 S2

T4 12214.3 S4 16658.1 S3 14758.9 S5 15552.4 S3 10101.3 S5

4 Variable Month index 3.52 × 106 5.01 × 104

i = 0 i = 1 i = 2 i = 3 i = 4

T1 4989.9 S4 5698.1 S4 6483.9 S3 9455.1 S3 7365.2 S4

T2 10025.2 S5 14070.9 S4 11013.7 S1 10009.8 S5 12225.5 S5

T3 14142.3 S3 11259.8 S2 10025.3 S5 13986.5 S5 10005.5 S2

T4 16665.3 S3 14573.2 S5 12202.0 S2 16652.4 S5 13254.9 S4

5 Variable Month index 3.47 × 106 5.67 × 104

i = 0 i = 1 i = 2 i = 3 i = 4

T1 7125.8 S2 8211.1 S3 4699.0 S3 6854.1 S2 7700.1 S3

T2 16748.5 S4 12252.2 S2 13337.5 S5 13015.8 S2 10210.4 S4

T3 11258.3 S2 10057.6 S3 12412.7 S5 8547.9 S3 9943.1 S2

T4 11142.9 S2 13528.6 S5 14187.5 S2 12003.8 S4 10077.9 S4

6 Variable Month index 3.43 × 106 7.30 × 104

i = 0 i = 1 i = 2 i = 3 i = 4

T1 7415.8 S4 5465.1 S4 6653.2 S5 7124.5 S4 5599.8 S4

T2 11214.7 S2 12568.0 S2 13697.3 S4 15001.2 S4 11254.3 S4

T3 14142.8 S5 8872.5 S2 10098.4 S3 12197.6 S2 10014.5 S5

T4 13363.5 S2 14002.8 S1 14254.3 S2 12225.7 S4 10091.7 S1

7 Variable Month index 3.36 × 106 8.51 × 104

i = 0 i = 1 i = 2 i = 3 i = 4

T1 6893.1 S5 6579.2 S4 6565.0 S5 7700.4 S5 4491.5 S5

T2 13684.0 S4 12945.2 S2 11942.6 S4 13205.3 S4 11024.3 S4

T3 13567.2 S3 11464.8 S5 12681.9 S2 13821.8 S3 11623.5 S3

T4 16571.0 S2 14681.9 S4 15773.9 S4 15798.2 S1 14541.1 S2

https://doi.org/10.1371/journal.pone.0206282.t009
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In order to further observe the strategies under the economic and environmental objectives,

the typical solutions and specific purchase and supplier selection strategies on the Pareto fron-

tier are given as shown in Table 9. Although the purchase quantities of these four materials are

similar in each period, whereas the selections of suppliers vary. A conflict occurs between the

economic and environmental objectives. When it comes to the minimization of economic

objective, the decision maker prefers to select the supplier with low purchase price, which may

lead to long distance transport and high environmental cost, and vice versa. T1 in the first

period is used as an example. The economic cost of selecting supplier S3 is the lowest, as

shown in Fig 8A. In the case of carbon emissions, the decision maker selects S5, as shown in

Fig 8B, which is closer to D1, even if the purchase price is higher, to reduce carbon emissions

during transportation, cutting carbon emissions and costs or earning carbon credits. Solution

1 is the optimal result of minimizing the cost of the economy without considering carbon

emissions. Table 9 shows that a larger reduction in carbon emissions can be achieved with

smaller economic costs after taking into account the carbon trading. Compared with the tradi-

tional single economic cost model, considering carbon trading has better flexibility and better

adaptability to the change of carbon emissions policies.

Fig 7. Simulation result. (A) Pareto frontier of economic and environmental objectives. (B) Purchase quantities of materials with different Xpj.

https://doi.org/10.1371/journal.pone.0206282.g007

Fig 8. Supplier selection under different situation. (A) Supplier selection under economic condition. (B) Supplier selection under environmental

condition.

https://doi.org/10.1371/journal.pone.0206282.g008
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Carbon emission analysis. The carbon price in the carbon trading market of Tianjin is

36.29 CNY/ton. With an increase in the carbon cap, environmental objective experience a

downward trend with the same carbon credit price, as shown in Fig 9A. When the carbon cap

increases from 1000 t to 5000 t, the carbon costs reduced from 6.983 × 104 (CNY) to 96.574

(CNY). When the carbon cap increases from 6000 t to 10000 t, carbon costs continue to

decrease to a negative value. The Kyoto Protocol mandates that companies which do not reach

their carbon emission cap can sell the excess to other companies. In such a case, the carbon

costs of a company will begin to decline toward a negative value, at which point, the company

will earn credits. In other words, a negative cost shows that a company is indeed profiting by

diminishing its carbon emissions. Furthermore, the carbon cap is conducive to economic

growth. However, as the environment becomes increasingly damaged, the carbon cap will be

tightened, which will eventually cause a negative economic effect. In fact, from perspective of

enterprises, selecting the best decision based on the preferences of decision makers under vary-

ing carbon caps is appropriately given that the carbon cap exhibits strong externality.

