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Abstract

Multispectral LiDAR (light detection and ranging) data have been initially used for land cover

classification. However, there are still high classification uncertainties, especially in urban

areas, where objects are often mixed and confounded. This study investigated the efficiency

of combining advanced statistical methods and LiDAR metrics derived from multispectral

LiDAR data for improving land cover classification accuracy in urban areas. The study area

is located in Oshawa, Ontario, Canada, on the Lake Ontario shoreline. Multispectral Optech

Titan LiDAR data over the study area were acquired on 3 September 2014 in a single strip

of 3 km2. Using the channels at 1,550 nm (C1), 1,064 nm (C2) and 532 nm (C3), LiDAR

intensity data, normalized digital surface model (nDSM), pseudo normalized difference veg-

etation index (PseudoNDVI), morphological profiles (MP), and a novel hierarchical morpho-

logical profiles (HMP) were derived and used as features for the classification. A support

vector machine classifier with a radial basis function (RBF) kernel was applied in the classifi-

cation stage, where the optimal parameters for the classifier were selected by a grid search

procedure. The combination of intensity, pseudoNDVI, nDSM and HMP resulted in the best

land cover classification, with an overall accuracy of 93.28%.

Introduction

Urban land cover mapping is important for urban land management and planning [1, 2].

Remote sensing technology, with a fast revisiting period and a large coverage, provides the pri-

mary source data for a better understanding of urban land cover [3]. To fully utilize the data,

land cover maps are usually derived based on visual interpretation or automatic classification

methods [4].

Regional and global urban areas are mainly monitored by mapping impervious surface

areas, which have anthropogenic features through which water cannot infiltrate into the soil
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(e.g., roads, parking lots, and rooftops) [5]. Impervious surface areas have been monitored by

various satellite sensors, such as the Operational Linescan System (OLS) from the Defense

Meteorological Satellite Program (DMSP) that images nighttime light [6], 250–1000 m Moder-

ate Resolution Imaging Spectroradiometer (MODIS) imagery [3,7], and 30 m Landsat imagery

[8,9]. Even though the coarse to moderate spatial resolution of these image types describes the

spatial extent of urban areas, they often are not able to resolve the extent and spatial arrange-

ment of subtypes within urban areas (e.g., buildings, roads, and trees).

High spatial resolution imagery (e.g., IKONOS and QuickBird) provides new opportunities

to map detailed urban areas at a fine scale by providing more detailed observations of the Earth

[10, 11]. Nonetheless, urban land cover classification is still a challenging task due to the spectral

heterogeneity and structural diversity of the complex geospatial objects present [12]. Significant

efforts have been made to advance image classification efficiency by focusing on object based

image analysis [13–15] extracting spatial features [16, 17] and even scene based image analysis

methods [18]. However, the effects of shadowing and relief displacement still pose considerable

challenges [19]. Hence, active sensors such as airborne LiDAR (i.e., Light Detection and Ranging)

data have been investigated for land cover classification in urban areas in the last decade [20].

Airborne LiDAR provides the 3-D coordinates of the survey area by collecting a cloud of

laser range measurements [20]. Based on 3-D point clouds, LiDAR can be further interpolated

into raster layers of surfaces, such as digital surface models (DSM), and intensity data [21]. To

fully utilize the LiDAR data for land cover classification, several groups of methods have been

proposed [20, 22–26]. The first category of methods directly uses LiDAR point clouds, e.g.,

LiDAR point clouds can be directly used for urban feature extraction [23]; or semantic point

cloud interpretation can be performed based on optimal neighborhood selection [24]. The sec-

ond category of methods mainly relies on LiDAR points derived products, intensity image

[25] or both intensity and DSM image (i.e., height information) [26]. The study [26] done by

Zhou suggests that LiDAR data alone (by combining intensity and DSM data) could poten-

tially be useful to accurately map urban land cover. Another popular category of methods

adopts the strategy to combine LiDAR data with optical images (e.g., multispectral or hyper-

spectral images) for detailed urban land cover mapping [22, 25, 27, 28]; DSM data compliment

multi-spectral information from passive optical imagery to identify different land cover types.

