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Abstract

Understanding the sense of discourse relations between segments of text is essential to

truly comprehend any natural language text. Several automated approaches have been

suggested, but all rely on external resources, linguistic feature engineering, and their pro-

cessing pipelines are built from substantially different models. In this paper, we introduce a

novel system for sense classification of shallow discourse relations (FR system) based on

focused recurrent neural networks (RNNs). In contrast to existing systems, FR system con-

sists of a single end-to-end trainable model for handling all types and senses of discourse

relations, requires no feature engineering or external resources, is language-independent,

and can be applied at the word and even character levels. At its core, we present our novel

generalization of the focused RNNs layer, the first multi-dimensional RNN-attention mecha-

nism for constructing text/argument embeddings. The filtering/gating RNN enables down-

stream RNNs to focus on different aspects of the input sequence and project it into several

embedding subspaces. These argument embeddings are then used to perform sense clas-

sification. FR system has been evaluated using the official datasets and methodology of

CoNLL 2016 Shared Task. It does not fall a lot behind state-of-the-art performance on

English, the most researched and supported language, but it outperforms existing best sys-

tems by 2.5% overall results on the Chinese blind dataset.

Introduction

To truly comprehend any natural language text, we need to interpret more than just the mean-

ing of its parts. We need to infer additional semantic relations, known as discourse relations or

coherence relations, that describe how different segments of text and abstract objects are

related to each other. This is a open problem in many structure-enabled language applications

[1], such as statistical machine translation [2], text summarization [3], sentiment analysis [4],

question generation [5], coherence modelling [6], and discourse parsing [7].

We focus on the task of sense classification of shallow discourse relations as described in

the CoNLL 2016 Shared Task [8], which is the most challenging part of such systems. It is for-

mulated as follows: Given a piece of text with marked pair of arguments (arg1, arg2), a
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connective (conn), and punctuation (punc), our task is to predict the sense label, that relates

both arguments (10 labels for Chinese and 21 for English).

1. [Jane fell over]arg1, when [Tarzan offered to help her]arg2.

2. [I’ll be there at nine]arg1, unless [the train is late]arg2.

3. [I want to go home for the holidays]arg1. Nonetheless , [I will book a flight to Hawaii]arg2.

Previous examples show a few Explicit discourse relations, where the sense is signalled

by an overt discourse connective (when signals a causal relation, unless an alternative, and

nonetheless a comparison). From a computational perspective, it is relatively straightfor-

ward to predict these senses by concentrating on discourse connectives and carefully designing

production rules to disambiguate their function [9]. However, more than half of the discourse

relations in a text are not signalled by a discourse connective. Consider how previous examples

change, if we transform them into Implicit discourse relations by dropping the underlined

discourse connective (without when the temporal ordering of events is reversed, without

unless or nonetheless we infer a causal relation). In such situations the sense needs to

be inferred through the semantic context, coherence of arguments, or other meaning [10].

From a computational perspective, such situations are much more challenging and represent a

bottleneck of entire systems.

Most existing systems to tackle sense classification are complex and designed for the

English language, they rely on linguistic feature engineering, external lexicons, syntactic pars-

ers, and other resources. It is not obvious how to extend them to languages with a different

grammar and structure, less linguistic resources, and different label sets, such as Chinese. To

improve on this, conferences CoNLL 2015 and 2016 organized a Shared Task [8, 11] focusing

on shallow discourse parsing on English and Chinese languages. Sense classification is still its

most challenging part. Around half of the methods used conventional machine learning tech-

niques such as MaxEnt, SVM and CRF models that rely on thousands to millions of hand-

engineered features constructed from word categories and positions [9], production and

dependency rules [12], neighbouring words, syntactic parse trees and part-of-speech (POS)

tags [13], and cross-argument similarity features based on word pairs [14]. These generally

make weak predictors of the relation sense, and increase the complexity of the solutions, but

nevertheless work pretty good for Explicit relations. The other half used different neural

network models and relied on pre-trained word embeddings combined with previously men-

tioned hand-engineered features. On word embeddings of each argument they separately

apply either a variant of summation pooling [15], convolutional neural network [14, 16], or

recurrent neural network (RNN) [17], followed by a feed-forward neural network (FNN).

Although these black-box solutions perform better for Implicit relations, they still achieve

pretty poor performance for sense classification, train multiple models for each language, and

we need to fine-tune their features and embeddings.

In this paper, we move away from hand-engineering and designing a system specifically for

a given language. We pursue an end-to-end trainable approach, that is language-independent

with respect to its inputs and architecture, and applicable as such to very different languages.

Such a system needs to consist of a single model for handling all types and senses of discourse

relations (no differences in handling Explicit and Implicit discourse relations). It

should not perform any preprocessing of its input text spans, nor require any feature engineer-

ing or external resources, not even pre-trained word embeddings. We accomplished all this in
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our novel FR system for sense classification based on our generalization of focused recurrent

neural networks (RNNs), that we present in this paper. The focused RNNs layer at word level

[17] represents the first multi-dimensional RNN-attention mechanism for constructing text/

argument embeddings. We improve upon this by processing any sequence of symbols of arbi-

trary lengths and sharing weights between multiple focused RNNs layers. This way, its filter-

ing/gating RNN enables downstream RNNs to focus on different aspects of the input sequence

and project it into several embedding subspaces, called text or argument embeddings. In our

model, a FNN is then put on top to perform sense classification. Because of its generic design

our model can be easily adapted for other NLP problems in which end-to-end training and

multi-dimensional argument embeddings are needed. We successfully applied our model for

sense classification on tokenized sentences at the word-level representation of inputs (FR-wa

model), but are also the first to present a character-level model for sense classification (FR-ca

model). Since we are learning task-specific word embeddings from scratch, we merely apply a

simple data augmentation technique during training. To support its language-independence

we evaluate it on Chinese, as an example of a less supported language, and on English, as an

example of the linguistically most explored and supported language. By following the official

task formulation, datasets and methodology of the CoNLL 2016 Shared Task [8], we compare

FR system with winning systems and strong baselines on these two languages. FR system does

not fall a lot behind state-of-the-art performance on English datasets, and even outperforms

existing best systems by 2.5% overall results on the Chinese blind dataset.

We organize the rest of the paper in four main sections. Section Background describes shal-

low discourse relations and surveys related work. Section Our model describes the FR system

architecture, its neural network layers, and our generalization of focused RNNs layer. Section

Evaluation presents the official evaluation methodology, and detailed analysis of its performance

on Chinese and English datasets. The last section makes a brief overview and draws conclusions.

