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Abstract

Legionella spp. are the cause of a severe bacterial pneumonia known as Legionnaires’ dis-

ease (LD). In some cases, current genetic subtyping methods cannot resolve LD outbreaks

caused by common, potentially endemic L. pneumophila (Lp) sequence types (ST), which

complicates laboratory investigations and environmental source attribution. In the United

States (US), ST1 is the most prevalent clinical and environmental Lp sequence type. In

order to characterize the ST1 population, we sequenced 289 outbreak and non-outbreak

associated clinical and environmental ST1 and ST1-variant Lp strains from the US and,

together with international isolate sequences, explored their genetic and geographic diver-

sity. The ST1 population was highly conserved at the nucleotide level; 98% of core nucleo-

tide positions were invariant and environmental isolates unassociated with human disease

(n = 99) contained ~65% more nucleotide diversity compared to clinical-sporadic (n = 139)

or outbreak-associated (n = 28) ST1 subgroups. The accessory pangenome of environmen-

tal isolates was also ~30–60% larger than other subgroups and was enriched for transposi-

tion and conjugative transfer-associated elements. Up to ~10% of US ST1 genetic variation

could be explained by geographic origin, but considerable genetic conservation existed

among strains isolated from geographically distant states and from different decades.

These findings provide new insight into the ST1 population structure and establish a founda-

tion for interpreting genetic relationships among ST1 strains; these data may also inform

future analyses for improved outbreak investigations.

Introduction

Legionella is a globally important cause of severe and sometimes fatal bacterial pneumonia

known as Legionnaires’ disease (LD). Approximately 80% of laboratory diagnosed LD in the

United States (US) is due to a single species, L. pneumophila (Lp), and up to 79% of Lp infec-

tions are attributable to serogroup 1 (Lp1) [1, 2]. Thus, molecular comparison of clinical and

environmental isolates is helpful for source attribution during LD outbreaks; at least two
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laboratory techniques, pulsed-field gel electrophoresis (PFGE) and sequence-based typing

(SBT), have been widely used for this purpose. While both are currently in use, SBT became

the gold standard for L. pneumophila DNA molecular typing over the past decade, allowing for

universal exchange of sequence type (ST) information.

Nevertheless, SBT is unable to differentiate Lp strains with locally prevalent STs, thus creat-

ing uncertainty around the interpretation of isolate genetic relationships. In the US, the single

largest category of Lp1 strains isolated from cases of sporadic disease between 1982 and 2012

and sent to the Centers for Disease Control and Prevention (CDC) was ST1 (25%) [3]. The

same report found that 49% of environmental Lp1 isolated from US facilities with no known

disease association were ST1. The clinical and environmental presence of ST1 is not unique to

the US but has been reported widely, including in Canada [4–6], England and Wales [7], main-

land Europe [8–16], the Middle East [17, 18], Australia [19], and several countries in Asia [20–

24]. It has been proposed that ST1 “Paris” group strains (i.e., isolates with Lp strain Paris-like

PFGE and microarray patterns) may represent a homogeneous Lp subpopulation [25], thus

requiring high-resolution genetic analyses to uncover rare polymorphisms among isolates.

Several recent publications have reported analyses of recombination and background muta-

tion among non-clonal ST1 datasets and between other frequently encountered sequence

types [25–28]. Yet, very little is known of the ST1 population genetic structure and ecological

diversity in either clinical or man-made environmental settings.

As demonstrated in several recent publications [19, 27, 29–31], whole-genome sequencing

(WGS) can deliver resolving power beyond traditional typing methods for high-confidence

discrimination of outbreak-associated isolates. Thus far, no study has characterized a large,

geographically diverse ST1 isolate collection composed of clinical and environmental sub-

groups to define its population structure. In the present study, we genetically compared a large

collection of clinical and environmentally-derived ST1 strains in the CDC archive and from

international locations. We also investigated how nucleotide variability was distributed

throughout the US ST1 population and its potential significance.

Results

ST1 is prevalent in both US and European L. pneumophila sequence type

collections

As of December, 2017, 250 unique sequence types were identified among 1,033 sporadic clini-

cal and non-outbreak-associated environmental isolates subjected to SBT from the CDC Legio-
nella Laboratory L. pneumophila isolate collection. The top 20 most prevalent STs in the

European Study Group for Legionella Infections (ESGLI) SBT database (http://www.hpa-

bioinformatics.org.uk/legionella/legionella_sbt/php/sbt_homepage.php) and CDC collections

(Fig 1) represent 49% and 65% of all deposited strains, respectively. Among all STs not associ-

ated with outbreaks, the largest single subpopulation is composed of ST1 isolates in both col-

lections (ESGLI = 13%, n = 1,391; US = 31%, n = 315). By source, ST1 strains are found in

higher proportions of both clinical and environmental isolates in the US (23%, n = 167 and

51%, n = 146 respectively) compared to the ESGLI database (10%, n = 717 and 18%, n = 667),

however, environmental isolates are likely subject to greater sampling bias. Nonetheless, ST1 is

the most common environmental sequence type in both the ESGLI and CDC collections, the

most common sporadic clinical ST in the US, and the second most prevalent clinical ST in the

ESGLI database, just ahead of ST47 (9%), but behind ST23 (11%).

The frequency of ST1 recovery from clinical and environmental sources in the US and

Europe contrasts sharply with the small number of LD outbreaks attributed to this ST, as pre-

viously reported [3]. In the US, only 4 out of 38 LD outbreaks investigated by the CDC have

L. pneumophila ST1 genomic heterogeneity
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been linked to ST1 since 1982. While not confirmed, this relationship appears to hold true in

the Europe as well, where a large proportion of reported LD outbreaks are due to sequence

types other than ST1 [32–39]. Further analysis of the ESGLI and CDC ST1 clonal complexes

and single and double locus variants are provided in the S1 Results.