A survey of LiDAR data for urban land cover mapping can be found in [20].

However, most of the previous studies exploiting LiDAR for urban land cover mapping

used single-band LiDAR due to limited data availability. Since backscattered energy from

LiDAR depends on target materials, target roughness, and laser wavelength [29], single-band

LiDAR has a restricted ability to discriminate land cover types. Hence, multispectral LiDAR

holds greater promise to map urban land cover classes. New multispectral LiDAR data sensors

(e.g., Multispectral Optech Titan LiDAR), which measures backscattered energies at different

wavelengths, provide new opportunities to classify urban land cover effectively [30]. Since the

release of the first commercial airborne multispectral LiDAR system, several studies have been

tested to assess capabilities to produce more accurate land cover maps [29–32, 33–37]. For

instance, Teo et al. demonstrated that multi-wavelength LiDAR can provide higher accuracy

than single-wavelength LiDAR for land cover classification [29]. Bakula et al. [35] applied a

maximum likelihood classifier in a six-class land cover classification and achieved an overall

accuracy of 90%. A maximum likelihood classifier was also used to classify intensity and height

images, and the authors found that height information is important for urban land cover map-

ping [34]. Fernandez-Diaz et al. [36] assessed capabilities of the Titan multispectral LiDAR for

land cover classification, bathymetric mapping and canopy characterization. Zou et al. [37]

adopted the object-based method and found that pseudo normalized difference vegetation

index (pseudoNDVI) calculated from multispectral LiDAR may improve vegetation
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identification. In another study [33], an object-based analysis was also performed on multi-

spectral airborne LiDAR data for land cover classification and map updating in Finland.

Motivated by previous studies [29, 33–37], this research is focused on classification of the

multispectral LiDAR intensity rasters, sinceraster format is a more convenient than point

clouds for land cover mapping. Previous studies have shown that multispectral LiDAR per-

forms better than single band LiDAR in land cover classification [29], and found pseudoNDVI

[37,38] and DSM [34,35] to be useful for improving classification accuracy of multispectral

LiDAR data. in the novelty of this studyis that we investigated the role of spatial information in

improving urban land cover classification results employing multispectral LiDAR intensity

data (i.e., spectral-spatial classification [39]).

Spectral-spatial classification aims to improve classification accuracy by combining spatial

information contained in the multispectral or hyperspectral data [39], to produce more accu-

rate classification maps [40]. It is widely studied with a rich set of algorithm developments

[39,41–43], especially in hyperspectral image analysis. Among these methods, morphological

profiles (MP) perform well due to their ability to capture spatial relationships among different

land cover types [41,42]. In mathematical morphology [44], two fundamental operators are

erosion and dilation, which are applied to an image with a set of known shapes, called the

structuring elements (SE). Different combinations of erosion and dilation constitute opening

and closing operations, which are the building blocks of MP. Functionally, the opening opera-

tion can remove objects smaller than the structuring elements, while the closing operation can

fill small holes and connect adjacent objects. The traditional MP operates on the characteristic

image (mainly the first or first several principal components) of multispectral or hyperspectral

images. Basically, it is performed assuming the image data are in the same vertical level; i.e.,

the morphological operation is performed only considering its spatial neighborhood pixels

while lacking the capability to consider whether its neighborhood pixels obviously belong to

another land cover class (e.g., the opening and closing operation for a tree pixel bordering

grass pixels will impose effects on those grass pixels). However, the LiDAR-derived nDSM pro-

vides the vertical context of the image, thus offering opportunities to introduce vertical context

while extracting the MP feature. To take full advantage of the nDSM data, a novel hierarchical

morphological profiles (HMP) feature is proposed. Hence, the specific goals of this study are

as follows: (1) to assess the usefulness of the MP for improving multispectral LiDAR data clas-

sification; and (2) to further study effectiveness of the proposed HMP.