Background

Early work on linguistic and computational discourse analysis produced several theoretical

frameworks to analyze the language beyond the clause and sentence level [18, 19]. Although

they differ in many ways, they all more of less encode problems involving argument extraction

[20] and sense classification of Explicit [9] or Implicit discourse relations [21]. Unfor-

tunately, differences in theories, data set creation, features used, label sets, and experimental

methodologies make it difficult to compare early works fairly and adequately. For this reason,

we adopt the view of lexically-grounded shallow discourse relations, that are annotated in two

newswire corpora, the English Penn Discourse TreeBank (PDTB) [19] and the recently pub-

lished Chinese Discourse Treebank (CDTB) [22]. We perform evaluation on these two datasets

according to the CoNLL 2015 and CoNLL 2016 Shared Task [8, 11].

Shallow discourse relations strive to maintain a theory-neutral approach by lexically

anchoring relations to discourse connectives, even when they are not explicilty expressed [19].

They occur both across sentences and within sentences, arguments are defined based on the

location of the connective, and there are no restrictions on how many clauses and gaps they

may contain. The following two examples on Chinese language (also translated to English)

show how one sentence contains two overlapping discourse relations and how a connective

(conn) consists of multiple segments.

1. [建筑公司进区]arg1 ; [有关部门先送上这些法规性文件,然后有专门队伍

进行监督检查]arg2
[Construction companies enter the area]arg1 ; [relevant departments first send these

Sense classification of shallow discourse relations with focused RNNs
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regulatory documents, and then a special team conducts supervision and inspection]arg2.

— Implicit, sense CONDITIONAL

2. 建筑公司进区, [有关部门先送上这些法规性文件]arg1 ; 然后 [有专门队伍

进行监督检查 ]arg2
Construction companies enter the area, [relevant departments first send these regulatory doc-

uments]arg1 ; and then [a special team conducts supervision and inspection]arg2.

— Explicit, sense TEMPORAL

The literature further distinguishes four discourse relation types as can be seen in Table 1,

but focuses mostly on Explicit and Implicit discourse relations that occur most often.

Each relation type further consists of sense labels, which we try to predict. Due to differences

between languages, such as the formalization of the concept of a sentence and the way argu-

ments are labeled, there are 10 sense labels defined for Chinese and 21 for English (see section

Evaluation or CoNLL 2016 Shared Task [8] for a complete list). These senses are unevenly dis-

tributed, especially in Chinese where more than half of relations signal the sense CONJUNCTION

and in English almost a quarter of relations signal EXPANSION.CONJUNCTION.

A couple of sense classifiers have been developed as standalone systems, while others were

used as components of a shallow discourse parser. Table 2 presents a comparison of best per-

forming methods for sense classification.

Table 1. Distribution of relation types in Chinese and English datasets.

Relation type Chinese datasets English datasets

train valid test blind train valid test blind

Explicit 2225 77 96 566 14722 680 923 556

Implicit 6706 251 281 1399 13156 522 769 425

AltLex 211 5 7 49 524 19 30 28

EntRel 1098 50 71 87 4133 215 217 200

Total relations 10240 383 455 2101 32535 1436 1939 1209

English dataset contains more than three times as many training examples as Chinese dataset. In English Implicit discourse relations occur almost as often as

Explicit ones, but in Chinese as much as twice as often. Each relation type further consists of up to 10 sense labels for Chinese and 21 for English, which we try to

predict (EntRel has a dedicated sense label).

https://doi.org/10.1371/journal.pone.0206057.t001

Table 2. Comparison of sense classifiers for shallow discourse relations.

[13] [14] [15] [16] [23] [17] FR system

supported languages en en en, zh en, zh en, zh en, zh en, zh

supported relation types All All Non-E All All All All

different sense models 3 2 1 5 3 2 1

external resources 3 2 1 3 2 0 0

hand-engineered features yes yes no yes no no no

end-to-end trainable no no yes no no no yes

tokenized input required required required required required required optional

All previous systems or their components for sense classification consist of substantially different models for English (en) and Chinese (zh) languages and also for

handling Explicit, Implicit and other discourse relations. Our FR system at the word (FR-wa) and at the character level (FR-ca) differ in many ways.

https://doi.org/10.1371/journal.pone.0206057.t002
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Explicit discourse relations use discourse connectives or markers as linguistic expres-

sions, that explicitly signal the presence of a discourse relation between two arguments [24]. It

turns out, that using only a list of connectives sets a reasonably high baseline for sense classifi-

cation in English. Adding more syntactic category features helps to mitigate most ambiguities

between their discourse or non-discourse usage [9]. Further improvements can be achieved by

also extracting POS tags and features from the context of connectives [13]. The best known

approach for English uses a logistic regression classifier with several cross-argument similarity

features based on pre-trained word embeddings [14]. For Chinese, the best methods apply

SVM on the connectives themselves [23] or apply focused RNNs [17], like we do. Other meth-

ods for Chinese Explicit discourse relations use logistic regression classifiers with features

similar to English [16], but their performance is slightly worse.

Implicit discourse relations are missing an overt discourse connective and their inter-

pretation needs to rely on semantic meaning and general knowledge about the world. They

were first approached with conventional machine learning techniques and hand-engineering.

Due to the lack of data, early work used patterns to extract explicit discourse examples from

unlabeled data, and generated synthetic Implicit discourse relations by just removing the

connectives [25]. However, linguistic dissimilarity between explicit and implicit data has to be

considered to determine in which cases it is safe to do this [26]. Early supervised approaches

relied heavily on hand-engineered lexicons and features derived from syntactic parse trees.

Features based on cross-products of words between arguments help, but they are not the

semantically-related pairs that researchers hoped for [10]. Another successful approach is mas-

sive extraction of production rules, dependency rules, and word pairs followed by a feature

selection process [12, 21]. Employing additional features from Brown cluster pairs and corefer-

ence patterns improves the results even further [13, 27]. Unfortunately, the crucial role of fea-

ture selection and cut-off thresholds indicates that most features are useless and contribute

more noise than signal. Despite the use of thousands to millions of features, Naive Bayes with

feature selection proved to be the most efficient and consistently best-performing conventional

machine learning technique for English Implicit discourse relations [21, 27]. Best conven-

tional methods for Chinese are based on production rules of arguments [28], however some

managed to enhance them with word and verb pairs at specific locations to achieve slightly bet-

ter performance [16].