Distinct ST1 subgroup pangenomes contain unique genetic content

For the purpose of genetic comparison, ST1 isolate genomes in the current study were catego-

rized into environmental (EN) which are unassociated with known cases of disease, clinical

sporadic (CS), and either outbreak (OB) or outbreak/potential outbreak-associated (OBP) sub-

groups based on their source of origin. Among all ST1 subgroups, the median number of pre-

dicted genes (3156–3158 genes) did not vary appreciably (Fig 2A), however, the average

number of genes per isolate was highest in the EN subgroup compared to the CS and OBP sub-

groups (EN = 3,157; CS = 3,135; and OBP = 3,131 genes), which is consistent with the larger

average EN genome size (EN = 3,614,970, CS = 3,577,094, and OBP = 3,564,149 bp). While a

small OBP pangenome of 3,606 genes was expected (because this subgroup included only 28

genomes; Fig 2B), it is remarkable that the EN pangenome (4,606 genes) was discernibly larger

(up to 24%) than the CS pangenome (4,033 genes) despite the EN subgroup including fewer

isolates than the CS subgroup (EN = 99 genomes, CS = 139 genomes). The inclusion of

unequal numbers of genomes in each subgroup could skew pangenome observations, how-

ever, the EN subgroup displayed the steepest positive slope on a pangenome rarefaction curve

(Fig 2C), indicating that accessory genes continue to accumulate. The CS pangenome curve, in

contrast, has begun to plateau, suggesting a closed pangenome and that EN/CS pangenome

differences stated above may be underestimations. The OBP pangenome rarefaction curve

tracked with the CS or combined ST1 subgroup, but this curve should be interpreted with cau-

tion due to the limited number of isolate sequences. The EN accessory genome (1,740 genes),

which includes all gene frequency categories except ‘core’ and ‘core-1’, was also dramatically

larger than that of the CS (1,253 genes) and OBP (739 genes) subgroups. A large proportion of

genes in the EN (43%), CS (30%), and OBP (42%) accessory genomes were found in only one

isolate of the subgroup (‘singletons’), and up to ~33% of these may be orthologs or paralogs of

existing genes in the dataset.

Fig 1. The top 20 most prevalent environmental and clinical-associated L. pneumophila sequence types in the ESGLI and U.S. CDC SBT databases.

Data current as of December 2017. Stars highlight sequence types common to both top 20 collections.

https://doi.org/10.1371/journal.pone.0206110.g001
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The underlying genetics of the ST1 subgroups were investigated through gene ontology

(GO) classification; significant term enrichment (p<0.05) was noted within and among some

individual pangenomes and subgroups (S1 Results, S2 Fig, and S2 Table). All ST1 subgroup

pangenomes shared a common 598 gene accessory repertoire (genes found in at least 1 isolate

of all subgroups; S3 Table and Fig 2D) that was enriched for terms encompassing conjugal

DNA transfer and transposition-related factors. The EN-specific accessory genome (670

genes), the largest of the 3 subgroups, was enriched for GO terms related to transposition and

recombination (e.g., XerCD recombinases), restriction-modification (e.g., Type I restriction

enzymes), gene regulation (e.g., csrA and lexA) and toxin-antitoxin systems (e.g., DinJ and

ParD1). The CS-specific accessory genome (187 genes) was enriched for only a single term

housing genes devoted to signal transduction (e.g., fixJ/fixL, and the yegE diguanylate cyclase).

Gene-level subgroup analysis further revealed fifteen predicted genes that were enriched in

the EN subgroup (p<0.05; Table 1). Most genes (13 of 15) were included in two groupings dis-

tributed across the CS and EN subpopulations, and assembled in close physical proximity on

Fig 2. L. pneumophila ST1 isolate core and pangenome description and subgroup comparisons. A) Average number of predicted genes among EN, CS,

and OBP subgroups. Box-and-whisker plots display the minimum, maximum, 25th/75th percentiles, median (horizontal line), and mean (plus sign) B)

Predicted pangenome comparison. Gene frequency categories (to the right of the graph) are based, in part, on the ‘roary_plots’ output visualization of Roary,

with the addition of a ‘Core-1’ category. Numbers within each stacked bar plot represent the gene count for each frequency category. C) Rarefaction curves

for pan and conserved genomes. D) Direct comparison of predicted pangenomes showing the size of intersecting and unique accessory (non-core or core-1)

genomes. The number of isolate genomes included in each subgroup is displayed either at the bottom of the subgraph (A and B) or in parentheses below the

subgroup abbreviation (D). Abbreviations: ‘CS’, clinical sporadic; ‘EN’, environmental; ‘OB/OBP’, outbreak and potential outbreak associated.

https://doi.org/10.1371/journal.pone.0206110.g002
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the same contig, suggesting linkage. No predicted genes in the CS subgroup met the threshold

for enrichment. However, among the top 10 genes with the lowest p values (p = 0.086–0.2),

half appeared to be physically linked (Table 1, Group 3) and were either annotated or homolo-

gous to known acetyltransferases, including the potential virulence associated lag-1 gene [40],

which was detected in ~37% of CS isolates (and in ~19% and ~54% of EN and OBP isolates,

respectively). Additional details of gene groups, and GO term and gene level enrichment anal-

yses are provided in the Supporting Results (S1 Results).

Table 1. Genes enriched or near enrichment in ST1 subgroups.