When carbon emissions are higher than the carbon cap threshold (denoted as: CapTH,

which is approximately 5000 t in this case), in which carbon cost increases with an increase in

carbon credit price (for example, carbon cap = 2000 t). When carbon emissions are below

CapTH (for example, carbon cap = 7000 t), environmental objective decrease with an increase

in carbon credit price, as these show in Fig 9B.

After simulation for 30 times, Fig 10 shows the statistical results of the carbon emissions

costs with the carbon cap ranging from 1000 t to 10000 t, and the carbon credit price ranging

from 16.29 (CNY/t) to 76.29 (CNY/t). With the international carbon trading, and carbon

emission reduction pressure gradually increasing, the carbon cap is gradually reduced, and the

credit price of carbon trading increases. The carbon credit price becomes close to international

carbon credit price (7.35 (EUR/t), or approximately 66.29 (CNY/t)). The impacts of the carbon

cap and the carbon credit prices on environmental costs, as shown in Fig 10, are consistent

and exhibit a reduction as the carbon cap increases and the carbon credit price decrease.

Results of large scale problems. In this network, purchasing quantities become large and

the distribution network becomes more complex when the variety of materials increases. As

Fig 9. Impact of carbon emission. (A) Environmental cost under different carbon caps. (B) Floating of environmental cost with different carbon credit

prices.

https://doi.org/10.1371/journal.pone.0206282.g009
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shown in Table 10, the economic cost and environmental cost with bigger data scale are incre-

mental. This calculation make decision makers to recognize the importance of environmental

cost and reduce carbon emissions as much as possible. An obvious result can be seen from the

50 × 16 × 80 and 80 × 20 × 80 cases. Although there is an increase in the economic cost, the

increase in environmental cost in the 50 × 16 × 80 case is almost the same as in the 80 × 20 ×
80 case. This can be attributed to the fact that when the variety of materials and supply hubs

have increased, the overall transport costs increase, while carbon emission reduces because

long–distance transport decrease. In order to explore the impact of the quantity of manufac-

turers on economic and environmental costs, we have conduct the simulation with a fixed size

10 × 4, 20 × 8, 30 × 12, 50 × 16, and 80 × 20, while changing the numbers of manufacturers.

The results indicated that the environmental costs increased significantly, while the manufac-

turers’ quantities increase.

Algorithm comparison. In order to better illustrate the effectiveness of the proposed

NNC–DE algorithm, we present the results between the NNC–PSO, and the NNC–DE algo-

rithm. In this network, fifteen instances test data validate the proposed algorithm considering

the large scale for our research problem. The weighing method, the NNC–PSO, and the NNC–

DE were run 30 times with the same data. The population size and maximize iteration for all

algorithms were set as: L = 25 and Gm = 200. In NNC–PSO, the acceleration constant was

Fig 10. Impact of carbon cap and carbon credit prices on environmental objective.

https://doi.org/10.1371/journal.pone.0206282.g010
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designed as cl = cn = 2 and the inertia weight was ω(1) = 1 and ω(T) = 0.1. The comparisons of

the performance of the algorithm are presented in Table 11.

From the Table 11, we can see the NNC–DE plays the better performance than NNC–PSO,

and obtain better solution. Although NNC–DE requires more CPU time than NNC–PSO, its

computing time is acceptable. With the expansion of the scale, the NNC–DE stay stable com-

puting the optimal result. When the network size extent to 80 × 20 × 120, the output of NNC–

PSO seems to be abnormal, may be trapped in a local optimal solution. Therefore, the NNE–

DE algorithm is effective and efficient for extensive logistic network.

Table 10. Simulation results of large scale problem.

No. Parameters Carbon price Carbon cap Economic cost (CNY) Environmental cost

s t n (CNY) (t) (CNY) (CNY)

1 10 4 10 36.29 2000 7.727 × 106 3.236 × 105

2 10 4 20 36.29 2000 1.601 × 107 4.688 × 105

3 10 4 30 36.29 2000 2.530 × 107 8.699 × 105

4 20 8 20 36.29 2000 3.055 × 107 4.562 × 105

5 20 8 30 36.29 2000 4.985 × 107 6.776 × 105

6 20 8 50 36.29 2000 8.292 × 107 1.253 × 106

7 30 12 30 36.29 2000 7.378 × 107 6.101 × 105

8 30 12 50 36.29 2000 1.203 × 108 1.261 × 106

9 30 12 80 36.29 2000 1.897 × 108 1.806 × 106

10 50 16 50 36.29 2000 1.638 × 108 1.208 × 106

11 50 16 80 36.29 2000 2.595 × 108 1.575 × 106

12 50 16 100 36.29 2000 3.268 × 108 2.169 × 106

13 80 20 80 36.29 2000 3.235 × 108 1.585 × 106

14 80 20 100 36.29 2000 3.884 × 108 1.876 × 106

15 80 20 120 36.29 2000 4.735 × 108 2.429 × 106

https://doi.org/10.1371/journal.pone.0206282.t010

Table 11. Algorithm comparison.