Methods based on neural networks seem to be particularly appealing for processing

Implicit discourse relations due to their power of capturing semantic information in their

latent vector representations. An early approach computed vector representations of argu-

ments of discourse relations and coreferent entity mentions through a series of compositional

operations over the syntactic parse tree [29]. Another approach constructed vector representa-

tions of arguments as an average of pre-trained word embeddings combined with Brown clus-

ters [30]. A comparison of one-hot, Brown, and vector representations on word pairs of

arguments confirmed that pre-trained word embeddings seem to provide most of the semantic

and syntactic information relevant to the task [31]. Best known approaches with neural net-

works somehow produce vector representations of both arguments and then apply a FNN for

classification. The simplest approaches compute only an average of pre-trained word embed-

dings and achieve state-of-the-art results on English [15], or perform a series of summations

and multiplications of pre-trained word embeddings and parse tree depth embeddings [23].

Some apply convolutional neural networks on each argument separately [14, 16], while others

use them to produce shared vector representations of cross-argument word pairs in a multi-

task environment with different annotation frameworks [32]. State-of-the-art performance on

Chinese is achieved by our older two-model system with focused RNNs at word level [17]. It

differs from FR system by: using two separate models (one for processing Explicit and one

Sense classification of shallow discourse relations with focused RNNs
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for non-Explicit discourse relations), requires tokenized input at word level, during train-

ing only random noise samples are introduced for each discourse relation sample, and it uses

many fine-tuned parameters for each model and language. We build upon this approach,

because we want our FR system to be easily trainable, handle different label sets and languages,

and not depend on external resources.

Neural attention mechanisms allow a model to automatically search for the parts of the

input that are relevant for processing at each step and adjust its focal point over time. This cor-

responds with the view, that clauses and sentences are sequences of words where all words do

not equally contribute to their meaning and can be perceived with emphasis on different

aspects. Initially they were applied in encoder-decoder frameworks, such as image caption

generation where a CNN encodes the image and an attention mechanism helps the RNN

decode better descriptions [33]. For machine translation, the same concept, but with bidirec-

tional RNN for encoding, successfully learned to align words and translate between English

and French [34]. Adding the attention mechanism to a three-layer LSTM model enabled it to

successfully perform linearized syntactic constituency parsing [35]. Attention mechanism is

also suitable for question answering tasks [36], because it gives the model at each answer gen-

erating step a fuzzy access to its internal memory as a weighted average representation of all

memory locations. End-to-end memory networks [37] present a different approach by stack-

ing multiple attention layers and updating the question representation at each step.

The core component of FR system is our novel generalization of the focused RNNs layer, a

neural attention mechanism. The concept of focused RNNs layer at word level was introduced

by Weiss and Bajec (2016) [17]. It differs greatly from other attention mechanisms and repre-

sents the first multi-dimensional RNN-attention mechanism. In contrast to previous mecha-

nisms, all attention weights are computed only once by a filtering RNN and not recomputed at

each processing step to focus on a different aspect. Instead of computing a single attention

weight for each word, the multi-dimensional approach represents a natural progression of this

idea by computing multiple attention weights for each aspect of each word in parallel. Instead

of using a primitive weighted average to compute sentence/argument embeddings it applies

downstream RNNs to compose information on different aspects of input sequences into argu-

ment embedding subspaces. These argument embeddings can later be used for different NLP

tasks, such as sense classification. Our generalization of focused RNNs layer further improves

upon this by: processing any sequence of symbols of arbitrary lengths (such as character level

inputs), sharing weights between multiple focused RNNs layers, using a bidirectional LSTM

for filtering RNN, and LSTMs for focused downstream RNNs.

FR system

In this section, we start with introducing our FR system and its neural network architecture,

then provide details for each of the neural network layers it consists of, and finally describe the

training process.

FR system is our proposed solution/method for sense classification of shallow discourse

relations. It consists of a single end-to-end trainable neural network, input preparation at

word or character levels, and the training procedure with a simple data augmentation tech-

nique. The architecture of our neural network with focused RNNs layer is presented in Fig 1.

It directly follows the task definition, is designed to be language-independent, can handle all

types and senses of discourse relations, requires no feature engineering or external resources,

and can be applied at the word level (on tokenized sentences) and even at the character level.

The whole model is end-to-end differentiable and can be trained with backpropagation from

labeled samples.

Sense classification of shallow discourse relations with focused RNNs
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The input for each discourse relation is provided in the form of four text spans: for two

arguments (arg1, arg2), an optional connective (conn), and optional punctuation in Chi-

nese (punc). In the spirit of end-to-end training we perform no preprocessing and work

directly with concatenated sequences of input symbols at either word or character level (w(0),

w(1), . . ., w(t)). Without using any pre-trained word embeddings or other resources, in the first

layer the model learns to transform input symbols into task-specific vector representations,

called word or character embeddings (x(t)). The focused RNNs layer consists of a filtering

RNN, a multiplicative filtering/gating mechanism, and several focused downstream RNNs. By

multiplying attention weights with the input sequence (x0ðtÞ1 , x0ðtÞ2 , . . ., x0ðtÞi ) downstream RNNs

can specialize or focus on different aspects of each text span and produce fixed-size vector rep-

resentations or argument embeddings of different aspects (y1, y2, . . ., yi). All concatenated

argument embeddings (y:arg1, y:arg2, y:conn, y:punc) are passed into a two-layer FNN to classify

the sense label of a discourse relation (p).

We successfully applied the same neural network architecture on Chinese and English data-

sets at both the word level (FR-wa) and character levels (FR-ca). Due to the differences

Fig 1. FR system with focused RNNs layer for sense classification. Each of the four text spans are first mapped to

word embeddings, then separately processed by our focused RNNs layer to produce multi-dimensional argument

embeddings. These are used in a two-layer FNN to perform sense classification.

https://doi.org/10.1371/journal.pone.0206057.g001
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between languages and different sense labels, a few basic parameters had to be adjusted (see

Table 3). In Evaluation, we present detailed evaluation results of each model.

Word or character embeddings layer

The first layer of our model transforms input symbols at either word or character level (w(t))

into task-specific vector representations (x(t)) suitable for neural networks, called word embed-

dings [38] or character embeddings. We train these embeddings from scratch and do not use

any other resources provided by the CoNLL 2016 Shared Task [8], such as POS tags, syntactic

parse trees, dependency parses, Brown clusters, or pre-trained word embeddings.

If we process input at the word level (as in FR-wa model), we use the fact that all datasets

provide each discourse relation in the form of four text spans already tokenized/segmented

into words and punctuation. We represent them as four concatenated sequences of words or

tokens (w(t)). Due to technical limitations, we crop longer sequences depending on the lan-

guage (see Table 3). Initially our method scans the whole training dataset to build a vocabulary

of known words. A special out-of-vocabulary symbol is reserved for unseen words, that may

be encountered later.