Enriched or Depleted Genes in the EN and CS

Subgroups

CS Isolates EN Isolates

Predicted Gene

or Group ID

Annotation/Notes Group With

ORF

Without

ORF

Enrichment p

value

With

ORF

Without

ORF

Enrichment p

value

2-tailed Fisher’s

Exact Test�

trbC conjugal transfer protein TrbC 1 10 128 1 25 70 3.72E-05 0.0401

trbD conjugal transfer protein TrbD 1 10 128 1 25 70 4.71E-05 0.0401

trbF conjugal transfer protein TrbF 1 10 128 1 25 70 7.27E-05 0.0401

trbJ conjugal transfer protein TrbJ 1 10 128 1 25 70 7.27E-05 0.0401

trbG conjugal transfer protein TrbG 1 10 128 1 25 70 7.27E-05 0.0401

trbL conjugal transfer protein TrbL 1 10 128 1 25 70 7.27E-05 0.0401

trbI/ptlG Pertussis toxin liberation protein G/

conjugal transfer protein TrbI

1 10 128 1 25 70 7.27E-05 0.0401

trbB/ptlH Pertussis toxin liberation protein H/

ATPase TrbB

1 10 128 1 25 70 7.27E-05 0.0401

traG Conjugal transfer protein TraG 1 10 128 1 25 70 7.27E-05 0.0401

traJ Relaxosome protein TraJ 1 10 128 1 25 70 7.27E-05 0.0401

trbE/virB4 Type IV secretion system protein

virB4/conjugal transfer protein TrbE

1 10 128 1 25 70 7.27E-05 0.0401

xerC tyrosine recombinase, XerC 2 4 134 1 17 78 7.27E-05 0.0401

hin DNA-invertase hin/transposon

resolvase

2 4 134 1 18 77 7.27E-05 0.0401

group_2725 hypothetical protein 1 137 1 12 83 0.000106 0.0401

group_18 Transposase 75 63 1 76 19 0.000116 0.0401

Top 10 Most Enriched Genes in CS Subgroup

group_2156 lpp2968, hypothetical protein 3 135 3 0.0004 81 14 1 0.0861

group_2157 lpp2967 hypothetical protein,

potential acetyl-CoA-

acetyltransferase

3 135 3 0.0008 82 13 0.9999 0.1096

group_1313 lpp2986, putative acetyltransferase 3 135 3 0.0015 83 12 0.9997 0.1096

group_1315 lpp2983, weakly similar to

acetyltransferase

3 135 3 0.0017 83 12 0.9998 0.1096

group_2152 lpp2987, hypothetical protein 3 135 3 0.0017 83 12 0.9998 0.1096

group_2153 lpp2986, putative acetyltransferase 3 135 3 0.0017 83 12 0.9998 0.1096

group_2154 lpp2984, hypothetical protein 3 135 3 0.0017 83 12 0.9998 0.1096

group_2136 lpp1951 hypothetical protein 132 6 0.0017 79 16 0.9998 0.1096

lag-1 O-acetyltransferase 50 88 0.0030 18 77 0.9989 0.1824

group_1130 lpp0331, putative GIY-YIG nuclease

superfamily protein

112 26 0.0031 61 34 0.9988 0.1980

CS = Clinical Sporadic Isolates

EN = Environmental Isolates Unassociated with Known LD

BH = Benjamani-Hochberg Correction Applied

�, Combined EN and CS gene frequencies, BH Corrected

https://doi.org/10.1371/journal.pone.0206110.t001
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Within the context of gene enrichment, two recent studies [41, 42] identified an efflux

pump (LpeAB) found primarily in ST1 strains that confers increased macrolide resistance in

Legionella. We detected the genes encoding this pump in 501 ST1 and ST1-like isolate

sequences in the current dataset and no enrichment was found for one or more particular ST1

subgroup. All but 8 of these isolates shared the same lpeAB allele, and a single ST1 SLV from

China (‘SZ2012007’, ST752; [26]) did not encode either pump component.

ST1 genomes are highly conserved but contain discrete regions of

nucleotide diversity

The current analyses revealed considerable gene content differences among the EN, CS, and

OBP subgroups. Therefore, we investigated nucleotide variation among shared genomic loci

by mapping all ST1 isolate sequences to the L. pneumophila str. Paris (ST1) reference genome.

An initial, high-level comparison indicated that the ST1 population was highly conserved;

~41% (1,427,306 nt) of all mapped nucleotide positions were core (conserved in all isolates

without missing data or gaps), and ~98% of these core sites were invariant. Of the remaining

non-core nucleotide positions, 97.5% were completely conserved across all sequences in which

they were included. An average nucleotide diversity (d) of 7.09E-4 (SE±5.60E-6) SNPs/nucleo-

tide was also noted, and consistent with its larger, open pangenome, the EN subgroup con-

tained 62% and 7% greater nucleotide diversity on average (d = 8.78E-4 SE±6.48E-6)

compared to the CS (d = 5.46E-4 SE±4.98E-6) and OBP subgroups (d = 8.15E-4 SE±6.45E-6),

respectively.

A survey of nucleotide variation across the resulting ST1 alignment (Fig 3A) found that

while overall diversity remained low, 33 distinct variable nucleotide regions (VNR) exceeded

the top 3% of all diversity measurements, encompassing 190,500 total bases (S4 Table). This

threshold was chosen to maximize region contiguity while minimizing the total number of

regions. VNRs were an average length of 5,772 nt and contained 183 predicted genetic features

including the pP36 mobile element [43] (VNR5 and 6), multidrug transporters (resistance-

nodulation-cell division [RND] superfamily efflux pumps; VNR7), and the L. pneumophila sg1

15kb and 18kb LPS biosynthesis loci (VNR10; Fig 3A “LPS Biosynthesis”) [44, 45], among oth-

ers. A further description of notable genetic features within the VNRs is contained in the Sup-

porting Results (S1 Results).

Nucleotide variation was generally localized at the same genomic loci in both the EN and

CS subgroups, but the magnitude of that variation was typically larger within the EN subgroup

(Fig 3B). The EN subgroup contained greater variability in ~50% of all nucleotide windows,

compared to ~25% in the CS subgroup. Within-group comparative analysis (EN-CS) identi-

fied 34 EN-specific regions encompassing 206,250 bases that met the 3% diversity threshold,

but only revealed 4 discrete, high diversity CS regions incorporating 12,750 bases under the

same conditions (Fig 3C and S5 Table). Six GO gene categories were enriched within the com-

bined EN variable region set (S6 Table), and a majority of genes in most categories clustered in

a single region (EN-VNR13). Further details of EN-specific enrichment is found in the Sup-

porting Results (S1 Results).

Recombination contributes to genetic variation among ST1 subgroups

To further study the basis of regional nucleotide variation, we searched for areas of increased

SNP density across the ST1 multiple sequence alignment (Fig 3D) that could be indicative of

recombination. Over 400 potential recombination events were detected, many of which over-

lapped and were shared between subgroups. More recombination events were identified in the

EN (n = 310 events) versus the CS (n = 250) or OB (n = 100) subgroups. The average

L. pneumophila ST1 genomic heterogeneity
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Fig 3. Genetic diversity and potential recombination among ST1 and ST1-like isolate sequences. A) Nucleotide diversity of the combined 501

isolate dataset at 500 bp overlapping windows relative to L. pneumophila str. Paris. Gold inverted triangles indicate windows that meet or exceed

the 3% diversity threshold. B) Within group nucleotide diversity of the EN and CS subgroups, where the subgroup with the highest diversity at

any single window is displayed in the positive Y axis while the subgroup with lower diversity is displayed in the negative Y axis. C) Nucleotide

L. pneumophila ST1 genomic heterogeneity
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percentage of isolate sequences within each subgroup recombining across all events was simi-

lar between the CS and EN subgroups (4.5% and 4.9%, respectively), but was approximately

two-fold higher in the OB category (9.5%). However, the EN subgroup exhibited consistently

higher recombination frequencies in a larger percentage (55%) of the 126 exact events shared

with the CS subgroup population (38%).