No. Parameters NNC–PSO NNC–DE

s t n CPU (s) Obj1 (CNY) Obj2 (CNY) CPU (s) Obj1 (CNY) Obj2 (CNY)

1 10 4 10 54.536 7.992 × 106 3.362 × 105 66.370 7.727 × 106 3.236 × 105

2 10 4 20 93.837 1.663 × 107 4.924 × 105 119.154 1.601 × 107 4.688 × 105

3 10 4 30 176.531 2.942 × 107 8.808 × 105 189.441 2.530 × 107 8.699 × 105

4 20 8 20 200.332 4.245 × 107 5.876 × 105 230.713 3.055 × 107 4.562 × 105

5 20 8 30 442.594 5.328 × 107 7.901 × 105 583.778 4.985 × 107 6.776 × 105

6 20 8 50 594.284 1.025 × 108 1.436 × 106 689.557 8.292 × 107 1.253 × 106

7 30 12 30 811.724 9.157 × 108 8.243 × 105 1068.734 7.378 × 107 6.101 × 105

8 30 12 50 1005.862 1.339 × 108 1.522 × 106 1364.878 1.203 × 108 1.261 × 106

9 30 12 80 1175.153 2.216 × 108 2.179 × 106 1443.911 1.897 × 108 1.806 × 106

10 50 16 50 1342.042 1.985 × 108 1.674 × 106 1542.887 1.638 × 108 1.208 × 106

11 50 16 80 1598.464 2.753 × 108 2.042 × 106 1647.905 2.595 × 108 1.575 × 106

12 50 16 100 1803.769 4.035 × 108 2.661 × 106 1939.873 3.268 × 108 2.169 × 106

13 80 20 80 1936.243 3.692 × 108 2.294 × 106 2187.545 3.235 × 108 1.585 × 106

14 80 20 100 2434.153 4.321 × 108 2.637 × 106 2613.234 3.884 × 108 1.876 × 106

15 80 20 120 3324.725 9.919 × 108 6.982 × 106 3717.753 4.735 × 108 2.429 × 106

https://doi.org/10.1371/journal.pone.0206282.t011
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Managerial insight. Some managerial insights can be obtained. First, environmental

factors can significantly affect the inventory allocation system, particularly when the net-

work dimension is large or carbon emissions are strictly limited. This indicates that a sup-

plier–manufacturer model considering the carbon cap and carbon credit price should be

constructed, so that an optimal strategy can be provided to the decision makers. Therefore,

companies are recommended to work for sustainable inventory allocation networks given

the existence of a global movement toward the reduction of carbon emissions. Second, as

energy prices rising and carbon policy tightening, we should make a balance between the

purchasing cost and the carbon emission when choosing a proper supplier. Because the high

carbon emission may leads to high environmental cost, while the total cost may be higher

than other choices. Third, carbon emission analysis could help policy makers adjust carbon

policy.

Conclusion

In this study, a bi-objective inventory allocation planning model with supplier selection and

carbon trading under uncertain environment was presented, which is proposed to find the

trade-off between economic and environmental objectives by determining supplier selection,

purchase quantity, inventory quantity and allocation quantity. The economic objective of this

model consisted of purchase costs, inventory costs, transport costs, penalty costs, and the envi-

ronmental objective was to minimize carbon emissions costs. In the proposed model, inven-

tory and allocation planning under uncertainty was considered. Demands of manufacturers,

transport price, and defect rate of materials were regarded as random variables. The model of

this study extended previous findings, most of which assumed no defective materials in the

purchase process. Considering the complexity of the model, a combined solution algorithm,

NNC–DE, was proposed to generate the Pareto frontier of IAPSSCT. Parameter selection

and algorithm comparison demonstrated the efficiency and effectiveness of the proposed

NNC-DE. A case study was presented to analyze decision makers’ strategies and the impacts

of a carbon cap and carbon credit price on two objectives. The decision maker can select the

appropriate solution in a non-inferior set based on preference and select different strategies

under different external conditions. Analysis results shows that when considering carbon cap

and carbon trading, the purchase quantities, inventory level and allocation quantities are simi-

lar in each period, whereas the selections of suppliers differ remarkably. We extended the

results of numerical examples in large scale problems, and compared the NNC–DE method

with NNC–PSO method. The impacts of the carbon cap and carbon credit prices on the envi-

ronmental costs are consistent and exhibit a reduction as the carbon cap increases and the car-

bon credit prices decrease.

This study expanded existing research on carbon emission in supply chains and paved the

way for the development and implementation of low-carbon inventory allocation networks,

which could guide managers to efficiently evaluate sustainable practices in their supplier–

manufacturer networks. This framework can assist managers in simultaneously achieving

economic growth and environmental protection. The proposed model can be extended by

considering recycling processes and addressing increasingly strict scenarios for carbon foot-

print control.
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