If we process input at the character level (as in FR-ca model), we represent each discourse

relation as four concatenated sequences of characters (w(t)), including white-spaces, punctua-

tion, and other symbols. Because there are far fewer different characters as there are words

and more characters per sentence than words, maximal lengths of sequences are longer (see

Table 3). Initially our method scans the whole training dataset to build a vocabulary of known

characters. A special out-of-vocabulary symbol is reserved for the improbable event, that

unseen characters are encountered later. There are several benefits of using character-level rep-

resentations over word-level: they do not suffer from out-of-vocabulary issues, are able to

model different and rare morphological variants of a word, and do not require tokenization/

segmentation.

The word or character embeddings layer are computed in the same way. It can be thought of

as a lookup table LTW(�), that maps each input symbol w(t) from the vocabulary into a fixed-

size vector representation x(t) of real numbers, called word or character embedding,

xðtÞ ¼ LTWðwðtÞÞ ð1Þ

where (t) is the time dimension in the sequence, and W a trainable matrix for the lookup table.

Table 3. Adjust basic model parameters for each language.

Parameter Chinese English

FR-wa FR-ca simple FR-wa FR-ca simple

Argument 1 length 500 900 500 100 400 100

Argument 2 length 500 900 500 100 400 100

Connective length 10 20 10 10 20 10

Punctuation length 2 2 2 0 0 0

Focused RNNs 12 12 − 8 8 −
- recurrent dim. 20 20 240 20 20 160

Trainable weights 416,400 177,880 1,309,472 947,119 70,499 1,236,943

- word emb. (20-dim) 295,700 57,180 295,700 878,360 1,740 878,360

- other layers 120,700 120,700 1,013,772 68,759 68,759 358,583

Due to the differences between languages and different sense labels, we need to adjust the maximal lengths of text spans and the number of focused downstream RNNs.

Our model at the word (FR-wa) and at the character level (FR-ca) have far fewer trainable weights than the baseline model with simple LSTMs (simple).

https://doi.org/10.1371/journal.pone.0206057.t003
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Although a couple of pre-trained word embedding lookup tables exist for different lan-

guages, such as Word2vec [39] or GloVe [40], we achieved better results by learning task-spe-

cific word embeddings from scratch. On the other hand, there are no pre-trained character

embeddings, so we also had to learn task-specific character embeddings from scratch. These

embeddings automatically emerge when training the whole model in an end-to-end manner

using backpropagation. Even though some experiments suggest that optimal word embed-

dings are dependent on discourse relations [31], the lack of large amounts of training data

makes it unrealistic to learn separate word embeddings. By applying the same word or charac-

ter embedding layer to all four text spans, all input symbols are thus represented in the same

vector space.

Focused RNNs layer

The focused RNNs layer can analyze different aspects of input sequences of word embeddings

(x(t)) and project them into fixed-size vector representations, called sentence or argument

embeddings (y). Our work builds upon the concept of focused RNNs layer at word level [17].

Each text span represented as a sequence of word embeddings (x(t):arg1, x(t):arg2, x(t):conn,

x(t):punc) is processed by a separate focused RNNs layer as presented in Fig 2. For each word

embedding the filtering RNN (RNNf) first produces a vector of attention weights (f ðtÞ). The fil-

tering/gating mechanism multiplies each weight with the same word embedding to produce a

weighted word embedding (x0ðtÞi ). The weighted input sequence produced in this way makes it

possible for downstream RNNs (RNNi) to focus on different aspects and project each one into

a fixed-size vector representation (yi) in an argument embedding subspace. Afterwards these

vectors are separately concatenated for each text span to produce four argument embeddings

(y:arg1, y:arg2, y:conn, and y:punc).

Fig 2. Focused RNNs layer consists of a filtering RNN, a filtering mechanism, and focused downstream RNNs. For

each word embedding the filtering RNN produces a vector of attention weights. The filtering mechanism multiplies

each weight with the same word embedding to produce a weighted word embedding. Each focused downstream RNNs

then projects these into an argument embedding subspace.

https://doi.org/10.1371/journal.pone.0206057.g002
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The intuition behind it is that different downstream RNNs can specialize or focus on differ-

ent aspects of each text span in parallel and independently of one another. Due to the black-

box nature of neural networks it is unclear what these aspects represent. It seems that the opti-

mal number of focused RNNs depends on the language and task (see Table 3), but not on

sense labels or their distribution. In its internal state each focused RNN composes a fixed-size

vector representation in an argument embedding subspace, that can be used in subsequent lay-

ers to solve a given task. To the best of our knowledge, this represents the first multi-dimen-

sional RNN-attention mechanism. By applying the same focused RNNs layer to each text span,

we encourage them to compose information on different aspects of input sequences into the

same argument embedding space, instead of overfitting on specifics of each text span.

First the filtering RNN (RNNf) produces a vector of attention weights f (t) between [0, 1] for

each position (t) of the input sequence. These can be interpreted as the relative importances of

position (t) during blending of different aspects of the input sequence. Theoretically any type

of RNN can be used for the filtering RNN, but a bidirectional LSTM layer [41] with the σ acti-

vation function performs somewhat better, because it can capture long-term dependencies

from preceding and succeeding input symbols. LSTM [42] is a commonly used RNN that fea-

tures an internal memory cell c(t) whose manipulation and usage is controlled with an input gi,
forget gf, and output go gates. It can be described with

gi ¼ sðWixðtÞ þ Uif ðt� 1ÞÞ

gf ¼ sðWfxðtÞ þ Uf f ðt� 1ÞÞ

go ¼ sðWoxðtÞ þ Uof ðt� 1ÞÞ

cðtÞ ¼ gf � cðt� 1Þ þ gi � sðWcxðtÞ þ Ucf ðt� 1ÞÞ

f ðtÞ ¼ go � sðcðtÞÞ

ð2Þ

where� represents element-wise multiplication (Hadamard product). Wi, Wf, Wo, Ui, Uf, Uo

are trainable matrices, and c(−1) and f (−1) are the initial hidden states. The bidirectional LSTM

has two sets of these formulas differing only in the direction of processing the time dimension.

The output vectors f (t) at matching positions from both directions are then averaged to pro-

duce the attention weights f ðtÞ. We should share the weights of all filtering RNN globally to

ensure that the attention weights for each text span are produced by the same mechanism.