Seven individual or clustered recombination regions (R1-R7 in Fig 3D and Table 2) demon-

strated recombination frequencies among isolates above 20%, a threshold chosen to overcome

average recombination levels by at least 2 fold in all subgroups. Many of these prominent “hot-

spots” (e.g., R2, R3c, R5b-R7) exhibited subgroup recombination frequencies� 45%, and their

genome coordinates often coincided with one or more VNRs identified in the EN, CS, and/or

full ST1 datasets (e.g., R1, R3-R6). For example, R3b and R3c overlapped large portions of the

15kb and 18kb LPS biosynthesis regions, which was consistent with a previous report of nucle-

otide variability at this locus among sg1 strains [45]. This suggested that recombination, in

part, could explain the differences in nucleotide diversity observed among subgroups. Several

putative ST1 recombination regions identified here, such as R5b/c which overlaps VNR21,

have been at least partially reported in various L. pneumophila STs, including ST1, confirming

their importance as sites of high recombination potential and variability [46]. Two hotspots

(R5b/c and R6) exhibited extremely high isolate recombination frequencies (>77.8%) from at

least one subgroup. Region R5b/c encoded factors associated with outer membrane protein

assembly (e.g, lpp1769, BamA) and porphorin-containing compound biosynthesis (e.g.,

lpp1771, HemB), among others. Additional descriptions of the R5b/c and R6 regions are pro-

vided in the Supporting Results (S1 Results).

We also determined that, on average, ~98.5% of the L. pneumophila str. Paris reference

genome was covered or mapped by� 80% of ST1 isolate sequences (Fig 3E). However,

sequence coverage dipped below 80% at 4 discrete loci, totaling ~55,500 bp, designated low

coverage locus 1 through 4 (LC1-4).Thus, sequence mapping coverage may contribute to some

low level variability observed within or between subgroups. Additional details of these low cov-

erage regions are provided in the Supporting Results (S1 Results).

ST1 isolates cluster tightly and demonstrate unexpected phylogenetic

relationships

A phylogeny constructed with all identified SNPs from the current ST1 and ST1-like isolates,

along with 28 additional, diverse sequence types (Fig 4A), displayed ten distinct clades, includ-

ing an ST1-specific clade (clade 1; Fig 4A, inset). This condensed, ST1-specific branch contains

10 or more tightly clustered, but distinct subclades. A circular, rooted SNP-based tree of all

current isolate sequences revealed additional phylogenetic structure (Fig 4B), including multi-

ple ST1 subclades within each major branch. As expected, most strains associated with poten-

tial or confirmed LD outbreaks exhibited clustering; however, we occasionally observed

outbreak-associated isolates outside of their respective outbreak clades such as the New York

clinical isolate ‘NY9’, and to a lesser extent, ‘NY10’ (both outbreak ‘O4’; S1 Table), as reported

previously [47]. Also noted were isolates without known epidemiological links clustered within

or around putative outbreak clades, including sporadic clinical isolates from Rhode Island

diversity between the CS and EN subgroups. Within group CS diversity is subtracted from EN diversity (CS|CS-EN|EN), thus, genomic windows

with higher within group CS diversity will be in the positive Y axis while windows with higher EN within group diversity will be in the negative Y

axis. Red and green triangles indicate the subgroup (CS or EN, respectively) with comparatively higher nucleotide diversity at that window

exceeding the 3% threshold. D) Potential recombination frequency for each ST1 subgroup across the genome. Windows with recombination

frequencies>20% in any single subgroup are labeled and numbered. E) Sequence mapping coverage at each genomic window for all ST1 isolate

sequences. Windows or regions with coverage below 80% are labeled and numbered 1–4.

https://doi.org/10.1371/journal.pone.0206110.g003
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(‘C127-S’, ‘C147-S’, ‘C102-S’, and ‘C131-S’) and Massachusetts (‘C15-S’) within the Rhode

Island multi-outbreak ‘clade A’, among others.

It should be noted that the placement of epidemiologically-linked isolates and interpreta-

tion of genetic relationships did not differ between trees constructed with all available SNPs or

core SNPs; however, inclusion of all SNPs appeared to introduce additional genetic variability

into the tree. We observed that isolates clustering in the same clade generally shared a similar

accessory genome size and gene content (Fig 4B, outer rings) relative to the Lp strain Paris

plasmid (pLPP). Yet, ST1 subgroups did not exhibit dramatically different average sequence

coverage for the strain Paris plasmid (pLPP) (average pLPP coverage per genome in

EN = 67%, and CS = 70%). Comparative analyses of genome sizes, plasmid conservation pat-

terns, as well as notable phylogenetic clustering within and outside outbreak clades are further

described in the Supporting Results (S1 Results).

US state and regional ST1 populations are genetically diverse

Pockets of genetic clustering among geographically related isolates without confirmed epide-

miological association have been recently described [48] and were also noted here in clades

from the US Southeast (‘C45-S’, ‘C101-P’, ‘C65-P’, ‘C84-P’, ‘E68-N’, and ‘C116-P’), South

Dakota (‘C64-S’, ‘C23-S’, ‘C40-S’, ‘C17-S’, ‘C19-S’, and ‘C79-S’), and Sweden (‘EUL00108’,

‘LP21’, ‘EUL00109’, ‘LP23’, and ‘EUL00104’). Therefore, we investigated genetic differentia-

tion among geographic populations through an analysis of molecular variance (AMOVA)

[49]. Overall, 4.27% of the US ST1 population genetic structure (p = 0.00248 SE±0.00050)

could be explained by regional geographic categorization (S7 Table). Seventeen out of forty-

five pairwise regional population comparisons exhibited significant genetic differentiation (fix-

ation index [FST] p<0.05), and every one included a region in the western US (i.e., Northwest,

West, West North Central, or Southwest).