Materials and methods

Study area description

The study area is located in Oshawa, Ontario, Canada, on the Lake Ontario shoreline (see Fig

1). Oshawa lies in Southern Ontario, approximately 60 kilometers east of Toronto. It is the

largest municipally in the Regional Municipality of Durham, and it is commonly viewed as the

eastern anchor of the Greater Toronto Area. Oshawa is a typical urban area with complex spa-

tial assemblages of vegetation, buildings, roads, and other man-made features. The city pres-

ents a population density of 1,027.0 persons/km2. The climate of the region is humid

continental (Köppen climate classification Dfb). Mean elevation of the flat terrain is 106 m,

making it easy for the city to expand north and west.

Multispectral LiDAR data acquisition and data preprocessing

Multispectral Optech Titan LiDAR data were acquired over the study area on 3 September

2014 in a single strip of 3 km2 [38,45–47]. The system works with three independent active

imaging channels at 1,550 nm (C1), 1,064 nm (C2) and 532 nm (C3). The data were acquired
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during leaf-on conditions to optimize the geometrical properties of the system, operating at

1075 m above ground with a ±20˚ scan angle, 200 kHz/channel Pulse Repetition Frequency,

and 40-Hz scan frequency [45, 46]. The point clouds were geometrically registered, and LAS

files containing xyz coordinates, raw intensity values, the scan angle and the GPS time of each

LiDAR point were derived.

In a recent study using Multispectral Optech Titan LiDAR data for land cover classification

in Espoo city, near Helsinki on the southern coast of Finland, the authors found that intensity

values were not stable across the study area [33]. In our study, we also observed that intensity

values were highest in the middle of a flight line and decreased as the distance from the scanner

increased. Therefore, to correct this effect, we used a relative radiometric calibration method

proposed by [48] as follows:

icorr ¼ i �
R2

i

R2
ref

Eq 1

where icorr is the corrected intensity, i is the original intensity, Ri is the distance from the scan-

ner to the scanned point, and Rref is the flying altitude (1075 m).

After radiometric calibration of LiDAR intensity data, the lidar point cloud was normalized

to height aboveground using lastools [49], and three products were derived and used for land

cover classification:

Fig 1. Study area location in A) Canada; B) State of Ontario; C) City of Oshawa, with subset areas 1) and 2) for visualizing the classification results.

https://doi.org/10.1371/journal.pone.0206185.g001
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i. Mean intensity (IMEAN): we calculated the mean intensity for each channel at grid cell res-

olution of 1 m for the entire area using lascanopy tool in Lastools [49].

ii. Pseudo normalized difference vegetation index (PseudoNDVI) [38]:

PseudoNDVI ¼
ðIMEAN C2 � IMEAN C3Þ

ðIMEAN C2þ IMEAN C3Þ
Eq 2

where IMEAN C2 and IMEAN C3 are the mean intensity created in the channels 2 and 3

respectively.

iii. Normalized digital surface model (nDSM): based on the 3D point clouds from the three

channels combined, a 1 m nDSM was computed for the entire study area using the canopy-

model tool in FUSION/LDV [50].

Four main classes were manually defined based on the intensity image and checked with

Google Earth high resolution imagery, including: building, grass, road (including parking

places), and trees, which are the most typical land cover types in urban and suburban areas

[25, 34]. The three-band LiDAR derived color composite image (C3, C2 and C1 IMEAN

bands are separately used as the red, green, and blue) and the corresponding training and vali-

dation samples for the study area are shown in Fig 2, and more detailed sample sizes for each

class are presented in Table 1.

Hierarchical morphological profiles

Herein, we first give a brief introduction on morphological profiles (MP) [44], and then pro-

pose the novel Hierarchical Morphological Profiles (HMP).

A MP is composed of the opening profile (OP) and the closing profile (CP). The OP at the

pixel x in an image IM is defined as an n-dimensional vector

OPiðxÞ ¼ g
ðiÞ
R ðxÞ 8i 2 ½0; n� Eq 3

where g
ðiÞ
R is the opening by reconstruction with a SE of size i, and n is the total number of

openings. The CP is defined as an n-dimensional vector:

CPiðxÞ ¼ ;
ðiÞ
R ðxÞ 8i 2 ½0; n� Eq 4

where ;
ðiÞ
R is the closing by reconstruction with a SE of size i. We set CP0(x) = OP0(x) = IM(x),

and the MP of an image I is defined as a 2n+1 –dimensional vector

MPðxÞ¼ fCPnðxÞ; . . . ; IMðxÞ; . . . ;OPnðxÞg Eq 5

The HMP works in the following way: the nDSM data is divided into m layers according to

different heights; the image is further split as m layers according to which nDSM layers they

belong to; extract the MP features for each layered image; concatenate the extracted MP fea-

tures, leading to the HMP. In this way, the extracted HMP aims to perform morphological

operations in different vertical layers.