Afterwards we apply a multiplicative filtering/gating mechanism to regulate how much of

the input signal should be passed to different focused downstream RNNs. For each position (t)
of the input sequence we have an input vector x(t), usually a word embedding, and a vector of

attention weights f ðtÞ from the filtering RNN. We separately multiply the input vector with

each dimension of attention weights f ðtÞ½i� in order to direct the attention to different aspects of

the input sequence

½f ð0Þ; f ð1Þ; . . . ; f ðtÞ� ¼ RNNf ð½xð0Þ; xð1Þ; . . . ; xðtÞ�Þ

x0ðtÞi ¼ f ðtÞ½i� xðtÞ
ð3Þ

where the result of RNNf(�) is a sequence of averaged output vectors for each position from the

filtering RNN. xðtÞi represents the weighted vector to be passed to the i-th focused downstream

RNN (RNNi).
Each focused downstream RNN (RNNi) receives a sequence of weighted inputs

½x0ð0Þi ; x0ð1Þi ; . . . ; x0ðtÞi � and composes a fixed-size vector representation of its aspect yi in its
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argument embedding subspace. For usage in classification tasks, such as sense classification,

the vectors of all aspects are then concatenated to form the final argument embedding (eg.

y:arg1 for arg1)

yi ¼ RNNið½x
0ð0Þ

i ; x0ð1Þi ; . . . ; x0ðtÞi �Þ

y:arg1 ¼ Concatð½y1; y2; . . . ; yi�Þ
ð4Þ

where the result of RNNi(�) is the last internal state of the i-th focused RNN, and Concat(�)
represents concatenation of vectors. Any type of RNN can be used for focused RNNs

(RNNi), but we did not observe any substantial gains in using specific RNNs, probably due

to already weighted inputs from the filtering mechanism. To avoid introducing new meth-

ods, we use same forward-only LSTM for focused downstream RNNs. We should apply the

same set of focused downstream RNNs (RNNi) to each input sequence. This encourages

each downstream RNN to specialize or focus on a different aspect and project each aspect

into the same argument embedding subspace, instead of overfitting on specifics of each

input sequence.

Note that the concept of focused RNNs layer differs greatly from other neural attention

mechanisms. Differences are described in section Background.

Feed-forward classification layer

Finally, all concatenated argument embeddings (y:arg1, y:arg2, y:conn, y:punc) are passed into a

two-layer feed-forward neural network (FNN) to perform classification of the sense label (p).

First all argument embeddings are processed by a feed-forward layer with the SReLU activa-

tion function, afterwards another feed-forward layer with the Softmax activation function is

put on top to compute the classification probability distribution p

y0 ¼ Concatð½y:arg1; y:arg2; y:conn; y:punc�Þ

y00 ¼ SReLUðW 0y0 þ b0Þ

p ¼ SoftmaxðW 00y00 þ b00Þ

ð5Þ

where Concat(�) represents concatenation, and SReLU(�) and Softmax(�) represent the corre-

sponding activation functions, whose details are described below.

The S-shaped rectified linear activation unit (SReLU) [43] consists of a piecewise linear

function with three parts. It is defined as

SReLUðziÞ ¼

tli þ a
l
iðzi � t

l
iÞ zi � tli

zi tli < zi < tri

tri þ a
r
i ðzi � t

r
i Þ tri � zi

8
>>><

>>>:

ð6Þ

where tri ; a
r
i ; t

l
i; a

l
i are four trainable parameters and the subscript i indicates that we allow

SReLU to vary in different dimensions of its input vectors. Due to its construction it is capable

of learning both convex and non-convex functions. This makes the SReLU activation function

perform somewhat better for sense classification than the convex-only ReLU activation or

without an activation function, but is faster to compute than traditional trigonometric

functions.

Sense classification of shallow discourse relations with focused RNNs
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The Softmax activation function computes a probability vector over its inputs, like a logistic

regression. It is defined as

SoftmaxðziÞ ¼
ezi
P

je
zj ð7Þ

Training and implementation

Training can be performed on the training dataset with backpropagation with any gradient

descent optimization algorithm. We chose to use the Adam optimizer [44] because it is well

suited for problems that incorporate many parameters. To parallelize and speed up the learn-

ing process, training is done in mini-batches of 64 training samples. We use masking to pro-

cess variable sizes of text spans and use fixed mini-batch dimensions. In addition to tracking

the training loss and validation loss functions, we also periodically evaluate the performance of

our model using the official evaluation methodology of CoNLL 2016 Shared Task. The training

procedure is stopped when there is no improvement on the validation dataset in last 10 real

epochs.

A suitable loss function or training objective for sense classification is the categorical cross-

entropy error function, also known as multi-class log-loss. The goal is to minimize the differ-

ence between the computed approximating distribution p and the one-hot vector encoding of

the true sense labels provided on the training data.

FR system for sense classification is available at http://github.com/gw0/conll16st-

v35-focused-rnns/ under the AGPL-3.0+ license and implemented in Python 2.7 using the

Keras 1.2.2 library [45]. The Keras library provides a high-level API for developing neural net-

works, it is based on Theano and Tensorflow, and is capable of running on either CPU or

GPU. All models and their training procedures are implemented in Keras.

It is impossible to compare the computational time required by FR system with other sys-

tems, because others did not report this information. Training FR system at word level on the

English dataset takes around 8 hours on a PC with a middle-range GPU, while performing pre-

dictions on the English test dataset takes around 48 seconds. Its prediction times are among

the fastest if compared to submissions of CoNLL 2016 Shared Task.

Data augmentation. During training we perform a simple data augmentation technique

that makes the model more robust to noise and improves the learning of task-specific word or

character embeddings from scratch. We transform each original discourse relation in the

training dataset into 2 positive and 2 negative samples.

For positive samples the sense label remains the same, because we introduce only so little

noise, that it should not affect the overall meaning. This improves the robustness of the classi-

fier with respect to noise in data. For positive samples there is a 30% probability that 10% of

symbols in arg1 and arg2 get mutated by each of the following three functions:

• duplicate a randomly chosen symbol (it may may be important)

• insert at random the out-of-vocabulary symbol (it may -OOV- be important)

• forget a randomly chosen symbol (it -OOV- be important)

For negative samples we use a special no-sense label, because at least a part of them is always

replaced with random symbols from the vocabulary, thus the text itself does not make any

sense and there is no discourse relation anymore. This also improves the robustness of inter-

mediate representations and counteracts the need to normalize word or character embeddings

on the whole vocabulary. For negative samples first conn and punc are always replaced with
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random symbols, if present. Afterwards there is a 70% probability that arg1 and arg2 get

mutated by each of the following three functions (and in the unlikely event, that nothing

changed, everything is replaced with random symbols of maximal length):

• replace arg1 with random symbols of same length (admission Charles crash $
going Witter 20.9 daily Kidder million is -- ignoring cloud &
list)

• replace arg2 with random symbols of same length

• swap arg1 and arg2

Hyper-parameters. We use the same model hyper-parameters on all setups to make it

usable almost out-of-the-box on any language, label set, and level of input representation. It is

interesting to note, that attempts at fine-tuning the model hyper-parameters for different set-

ups did not substantially improve its performance. Due to the differences in average sentence

and token lengths, and number of sense labels, a few basic parameters had to be adjusted as

described in Table 3. Maximal lengths of text spans were determined in the way that 99% of

discourse relations are not modified. The optimal number of focused RNNs depends on the

language and not on whether it is applied at word or character level. All other parameters

should use the values described in this subsection.