We next attempted to minimize the influence of recombination, which plays a prominent

role in L. pneumophila genetic ecology [32, 46], in the AMOVA by removing all putative hori-

zontally acquired regions and utilizing only 799 vertically inherited core SNPs. In this case, a

Table 2. Recombination hotspots in ST1 subgroups with frequencies above 20%.

Percentage of Isolates in

Category with Putative

Recombination Event

Region ID Coordinates relative to L. pneumophila str. Paris (bp) CS EN OB Predicted Features (based on Lp1 str. Paris reference)

R1 68053–76221 22.0% 22.2% 18.8% lpp0064-lpp0075

R2 467796–476192 31.9% 45.5% 18.8% lpp0418-lpp0427

R3a 895759–899423 9.9% 23.2% 0.0% lpp0801-beginning of lpp0802

R3b 923274–951936 9.9% 23.2% 0.0% lpp0825-lpp0849

R3c 942909–945826 31.9% 45.5% 18.8% lpp0841-lpp0843

R4 1648686–1675289 9.9% 23.2% 0.0% lpp1476-lpp1501

R5a 1986115–2001091 9.9% 23.2% 0.0% lpp1765-lpp1774

R5b 1992558–2003075 97.2% 93.9% 81.3% lpp1769-lpp1775

R5c 2014953–2018845 61.0% 77.8% 25.0% lpp1784-lpp1787

R5d 2055666–2064175 31.9% 45.5% 18.8% lpp1822-lpp1825

R5e 2072723–2076994 31.9% 45.5% 18.8% lpp1832-lpp1836

R5f 2084600–2094628 31.9% 45.5% 18.8% lpp1843-lpp1849

R6 2319107–2324375 61.0% 77.8% 25.0% lpp2053-lpp2058

R7 2928006–2929589 31.9% 45.5% 18.8% lpp2574-lpp2575

https://doi.org/10.1371/journal.pone.0206110.t002
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Fig 4. Whole genome SNP-based phylogenetic comparisons of ST1 and ST1-like isolates in the current dataset. A) Unrooted tree of 28 different L.

pneumophila sequence types, including the ST1 clade (collapsed red triangle) alongside an international ST752 double locus variant of ST1. Clade

numbers are discussed in the text. Isolate ID’s for each ST are defined in the ‘Comments’ column of S1 Table. B) All-SNP-based phylogenetic tree of

L. pneumophila ST1 genomic heterogeneity
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larger proportion of the US ST1 genetic structure (~8.97%; p = 0.000 SE±0.0000) was attrib-

uted to geographic categorization. When isolates were classified by state of origin, 8.61% of

nucleotide variation was attributed to geography, but removing potential recombinant SNPs

had a lesser effect (11.1%). Despite US regional and state-specific genetic contributions, ST1

population structure was due in largest part (�90%) to within group nucleotide variation

(among isolate populations within regions or states).

Geographic, spatial mapping of isolates from an ST1 core SNP tree (Fig 5), with or without

recombinant regions, revealed location-based clustering trends initially detected by AMOVA.

However, geographically related isolates were not strictly concentrated in single, large clades.

Instead, major clades were composed of multiple, smaller, geographically-isolated, but geneti-

cally homogeneous branches. Geographic comingling, while present throughout the entire

hierarchy, was more pronounced at higher levels of the tree. For example, isolates in all three

major clades mapped to the Northeast, Southeast, West, and East North Central regions, while

smaller internal branches, in some instances, mapped almost entirely to the Southwest or

Northeast.

Discussion

ST1 is a worldwide-distributed sequence type and likely represents the largest and most suc-

cessful L. pneumophila monophyletic group. ST1 legionellae are not prevalent among large LD

outbreaks in the US, unlike ST36 and ST222 [3], but they are responsible for a majority of spo-

radic disease cases reported to the CDC where an ST was determined. As illustrated in recent

reports [26, 28, 46], the ST1 population is subject to higher levels of recombination and back-

ground mutation compared to several prominent disease-causing STs, indicating that ST1

may not be as homogeneous as initially thought. The present study was undertaken to charac-

terize the ST1 population at the genomic level, including an exploration of potential genetic

differences between clinical and environmental isolate subgroups.

Examination of 3 ST1 subgroups (CS, EN, and OBP) revealed core genome sizes within the

expected range for L. pneumophila [17, 26, 28, 50–54]. The pangenomes of 2 subgroups (CS

and EN) were larger than previously reported for ST1 [28], which could be explained by the

smaller dataset previously used (n = 71 versus n = 280 in the current study). While the EN pan-

genome was outsized compared to the CS and OBP subgroups, the EN core genome was com-

paratively smaller (Fig 2B), which was unexpected given the smaller EN subgroup.

Additionally, a previous report suggested the accumulation of new genetic content was leveling

off in the ST1 population [28], however, we find this dependent on the subgroup examined. Of

central importance, the EN subgroup exhibited higher levels of genetic variation across the

genome and greater accessory gene content compared to the CS and OBP subgroups. Among

the potential basis for these observations are an enrichment, in either the environmental ST1

pan or accessory genomes, for components of type IV conjugative DNA transfer, transposi-

tion, and recombination. Previous studies have concluded that HGT is among the most pow-

erful drivers of nucleotide diversification among many Lp sequence types, including ST1 [28,

32, 46, 55]. Our results support this premise and further suggest that environmental ST1 iso-

lates are subject to more recombination events and at higher frequencies compared to the spo-

radic disease-associated ST1 subgroup. Plasmids represent a mobile, readily available source of

accessory content that could, in part, explain genetic differences between subgroups [47], yet

502 ST1 and ST-like isolates rooted on the ST752 international sequence, ‘SZ2012007’. Isolate names highlighted by outbreak or potential outbreak.

Clade letter designations are discussed in the text. Additional metadata displayed on the outer rings labeled according to the included legends.

https://doi.org/10.1371/journal.pone.0206110.g004
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average coverage for the Lp strain Paris plasmid was not dissimilar between the EN and CS

subgroups, and a search for alternative plasmids was not performed.

Gene ontology enrichment analysis (GO) of the shared accessory genome also suggested

that all 3 ST1 subgroups retained the capacity for horizontally acquiring, and potentially

donating, additional gene content. Notably, variable nucleotide regions 5–8 and 26–28 of the

full ST1 alignment were contained within large genomic islands required for efficient growth

in amoebal hosts and, according to a previous study, could suggest a modular genomic archi-

tecture that allows for expansion of the Lp host range [56].