Based on the height distribution (i.e., from nDSM data) of the training samples, 3 (i.e.,

m = 3) height layers are defined: Layer 1: 0 meters =< height < 3 meters; Layer 2: 3 meters =

< height< 8 meters; and Layer 3: height > = 8 meters. We applied principal component anal-

ysis to the three band intensity image to derive the first principal component (PC) (as shown

Fig 3), and used the first PC as characteristic image to extract the MP, with two disk shape SEs

empirically set to sizes of 2 and 4, deriving a 5-dimensional MP feature; the first PC was further
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split into three images based on the height layer, and the MP features were separately extracted

and concatenated into a 15-dimensional HMP feature.

Modeling procedure

There are several ways to combine different features in the classification tasks, for example the

composite kernel [51] and multiple kernel learning methods [52]. However, the stacking-vec-

tor method is the direct and easiest way to utilize multiple features. Since the main goal is to

Table 1. Training and validation data sampled from the study area.

Class Training Data Validation Data

1 Road 2,683 3,843

2 Building 2,087 3,850

3 Tree 1,345 3,871

4 Grass 1,655 3,815

Total 7,770 15,379

https://doi.org/10.1371/journal.pone.0206185.t001

Fig 2. Study area: a) three-band LiDAR intensity color composite image; b) training data; c) validation data.

https://doi.org/10.1371/journal.pone.0206185.g002
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Fig 3. The first principal component of the multispectral LiDAR data in the study area.

https://doi.org/10.1371/journal.pone.0206185.g003
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investigate the usefulness of spatial features in the classification of multispectral LiDAR inten-

sity images, the direct stacking-vector method is adopted to fuse different features.

The support vector machine classifier (using the LIBSVM software package [53]) was

adopted as the base classifier due to its good performances for remote sensing image classifica-

tion [54]. To test the effectiveness of the MP and HMP features individually and in a combined

manner with other features, the following models were tested: (i) classification based on the

three-band multispectral LiDAR intensity image (IMEAN); (ii) classification based on the stack-

ing vector of multispectral LiDAR intensity image and PseudoNDVI (IMEAN+PseudoNDVI);

(iii) classification based on stacking vector of multispectral LiDAR intensity image and nDSM

(IMEAN+nDSM); (iv) classification based on stacking vector of multispectral LiDAR intensity

image and MP (IMEAN+MP); (v) classification based on stacking vector of multispectral

LiDAR intensity image and HMP (IMEAN+HMP); (vi) classification based on stacking vector

of multispectral LiDAR intensity image, PseudoNDVI, nDSM and MP (IMEAN+PseudoNDVI

+nDSM+MP); and (vii) classification based on stacking vector of multispectral LiDAR intensity

image, PseudoNDVI, nDSM and HMP (IMEAN+PseudoNDVI+nDSM+HMP).

For all the models, the radial basis function (RBF) kernel was applied. The value for the reg-

ularization parameter C and the gamma value of the RBF kernel were selected by a grid search

procedure with five-fold cross validation in the same range {10−5,10−4,. . .,104,105}. Classifica-

tion accuracy was evaluated in terms of overall accuracy (OA, [%]), the Kappa statistic (K),

and the class-specific accuracy.

Results

Classification results are shown in Table 2 for the seven different models tested in the study

area. The classification performance based on the three-band intensity image is relatively mod-

erate (74.66%). However, auxiliary features extracted from the intensity image were found

very useful for improving the classification accuracy. Among the extracted features, Pseu-

doNDVI, nDSM, MP, and HMP separately improve 0.37%, 12.12%, 7.65%, and 18.14% in

terms of overall accuracy compared to the intensity image. When combining the intensity

image with PseudoNDVI, nDSM, and HMP features, the overall classification accuracy

increases by 18.62%.