It is sufficient that the dimensionality of the word embedding layer is only 20, of the filter-

ing RNN layer 8 for English and 12 for Chinese (to match the number of focused RNNs), of

focused downstream RNNs 20, and of the FNN hidden layer 80. Our goal is to predict only

sense labels, there are 11 for Chinese and 22 for English, including partially annotated senses

and a special no-sense label.

Initial values of trainable weights are set according to best practices, as they do not affect

the training outcome substantially. The word embedding layer is therefore initialized with a

uniform random distribution, all RNN layers with Glorot uniform random distribution [46]

and inner cells with an orthogonal matrix, and all FNN layers and the slope of the SReLU acti-

vation function again with Glorot uniform random distribution.

Due to many trainable parameters and the lack of training samples, we improve the gener-

alizability of our model with dropout layers [47] and weight sharing. Dropout is a well-known

regularization technique that reduces overfitting in neural networks by preventing complex

co-adaptations in the training dataset. We introduce dropout layers with 0.3 fraction of entries

that will be randomly set to 0 at each update during training time. We add them after each

major layer of our model: after the word embedding layer, after the concatenated argument

embeddings of focused RNNs, and after the FNN hidden layer before classification. We also

performed some experiments with dropout and zoneout regularization on recurrent connec-

tions of RNNs, but there were no substantial improvements. Furthermore, we tried to intro-

duce curriculum learning by gradually increasing the length of arguments during training but

again, with no substantial improvements. To improve the generalizability, our model also per-

forms sharing of trainable weights for word embedding, filtering RNN, and focused RNN lay-

ers, as described in previous subsections. Experiments have shown that disabling the weight

sharing degrades the performance of our model for sense classification.

Evaluation

To support that FR system is language-independent with respect to its inputs and architecture

we apply it as such on Chinese, as an example of a less supported language, and on English, as
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the language with most research and advanced language technologies. We follow the official

task formulation, datasets and evaluation methodology of the CoNLL 2016 Shared Task [8],

organized within the conference. The competition focused on shallow discourse parsing and

sense classification on these two languages.

Performance is computed using the F1-score based on the number of relations that match a

gold-standard relation exactly by comparing only the sense labels. In cases where the gold-

standard relation is annotated with two senses, the predicted sense must match one of these

senses to be considered correct. In cases where the gold-standard sense label is only partially

annotated, the predicted sense must match the partially annotated sense (although the blind

datasets do not contain partial annotation). Official ranking is based on the overall perfor-

mance on blind test datasets.

Chinese datasets

The Chinese datasets for the CoNLL 2016 Shared Task were adapted from the Chinese Dis-

course Treebank 0.5 (CDTB 0.5) [22] and the Chinese Wikinews. The CDTB 0.5 follows the

general annotation strategy of the PDTB 2.0 but adapts it to the Chinese language. The training

dataset contains 10240 relations from CDTB 0.5, the validation dataset contains 383, and the

testing dataset 455. The official ranking is based on the slightly out-of-domain blind test data-

set to evaluate robustness, which contains 2101 relations from 64 articles from the Chinese

Wikinews. Table 1 shows the distribution of discourse relations in these datasets according to

relation types that are not directly relevant to sense classification. Most frequent are

Implicit discourse relations that occur in Chinese three times as often as Explicit ones.

These datasets also contain POS tags, syntactic parse trees, and dependency parses, but in our

approach we ignore this information.

Since the concept of a sentence is less formalized in Chinese, arguments of discourse rela-

tions in Chinese are less evenly distributed as in English and defined semantically. Conse-

quently, we predict a flat set of 10 sense labels. Inter-annotator agreement on sense labels on

the CDTB 0.5 is overall 87.4% with expected agreement for Explicit relations better than

for non-Explicit types of relations.

Results for Chinese

In Table 4 we compare our results for sense classification on the Chinese datasets with winning

systems of the CoNLL 2016 Shared Task [8] and strong baselines:

• Weiss and Bajec (2016) [17] is our older two-model system, that was the overall top perform-

ing system of the CoNLL 2016 Shared Task. It uses two separate models with focused RNNs

at word level, many fine-tuned parameters, and trains with random noise samples, but uses

no external resources.

• Schenk et al. (2016) [23] uses a SVM classifier on the connectives themselves for Explicit
discourse relations, and for other a series of summations and multiplications of word and

parse tree depth embeddings. It uses pre-trained word embeddings and parse trees.

• Wang and Lang (2016) [16] uses logistic regression classifiers with many hand-engineered

features from the connective and its context for Explicit discourse relations, and produc-

tion rules and features with word and verb pairs at specific locations for non-Explicit. It

uses POS tags, parse trees, and word categories.

• most common class is a minimal baseline with no predictive power (uses CONJUNCTION).

Sense classification of shallow discourse relations with focused RNNs
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• simple LSTMs + augm. is a strong baseline model with 240-dimensional LSTM layers instead

of the focused RNNs layer in our system. Due to it having more than three times as many

trainable weights than our model, it should be far more powerful. It trains with our data aug-

mentation, but uses no external resources.

FR system at word (FR-wa) and character levels (FR-ca) with data augmentation improves

on overall state-of-the-art performance by 2.5% on the Chinese blind dataset (see Table 4). In

comparison to systems not using focused RNNs, it improves by more than 8%, despite using

only a single end-to-end trainable model, no hand-engineered features, or external resources.

For Explicit discourse relations our models perform comparably to Schenk et al. (2016)

[23], which is much simpler. Having a simpler model might be beneficial because there are far

fewer Explicit training samples available in Chinese datasets. For non-Explicit dis-

course relations it is interesting to note, that the performance of most approaches on the Chi-

nese blind dataset is far below the most common class baseline. This clearly suggests that

Schenk et al. (2016) [23] and Wang and Lang (2016) [16] overfit the training domain and style

of the CDTB 0.5 datasets. Our models at both word (FR-wa) and character level (FR-ca) cap-

ture the target concepts better, improving even on our older two-model by Weiss and Bajec

(2016) [17].