The simplest, biologically-relevant hypothesis explaining quantitative differences in nucleo-

tide variation between the EN and CS subgroups is that environmental legionellae, which are

unassociated with identified human disease, inhabit diverse ecological habitats and harbor a

genetic repertoire that reflects multiple, niche-specific adaptations. In contrast, legionellae

recovered from clinical settings have in common a confirmed ability to cause human disease.

Fig 5. Phylo-geographical clustering of L. pneumophila serogroup 1, ST1 isolates from the US. Analysis conducted with 799 core, non-

recombinant SNPs obtained from 187 isolate sequences after applying the Gubbins algorithm (See Methods). Colors were generated automatically in

GenGIS to distinguish isolates based on the 9 NOAA climate regions. Regions and matching colors lines and branches include: Northwest, bright

green; West North Central, grey; East North Central, dark green; Northeast, blue; West, red; Southwest, orange; South, salmon; Southeast, maroon;

Central, bright pink. Isolates from Hawaii and Alaska are not represented in this figure.

https://doi.org/10.1371/journal.pone.0206110.g005
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Thus, clinical-associated isolates may represent an environmental subpopulation with

increased potential for human pathogenicity arising from unknown pressures, possibly associ-

ated with habitat. Such selection could introduce molecular constraints on key virulence deter-

minants, thus curbing gene diversification or influencing gene presence or frequency [40]. In

one possible illustration of this phenomenon, half of the top 10 most enriched genes in the CS

subgroup (Table 1) appear to be acetyltransferases. Thus, it is tempting to ask if this enzymatic

capacity is related to Legionella pathogenicity through bacterial or host factor modification

(e.g., LPS O-acetylation [57], and Dot/Icm-secreted effector acetyltransferases [52] [see [58]

for a review]).

Several reports have explored the potential virulence-associated underpinnings of Lp iso-

lates by classifying genetic markers that distinguish clinically significant from benign environ-

mental legionellae [59–62]. We identified a handful of enriched loci or gene categories that

may promote virulence in ST1 clinical isolates; however, our results suggest the clinical ST1

subgroup is defined largely by increased genetic conservation or homogeny compared to the

environmental subgroup, and by lower comparative accessory genome enrichment for ele-

ments of DNA transfer and recombination. We did not look outside the ST1 population,

therefore, our analysis does not preclude the existence of genetic loci that define clinical-asso-

ciated sequence types or subpopulations outside ST1.

This study highlights the complexities of interpreting phylogenetic relationships within a

common genotype, especially in the context of outbreak events. The ubiquity and environ-

mental distribution of ST1 increases the probability that epidemiologically linked but geneti-

cally distinct ST1 isolates, coexisting with the outbreak strain, could be recovered during

environmental sampling as part of an investigation (e.g., ‘E24-O’ and ‘E26-O’ were originally

considered part of ‘O1’). Alternatively, the genetic homogeneity implied by a common

sequence type means that isolates not epidemiologically associated with an outbreak may occa-

sionally share the outbreak genotype (e.g., ‘C24-S’ appears related to both isolates in ‘O27’), as

we recently reported for the 1976 Philadelphia outbreak [63]. Lastly, isolates genetically and

geographically related to, but temporally offset from an outbreak cluster, may represent

unidentified disease cases resulting from long-term Legionella persistence (e.g., ‘D4846’ may

be an early case from the WA ‘O8’ outbreak lineage) [see [64] for review].

We also uncovered individual outbreak-associated ST1 clinical isolates placed outside their

presumed outbreak clades (e.g., ‘C51-O’ and ‘NY9’), and matching clinical/environmental out-

break associated strains that clustered away from their originally assigned outbreak (e.g.,

‘HL_00514008–13’, ‘HL_01313038’, and ‘LG_07135008’). This implies multiple, discrete ST1

genotypes may coexist in the same location, or may illustrate sporadic disease cases with epide-

miological exposures common to an outbreak cluster. Nevertheless, it is clear from the current

analysis and recent reports [28, 32, 47] that prominent regional Lp genotypes do exist, thus,

genetic interpretations should rely heavily on confirmed epidemiologic associations, as illus-

trated by a recent LD investigation in Germany [65]. This phenomenon is not limited to ST1;

different sequence types have been recovered from clinical cases in each of at least 4 LD out-

break investigations conducted by the CDC since 1982. More comprehensive, wide ranging

environmental sampling could place potential outbreak associated isolates in a more accurate

ecological context.

Molecular variance analysis of diverse US ST1 isolate sequences indicated that up to ~10%

of population genetic structure can be attributed to geographic categorization; however, ST1

population structure is dominated by nucleotide diversity within these geographies. Recombi-

nation contributes to gene flow among ST1 strains in different states and climate regions, but

nucleotide conservation, characteristic of regions or states lies, at least in part, outside these

genomic loci. This small percentage of geographically-explained genetic structure was reflected
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in occasional phylogenetic clustering by traditional tree-based methods (Fig 4B) and phylo-

geographical mapping (Fig 5). The remaining, substantial nucleotide variation not explained

by geographic categories may be due to a diverse but extremely stable endemic ST1 population.

Equally likely is an existing, widespread environmental mechanism for continual mixing of

physically distant and dissimilar ST1 genotypes, such as ground [66, 67] and surface water

transport [68], or the natural processes of atmospheric aerosolization, dispersion, and deposi-

tion [69, 70].

The isolates examined in this study comprise the largest single-ST Legionella sequence data-

set analyzed to date, and thus provide enhanced genomic context for ST1 comparisons. How-

ever, our results should be interpreted with several potential limitations. A majority of CDC

Legionella isolates were recovered after the year 2000. It is not clear if this uneven temporal dis-

tribution negatively impacted the present ST1 comparisons, but previous reports suggest the

effects are likely minimal over this time frame given the low Legionella background mutation

rate [28, 32]. The current ST1 isolate dataset is also not geographically complete, and US states

with higher LD rates may be overrepresented. We did not examine geographic diversity

among internationally-derived isolate sequences, therefore caution is recommended when

extending these results to other continents or climate regions. Additionally, the classification

of non-outbreak environmental isolates, which originated from routine cooling tower or pota-

ble water samples and not from natural freshwater, could introduce an unidentified genetic

bias. And while no direct epidemiological link was documented among the sporadic clinical

disease-associated isolates, we cannot rule out the possibility that some are associated with

unidentified clusters. Finally, the recombination events identified here, while consistent with

prior publications, are nonetheless predictions based on bioinformatic analysis of SNP density,

and not experimentally confirmed.