As for the specific classes, class 1 (road) and class 2 (building) have the worst classification

accuracy (76.66% and 42.42%) based on the intensity image, due to confusion between these

classes (see the confusion matrix Table 3). While the nDSM and MP features separately

improve the classification, the proposed HMP feature greatly improves the classification accu-

racy for these two classes. On combing all the features (i.e., IMEAN+PseudoNDVI+

Table 2. Accuracy (%) of different classification models in the study area.

IMEAN IMEAN + PseudoNDVI IMEAN+nDSM IMEAN+

MP

IMEAN+

HMP

IMEAN+PseudoNDVI

+nDSM+MP

IMEAN+PseudoNDVI+nDSM+HMP

Road 76.66 75.98 95.81 87.69 98.28 98.23 98.56

Building 42.42 45.01 80.44 50.13 93.01 77.95 91.90

Tree 93.85 93.07 82.46 95.94 84.86 92.12 87.19

Grass 85.71 85.82 88.49 95.54 95.10 95.81 95.51

OA 74.66 74.97 86.78 82.31 92.80 91.01 93.28

Kappa 0.54 0.67 0.82 0.76 0.90 0.88 0.91

https://doi.org/10.1371/journal.pone.0206185.t002
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nDSM+HMP), the best classification model is achieved (with highest overall accuracy and

Kappa coefficient, also, see the confusion matrix Table 4; confusion matrices (S1–S5 Tables)

for the other models are provided in the Supplementary Materials).

Classification maps for the IMEAN and IMEAN+PseudoNDVI+nDSM+HMP are shown

in Fig 4 (the classification maps (S1–S3 Figs) for other tested models are presented in the Sup-

plementary Materials). The classification map for the intensity image has the most noise due

to many misclassifications, while the second map (the one combining mean intensity data,

PseudoNDVI, nDSM, and MP) greatly reduces the classification errors, showing a more spa-

tially consistent classification result.

To illustrate better map detail, zoomed-in subsets of two typical areas (i.e., residential area,

and commercial area) within the urban area are separately shown in Figs 5 and 6. The high

accuracy building map in Fig 5 and building and road map in Fig 6 clearly show that the pro-

posed HMP features can greatly improve the classification results.

Discussion

Importance of spatial features for multispectral LiDAR classification

In this rapidly changing world, timely and accurate classification of urban areas is crucial

for urban planning and sustainable management [1, 55]. In this study, we are making use of

cutting-edge multispectral LiDAR sensor (Optech Titan) technology and auxiliary information

derived from the multispectral LiDAR for land cover classification; by combining multispec-

tral LiDAR data and morphological profiles we classify terrains in urban areas. The

Table 3. Confusion matrix for the IMEAN classification model.

Reference Data

Road Building Tree Grass Total User’s Accuracy

Predicted Data Road 2,946 1,325 102 354 4,727 62.32%

Building 743 1,633 96 20 2,492 65.53%

Tree 56 629 3,633 171 4,489 80.93%

Grass 98 263 40 3,270 3,671 89.08%

Total 3,843 3,850 3,871 3,815 15,379

Producer’s Accuracy 76.66% 42.42% 93.85% 85.71%

Overall Accuracy: 74.66%; Kappa: 0.54

Correctly classified pixels are highlighted in grey.

https://doi.org/10.1371/journal.pone.0206185.t003

Table 4. Confusion matrix for the (IMEAN+nDSM+PseudoNDVI+HMP) classification model.

Reference Data

Road Building Tree Grass Total User’s Accuracy

Predicted Data Road 3,788 22 25 162 3,997 94.77%

Building 19 3,538 317 2 3,876 91.28%

Tree 14 219 3,375 7 3,615 93.36%

Grass 22 71 154 3,644 3,891 93.65%

Total 3,843 3,850 3,871 3,815 15,379

Producer’s Accuracy 98.57% 91.90% 87.19% 95.52%

Overall Accuracy: 93.28%; Kappa: 0.91

Correctly classified pixels are highlighted in grey.

https://doi.org/10.1371/journal.pone.0206185.t004
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classification results from our study demonstrate the capability of multispectral LiDAR data in

recording a diversity of spectral signals from land cover objects and thereby underscores its

potential for effective urban area classification.