Additionally, we perform an ablation study to qualitatively assess the contribution of our

simple data augmentation technique (+ augm.) and the introduction of pre-trained word

embeddings (+ word2vec). These 300-dimensional pre-trained word embeddings were pro-

duced by the Skip-gram model from Word2vec [39] on the Gigaword simplified Chinese data-

set. The results indicate that introducing data augmentation mostly improves the performance

at word level for non-Explicit discourse relations and at character level for Explicit
discourse relations. Contrary to expectations, introducing pre-trained word embeddings does

not seem to substantially improve the performance. This suggests that the same semantic and

syntactic information relevant for sense classification can also be learned from scratch.

Table 4. Overall results on Chinese datasets.

Models valid test blind

All Exp Non-E All Exp Non-E All Exp Non-E

FR system

- word level 0.7285 0.9481 0.6743 0.7437 0.9319 0.6936 0.7120 0.7951 0.6814

- word level + augm. (FR-wa) 0.7520 0.9351 0.7070 0.7363 0.9375 0.6825 0.7396 0.7597 0.7322

- word level + word2vec + augm. 0.7493 0.9481 0.6993 0.7297 0.9479 0.6713 0.7373 0.7827 0.7205

- char level 0.7180 0.8961 0.6743 0.7253 0.9271 0.6713 0.7454 0.7862 0.7303

- char level + augm. (FR-ca) 0.7415 0.9351 0.6939 0.7253 0.9271 0.6713 0.7477 0.8463 0.7114

Prior work

- Weiss and Bajec (2016) [17] 0.7206 0.9351 0.6667 0.7011 0.9271 0.6407 0.7292 0.7898 0.7068

- Schenk et al. (2016) [23] 0.7572 0.9610 0.7059 0.7701 0.9634 0.7187 0.6373 0.8039 0.5759

- Wang and Lang (2016) [16] 0.7807 0.9610 0.7353 0.7701 0.9424 0.7242 0.6473 0.7669 0.6052

Baseline models

- most common class 0.5770 0.4156 0.6176 0.6110 0.5208 0.6351 0.5788 0.2880 0.6860

- simple LSTMs + augm. 0.7363 0.9221 0.6895 0.7231 0.8854 0.6797 0.6921 0.7968 0.6534

Overall results for all, Explicit and non-Explicit discourse relations on Chinese datasets expressed in F1-scores using the CoNLL 2016 Shared Task methodology.

Our FR system at word (FR-wa) and character levels (FR-ca) with data augmentation outperform all other systems on the blind dataset.

https://doi.org/10.1371/journal.pone.0206057.t004

Sense classification of shallow discourse relations with focused RNNs

PLOS ONE | https://doi.org/10.1371/journal.pone.0206057 October 30, 2018 15 / 24

https://doi.org/10.1371/journal.pone.0206057.t004
https://doi.org/10.1371/journal.pone.0206057


Previous studies [26] suggest that there is a substantial difference between Explicit and

non-Explicit discourse relations, thus we continue with a detailed analysis of Chinese

results in both situations. Because the Chinese datasets are small and discourse relations are

less evenly distributed (see Table 1), many sense labels only have a few training samples.

Removing them from target classes for classification would probably improve the overall per-

formance, but we reject this idea because it is in conflict with our goal of automatically training

our model in an end-to-end manner.

Table 5 shows per-sense results for Explicit discourse relations on Chinese datasets. As

expected, the results on the validation and test datasets are better because they originate from

the same CDTB 0.5 corpus as the training dataset. On the slightly out-of-domain blind test

dataset we see a degradation of more than 10% for two most common sense labels, CONJUNCTION

and EXPANSION. This suggests that they are realized differently in the blind dataset, and manual

feature engineering, which disambiguates their meaning could substantially improve the results.

Nevertheless, we see that our model at character level (FR-ca) achieves the best results with a

large margin for most common sense labels, especially CONJUNCTION, CONTRAST and PURPOSE. On

the other hand, our model at word level (FR-wa) still achieves competitive overall performance.

The strength of incorporating linguistic knowledge and hand-engineered features into a system,

as in Wang and Lang (2016) [16], is reflected in better performance for sense labels with only a

few samples, such as ALTERNATIVE and PROGRESSION.

Table 6 shows per-sense results for all of the other discourse relation types (Implicit,

AltLex, and EntRel) on Chinese datasets. The distribution of sense labels for Chinese non-

Explicit discourse relations is highly unbalanced. The most common sense, CONJUNCTION,

occurs approximately 5-times more frequently than the second and the third sense. Therefore,

the overall results are highly correlated with the performance on sense CONJUNCTION. All sys-

tems based on focused RNNs perform much better on the sense CONJUNCTION and therefore

substantially outperform other systems. Our model at word level (FR-wa) also seems to better

capture the target concepts of CONTRAST and EXPANSION, which makes it the best overall per-

forming system. Although the training dataset contains many samples of the EntRel dis-

course relations, our approach seems incapable of automatically learning the concept of

coreferent entity mentions. On the other hand, the hand-engineered system by Wang and

Lang (2016) [16] outperforms on two very low-frequent senses, ALTERNATIVE and PROGRESSION,

Table 5. Per-sense results for Explicit discourse relations on Chinese datasets.

Sense valid test blind

FR-wa FR-ca FR-wa FR-ca FR-wa FR-ca Weiss Schenk Wang simple

ALTERNATIVE − − − − 0. 0. 0. 0.0952 0.1000 0.

CAUSATION 1.0000 1.0000 1.0000 1.0000 0.8850 0.9524 0.9434 0.9524 0.9216 0.9434

CONDITIONAL 1.0000 0.9091 0.8000 0.8000 0.7294 0.8077 0.8454 0.8866 0.8791 0.9231

CONJUNCTION 0.9275 0.9412 0.9615 0.9495 0.7930 0.8515 0.7726 0.7711 0.7324 0.7673

CONTRAST 0.8750 0.8750 1.0000 0.8571 0.7482 0.8452 0.7564 0.7571 0.7245 0.7639

ENTREL − − − − − − − − − −
EXPANSION 1.0000 1.0000 0.8000 0.9333 0.5714 0.7500 0.7727 0.7907 0.7556 0.7273

PROGRESSION 0. 0. 0. 0. 0. 0.3333 0. 0.2857 0.3333 0.3333

PURPOSE 1.0000 1.0000 1.0000 1.0000 0.6667 0.9474 0.8182 0.9000 0.9000 0.8571

TEMPORAL 0.9412 0.9412 0.9091 0.9143 0.8143 0.9259 0.8659 0.9299 0.8591 0.8774

Overall 0.9351 0.9351 0.9375 0.9271 0.7597 0.8463 0.7898 0.8039 0.7669 0.7968

Results for each sense label for Explicit discourse relations on Chinese datasets expressed in F1-scores using the CoNLL 2016 Shared Task methodology.

https://doi.org/10.1371/journal.pone.0206057.t005
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but fails on most more-frequent ones, especially CAUSATION and CONJUNCTION. Overall, the per-

formance of our systems improves on state-of-the-art, despite using only a single end-to-end

trainable model, no hand-engineered features or external resources, and substantially outper-

forms other systems not based on focused RNNs.