Within the past 10 years, several whole genome-focused publications have included ST1

datasets [25–28, 46], however, the current study is the first to characterize genetic diversity and

population structure of a large, US ST1 and ST1-like strain collection, alongside international

sequences. The 289 new L. pneumophila genomes reported here contribute to a growing, more

ecologically comprehensive dataset for the development of improved, rapid molecular typing

methods, and for analysis of variation within L. pneumophila populations. This collection can

also provide essential genetic context to support future Legionnaires’ disease outbreak investi-

gations involving ST1 strains.

Materials and methods

Legionella culture and sequencing

To genetically characterize the US ST1 population structure, we sequenced 289 clinical and

environmental Lp strains that originated from 36 US states and one international location

(South Africa) and were archived at the CDC between 1977 and 2016 (S1 Table). Included

were 55 isolates representing 9 confirmed or potential LD outbreaks, as well as 21 non-

ST1-like isolates (i.e., not ST1 or ST1 variant). All environmental isolates were recovered from

man-made cooling or potable water distribution networks and were not associated with

known cases of disease. An additional 234 existing ST1, SLV (Single Locus Variant), and DLV

(Double Locus Variant) isolate sequences were included from New York State, Minnesota,

and from publically-available L. pneumophila isolate datasets representing geographically

diverse international locations including Europe, Australia, China, Japan, and Israel [17, 19,

26, 27, 54]. The complete 502 isolate ST1 and ST1-like dataset (without the 21 non-ST1-like

isolates) included 3 serogroups (sg1, 7, and 10), 15 different ST1-like SLVs and DLVs, includ-

ing ST5, 6, 7, 8, 10, 72, 486, 630, 752, 1160, 1365, 1422, and 2 novel ST1-like isolates yet to be
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assigned an ST. The sequence collection was further divided into the following subgroups con-

taining only non-identical serogroup 1, ST1 isolate sequences whose members are defined in

S1 Table: ‘CS’—sporadic clinical disease not associated with an outbreak, (n = 139); ‘EN’—

non-disease-associated environmental’ (n = 99); and either ‘OB’–confirmed outbreak-associ-

ated (n = 16); or ‘OBP’–outbreak and potential outbreak-associated (n = 28) subgroups. When

available, only a single isolate sequence was included per patient or per environmental location

in subgroups and during analyses. Outbreak subgroups contain only a single clinical or envi-

ronmental representative of each defined outbreak.

All sequenced isolates were plated from frozen stocks and grown as previously described

[63] on solid BCYE agar plates containing L-cysteine. No samples were collected for the sake

of this study and all samples were anonymized prior to access.

SBT-Based, ST1 population description and clonal complex analysis

Sequence type data were compiled for ST1 and ST1-like isolates from the European Study

Group for Legionella Infections (ESGLI) SBT database (http://www.hpa-bioinformatics.org.

uk/legionella/legionella_sbt/php/sbt_homepage.php) and from an internal CDC SBT database

as of December, 2017 for comparative analyses and for examination of clonal complexes, ST1

SLVs, and DLVs through the eBURST V3 software program and visualization [71]. Legionella
sequence type diversity within each predicted clonal complex was calculated using Simpson’s

Diversity (1-‘D’) index [72]. Isolates originating from the US were removed from the ESGLI

database before analysis.

Genomic DNA extraction, NGS library preparation and sequencing

Genomic DNA (gDNA) was extracted from pure Legionella culture isolates as previously

described [63] using the Epicenter Masterpure DNA purification Kit (cat. no. MCD85201, Epi-

centre, Madison, WI), as per the manufacturer’s instructions. Illumina compatible sequencing

libraries were constructed with the NEBNext Ultra II DNA Library Preparation Kit (cat. no.

E7370, New England Biolabs, Ipswich, MA) and MiSeq 2 x 250bp sequencing runs were per-

formed with Illumina version 2 chemistry as previously detailed [63].

Reference-Based sequence mapping

Paired Illumina sequencing reads were mapped against the ST1 L. pneumophila str. Paris refer-

ence genome using bowtie v.2.2.9 [73] with the settings “—very-sensitive-local”, “—no-unal”,

and “-a”. Nucleotide variants were called with Freebayes v.0.9.21 [74] using the settings “-q

20”, “-p 1”, “—min-coverage 25”, “-F 0.75”, and “-j”. Indels were removed with VCFtools

v.0.1.14 [75] and SNPs were recoded with VCFfilter from the vcflib package with QUAL > 1.

Identified SNPs were re-mapped to the strain Paris reference using VCFtools to produce a full

length reconstruction of the isolate’s chromosome in the same orientation and order as the ref-

erence genome. As SNPs were only called on sites with> = 25x coverage, we used a custom

perl script to mask with “N”s all sites in the individual isolate chromosome which had lower

coverage than our SNP discovery threshold. After masking low coverage regions, the average

sequence coverage for any isolate relative to the Paris reference was 97.3% (SD±0.0331,

Median 97.9%). Sequence mapped chromosome reconstructions were concatenated into a sin-

gle FASTA file to produce a reference mapped alignment of all 501 isolates. Smaller isolate sub-

sets, such as the non-redundant ST1 data set were constructed by subtraction from this master

alignment.
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Genome assembly, gene prediction, and pangenome analyses

Illumina sequencing reads were assembled into draft contiguous sequences (contigs) using

Velvet v.1.2.10 as previously described [47]. Prokka v.1.8 [76] was used with default parameters

to predict and annotate rRNA, tRNA, tmRNA, and amino acid coding sequences for each

newly sequenced isolate as well as for Illumina whole genome shotgun sequencing data previ-

ously published and obtained from public repositories. Gene clustering and pangenome analy-

ses were conducted with Roary v.3.5.9 [77] along with the ‘roary_plots’ python script. Six total

pangenome distribution categories were defined with an additional ‘core-1’ category that

includes genes found in all isolates of a subgroup minus 1 to account for potential errors in

sequencing and/or assembly. The accessory genome included all genes not found in the ‘core’

and ‘core-1’ categories. After gene prediction, annotation, and orthologous protein clustering,

pan-genomes were compared, including core and accessory content, within and across sub-

groups. The “Core” pangenome contains all genes common to every isolate of all subgroups

while the “Accessory” pangenome contains all genes found in at least one isolate of each

subgroup.