Fig 4. Classification maps using a) IMEAN model and b) IMEAN+PseudoNDVI+nDSM+HMP model.

https://doi.org/10.1371/journal.pone.0206185.g004
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Herein, we classified the multispectral LiDAR intensity data into four classes, namely build-

ings, trees, roads, and grass, and obtained highest overall classification accuracies when a com-

bination of intensity data, PseudoNDVI, nDSM, and HMP was used. Previous studies have

shown that multispectral LiDAR data provides more benefits for urban land cover classifica-

tion [29]; to improve classification accuracy, PseudoNDVI and DSM or nDSM features have

been utilized [34, 37, 56–58]. Consistent with previous studies, this study further demonstrated

that PseudoNDVI and nDSM can improve classification accuracy of a multispectral LiDAR

intensity image.

In addition, this study further demonstrated that inclusion of spatial features (MP and the

proposed HMP) is markedly useful for deriving high accuracy classification results compared

to methods employing only multispectral LiDAR intensity data; specifically, the road and

building classes benefited the most in our case. In general, it is hard to classify the aforemen-

tioned classes due to multiple reasons; roads in the urban areas are filled with vehicles, thus

resulting in highly reflective spots in the image (see Fig 6A); buildings are usually covered with

different colored roofs (see Fig 5A and Fig 6A). Although the nDSM feature brings greatly

improved classification accuracy for these two classes due to their distinct height distributions,

it also introduced more classification errors between trees and grass (see the confusion matrix

S2 Table), thus lowering the classification accuracies for these two classes. MP improved the

classification accuracy of roads and buildings by 11.03% and 7.71%, respectively. However,

many classification errors between these two classes resulted by including the MP feature (e.g.,

producer accuracy for the building class is only up to 50.13%), because it lacks the ability to

operate in the vertical dimension. The proposed HMP considers the height information by

Fig 5. Zoomed-in views of subset area 1: a) LiDAR intensity color composite image; classification maps for the b) IMEAN model; c) IMEAN+PseudoNDVI model; d)

IMEAN+nDSM model; e) IMEAN+MP model; f) IMEAN+HMP model; g) IMEAN+PseudoNDVI+nDSM+MP model; and h) IMEAN+PseudoNDVI+nDSM+HMP

model.

https://doi.org/10.1371/journal.pone.0206185.g005
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extracting the MP feature over different vertical layers. In this way, the classification accuracy

improved for these two classes by up to 98.23% and 93.01%. This demonstrates that the MP

feature is useful for classification of multispectral LiDAR intensity data by capturing the spatial

characteristics of different land cover types. By incorporating the vertical information (usually

provided by the nDSM data from the LiDAR data), the proposed HMP feature provided better

discrimination than the MP feature.

Comparisons with previous studies

The support vector machines classifier was adopted as the base classifier for this study due to

its robustness and high accuracy for remote sensing image classification [54, 59, 60]. Stacking

vectors of HMP with the multispectral LiDAR intensity image was found to increase classifica-

tion accuracy significantly, resulting in an overall accuracy of 93.28% for the study area. Alter-

native methods that have been used for classification related to multispectral LiDAR data are

object-based analysis, data clustering methods, and maximum likelihood classifiers. In Zou

et al. [37], an Object Based Image Analysis (OBIA) approach for 3D land cover classification

using multispectral LiDAR point clouds was presented; an overall accuracy of over 90% was

obtained while classifying the landcover types into 9 categories. However, some misclassified

objects–such as roads classified as lawn and bare soil–resulted due to similar spectral proper-

ties and at times because of lack of effective spectral and spatial features for distinguishing

class boundaries. Matikainen et al. [33] evaluated the use of different spectral indices derived

from multispectral LiDAR data for land cover classification and map updating; the classes con-

sidered for the study included building, tree, asphalt, gravel, rocky area and low vegetation,