Gene Ontology (GO) and gene level enrichment analyses

Gene enrichment and gene ontology (GO) [78, 79] categorization were accomplished with two

sets of gene annotations created through Interproscan v.5.24–63.0 [80]. One set was created

from the de novo gene set predicted by Roary [77] for use in gene presence/absence compari-

sons. The other set was created based on the genes present in the L. pneumophila str. Paris ref-

erence genome to be used with data sets created from read mapping approaches, such as the

nucleotide variability comparison sets. Gene subsets derived from pangenome and accessory

genome comparisons were analyzed with Ontologizer v.2.1 [81] using an appropriate back-

ground gene set (the combined ST1 pangenome) and Benjamini-Hochberg correction (BH)

[82] to identify overrepresented GO terms. Gene level enrichment analysis was carried out by

combining gene presence and absence frequencies for the EN and CS subgroups to create an

average frequency for each gene, against which the individual EN and CS subgroup gene fre-

quencies were compared, initially by a 1-tailed Fisher’s exact test and then by a 2-tailed Fisher’s

exact test with BH multiple testing correction.

Phylogenetic analysis and visualizations

Phylogenetic trees were constructed and visualized as previously described [63] by the parsi-

mony method using kSNP v.3 [83] and the Interactive Tree of Live (iTOL; http://itol.embl.de/)

[84]. Additional figure labels and detail were added with InkScape v.0.48.5 (https://inkscape.

org/en/).

Characterization of nucleotide diversity and potential recombination

events

A custom sliding window approach (window size = 500 nt, step size = 250 nt) was used to

assess nucleotide variation along the length of the reference-mapped alignment. For every

pairwise comparison of isolates, we summed the number of SNP differences and tracked the

number of conserved sites within the window. If a gap or unresolved character was present at a

site in either or both isolates, that site was counted neither as a mismatch nor a conserved site
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for that pair. The nucleotide variability value for the window was calculated as follows:

nucleotide variability ¼
P

mismatches in every pairwise comparison at a single nt position
number of sites compared ðmismatchþ conservedÞ

To assess whether clinical sporadic or environmental isolates were accumulating variation in

different genomic regions, we examined intra-group variation by conducting pairwise analyses

between isolates within the same a priori defined group (environmental isolates vs clinical spo-

radic isolates) producing a group-specific variability number. Thus, the intra-group variation

for environmental isolates is derived from all possible comparisons of environmental isolates,

and the intra-group variation of clinical samples is derived from all possible comparisons of

clinical isolates, but no comparisons of clinical to environmental isolates are included in either

metric. We also investigated whether clinical sporadic and environmental isolates encom-

passed genomic regions that segregated into a set of related clinical-specific alleles and/or envi-

ronmental-specific alleles. Inter-group analyses were conducted in a similar manner as within-

groups, except that only clinical-environmental isolate pairwise comparisons were included.

All possible combinations of environmental and clinical pairs were included in this value;

however, no clinical-clinical or environmental-environmental pairs were analyzed. This metric

is most useful when compared against intra-group variability or overall variability metrics. For

example, low values of intra-group variability appearing within the same window as high

between group variability suggests that there is segregation of alleles between clinical and envi-

ronmental samples and that these alleles are notably different from each other.

High nucleotide variability was identified by filtering and merging the top 3% of variable

windows within 5000 bases of each other to produce contiguous regions. The predicted vari-

able region size and distance cutoffs were selected to maximize region nucleotide length but

minimize the number of variable regions and the fraction of the total genome incorporated.

Measurements of nucleotide diversity (d) within subgroups was accomplished with MegaCC

v.7.00 (http://www.megasoftware.net/) [85] using the L. pneumophila str. Paris reference based

multiple sequence alignment of all isolates in a single subgroup. Potential recombination

events were identified with Gubbins v.1.4.1 [86] as previously described [63] using the L. pneu-
mophila str. Paris reference based alignment of all isolate sequences as input. For interpreting

recombination predictions, ST1 mapping coverage was calculated at each of the 14,013 over-

lapping nucleotide windows previously described.

AMOVA and phylo-geographical clustering and analysis

Analysis of molecular variance (AMOVA) was conducted with the Arlequin v.3.5 software

package [49, 87] using the haplotypic format after categorizing isolate sequences by US state or

NOAA climate region (https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-

regions.php). AMOVA was run with default parameters except that� 1000 permutations

were performed. AMOVA was carried out using 20,718 core SNPs from non-clonal, sg1, US

ST1 isolates (n = 187 isolate sequences). The ‘Alaska’ geographic category was not considered

in the final interpretation because it contained only a single isolate sequence. Phylogeographi-

cal clustering was performed and visualized with GenGIS v.2.4.1 [88] by overlaying a US ST1

phylogenetic tree with potential recombination events removed (using Gubbins) plotted to the

midpoint coordinate for each US state.

L. pneumophila reference genomes

Additional reference quality genomes used in the current study were obtained from NCBI and

include L. pneumophila str. OLDA (CP016030.2), L. pneumophila str. Paris (NC_006368.1), L.
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pneumophila str. Alcoy (NC_014125), L. pneumophila str. Corby (NC_009494), L. pneumo-
phila str. Philadelphia-4 (NZ_CP015931), L. pneumophila str. LPE509 (NC_020521), L. pneu-
mophila str. Lens (NC_006369), and L. pneumophila str. Lorraine (NC_018139).

Data access

Sequencing data derived from this study have been deposited with links to BioProject acces-

sion number PRJNA423272 in the NCBI BioProject Database (https://www.ncbi.nlm.nih.gov/

bioproject/). Raw Illumina sequencing reads were assigned the SRA accession SRP127407

(Sequence Read Archive, https://www.ncbi.nlm.nih.gov/sra) and individual isolate SRA

sequence accession IDs are listed in S1 Table.
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