Fig 6. Zoomed-in views of subset area 2: a) LiDAR intensity color composite image; classification maps for the b) IMEAN model; c) IMEAN+PseudoNDVI model; d)

IMEAN+nDSM model; e) IMEAN+MP model; f) IMEAN+HMP model; g) IMEAN+PseudoNDVI+nDSM+MP model; and h) IMEAN+PseudoNDVI+nDSM+HMP

model.

https://doi.org/10.1371/journal.pone.0206185.g006
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and obtained an accuracy of 96% compared with validation points. Multispectral Lidar data

combined with old map vectors proved to enhance automated change detection of buildings,

and assisted in removal of shadows on intensity images produced from the data; the passive

aerial imaging commonly used in mapping suffered from external illumination conditions and

often resulted in excessive shadows on intensity images. Bakula et al. [35] fused multi-wave-

length laser intensity imagery, elevation data and textural information, and applied spectral

(using maximum likelihood rule) and spectral-textural classification approaches for distin-

guishing 6 classes; they got an overall accuracy of 90%. In that study, applications of additional

morphological classification and granulometric transformations were found to highly enhance

the accuracy of the separation of building and road classes, as they eliminated several pixels

that were initially confused. They also noticed that interpolating the intensity raster was not

very helpful for improving classification results; even though using intensity rasters with both

first and last returns slightly benefited the study. In essence, our strategy of using intensity fea-

tures for classification resulted in accuracies similar to related studies, and considering the

boost it gave to the overall classification (18.62%) obtained through the combination of inten-

sity image with PseudoNDVI, nDSM, and HMP features, this method may be efficient for

future multispectral LiDAR endeavors; e.g., plant species classification [61–63], urban change

detection [64,65], flood inundation mapping [66] and even carbon sequestration modeling

[67].

Implications and future directions

Although multispectral LiDAR data can be considered a pivotal tool for bolstering subsequent

urban planning and mapping operations [36, 38, 68], data processing should be undertaken

with caution. It should be borne in mind that several challenges—associated with selection of

suitable geometric and radiometric correction equations for large spatial extents, fitting classi-

fication methods when the number of classes is large, appropriate interpolation techniques for

creating the intensity raster, range ambiguities during data collection, intensity heterogeneity

and energy loss (primarily caused due to narrow scan angle), and unidentified influences of

laser beam incident angles and illumination of the target material on LiDAR intensity data–

already exist, and these issues need to be addressed for fruitful exploitation of multispectral

data [35–37, 69]. In addition, the towering cost associated with multispectral LiDAR sensors

limits its applicability. Therefore, before acquiring the multispectral LiDAR, the purpose and

agenda should be well defined to ensure that the results will justify the investment and meet

expectations. In this regard, we recommend the use of multispectral LiDAR on a case-by-case

basis, and operations such as land cover classification should be considered as a byproduct or

one of the multiple objectives, while using multispectral LiDAR for optimizing the amount

spent on data acquisition.

Conclusion

In this study, we assessed the capability of a cutting-edge LiDAR sensor, Multispectral Optech

Titan, combined with advanced modelling derivatives, for classifying land cover in an urban

area. Specifically, we only considered the raster products from LiDAR data (i.e., intensity data

and nDSM data), and extracted the MP features from intensity data. A novel hierarchical mor-

phological profiles feature was proposed to extract spatial features of multispectral LiDAR

intensity data while maintaining vertical structure information. Results show that the MP fea-

ture is useful for providing spatially consistent land cover classification in urban areas. In addi-

tion, the proposed HMP feature was found to work best among different features for the

multispectral LiDAR data by making use of height information. We obtained an overall
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accuracy of 93.28% for land cover classification of four classes in the urban area from our best

tested model (IMEAN+PseudoNDVI+nDSM+HMP). The results from ourstudy demonstrate

that classification results can be greatly improved by extracting spatial features from three-

band LiDAR intensity composite images. Future studies could further exploit spectral-spatial

classification methods applied to multispectral LiDAR data, and possibly directly classify the

point cloud data (i.e., considering geometrical features), which poses new challenges for fea-

ture extraction methods.
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