English datasets

The English datasets for the CoNLL 2016 Shared Task were adapted from the Penn Discourse

TreeBank 2.0 (PDTB 2.0) [19] and the English Wikinews. The PDTB 2.0 annotates shallow dis-

course relations over the one million word corpus from Wall Street Journal. The training data-

set contains 32535 relations from Sections 2-21 of the PDTB 2.0, the validation dataset

contains 1436 relations from Section 22, and the testing dataset contains 1939 relations from

Section 23. The official ranking is based on the slightly out-of-domain blind test dataset to

evaluate robustness, which contains 1209 relations from 71 articles from the English Wiki-

news. Table 1 shows the distribution of discourse relations in these datasets according to rela-

tion types, that are not directly relevant to sense classification. Most frequent are Explicit
discourse relations that occur in English almost as often as Implicit ones. These datasets

also contain POS tags, syntactic parse trees, and dependency parses, but in our approach we

ignore this information.

Sense labels in all English datasets are organized in a three-level hierarchy adopted from the

PDTB 2.0. To reduce some sparsity without losing too much of the semantics, some senses

from the original PDTB 2.0 annotation have been merged. As a result there are only 21 differ-

ent sense labels, including partially annotated senses, that we need to predict. Inter-annotator

agreement on senses on the blind test dataset is overall 85.5% with better agreement for

Explicit relations than for non-Explicit types of relations.

Results for English

In Table 7 we compare our results for sense classification on the English datasets with winning

systems of the CoNLL 2016 Shared Task [8] and strong baselines:

Table 6. Per-sense results for non-Explicit discourse relations on Chinese datasets.

Sense valid test blind

FR-wa FR-ca FR-wa FR-ca FR-wa FR-ca Weiss Schenk Wang simple

ALTERNATIVE − − − − 0. 0. 0. 0.5000 0.5000 0.

CAUSATION 0.2667 0.1538 0.2500 0.3529 0.2333 0.2712 0.1754 0.0392 0.0755 0.1481

CONDITIONAL 0. 1.0000 0. 0. 0. 0. 0. 0. 0. 0.

CONJUNCTION 0.8198 0.8035 0.8068 0.8022 0.8388 0.8278 0.8213 0.7294 0.7442 0.7843

CONTRAST 0. 0. 0. 0. 0.1200 0.0800 0.0784 0.1481 0.0408 0.0816

ENTREL 0.3714 0.0392 0.3301 0. 0.1449 0. 0. 0.1982 0.2090 0.1926

EXPANSION 0.4800 0.5926 0.4000 0.4516 0.5455 0.3825 0.5250 0.4387 0.5024 0.4171

PROGRESSION − − − − 0. 0. 0. 0.2857 0.3333 0.

PURPOSE 0.6667 0.6667 0. 0. 0.1333 0.0690 0.3333 0.1250 0.1250 0.2857

TEMPORAL − − 0.6667 1.0000 0.3333 0.4211 0.3333 0.3636 0.3000 0.4800

Overall 0.7070 0.6825 0.6797 0.6713 0.7322 0.7114 0.7068 0.5759 0.6052 0.6534

Results for each sense label for Implicit, AltLex, and EntRel discourse relations on Chinese datasets expressed in F1-scores using the CoNLL 2016 Shared Task

methodology.

https://doi.org/10.1371/journal.pone.0206057.t006
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• Mihaylov and Frank (2016) [14] is the overall top performing system of the CoNLL 2016

Shared Task. It uses a predefined list of discourse connectives and two logistic regression

classifiers on argument embeddings and several cross-argument similarity features based on

pre-trained word embeddings and POS tags.

• Rutherford and Xue (2016) [15] uses a pooling function on word embeddings of each argu-

ment followed by a three-layer FNN. It uses pre-trained word embeddings, and is specialized

for non-Explicit discourse relations.

• most common class is a minimal baseline with no predictive power (uses EXPANSION.

CONJUNCTION).

• simple LSTMs + augm. is a strong baseline model with 160-dimensional LSTM layers instead

of the focused RNNs layer in our system. Due to it having one third more trainable weights

than our model, it should be far more powerful. It trains with our data augmentation, but

uses no external resources.

FR system at word (FR-wa) and character levels (FR-ca) with data augmentation do not fall

a lot behind state-of-the-art performance on the English blind dataset (see Table 7), despite

using only a single end-to-end trainable model, no hand-engineered features, or external

resources. As expected, Explicit discourse relations are classified better by Mihaylov and

Frank (2016) [14], who use a predefined list of discourse connectives. From the results on

non-Explicit discourse relations, we see that their cross-argument similarity features over-

fit the training domain and style of PDTB 2.0 datasets and perform similar to our approach on

the blind dataset. On the other hand, the specialized system by Rutherford and Xue (2016)

[15] achieves better results. This suggests that a simpler approach with pre-trained word

embeddings can capture the target concept better. Additionally, significantly lower F1-scores

of all competing systems for English than for Chinese indicate, that sense classification on

English is much more difficult than on Chinese and F1-scores are highly affected by differences

in grammar, sense labels, and their distribution.

Table 7. Overall results on English datasets.

Models valid test blind

All Exp Non-E All Exp Non-E All Exp Non-E

Focused RNNs

- word level 0.5788 0.8823 0.3124 0.5618 0.8764 0.2754 0.5062 0.7561 0.2940

- word level + augm. (FR-wa) 0.5930 0.8756 0.3447 0.5416 0.8460 0.2646 0.5170 0.7230 0.3415

- word level + word2vec + augm. 0.6009 0.9029 0.3351 0.5886 0.8970 0.3080 0.5182 0.7676 0.3063

- char level 0.5845 0.8968 0.3102 0.5385 0.8753 0.2321 0.5072 0.7237 0.3246

- char level + augm. (FR-ca) 0.5987 0.8907 0.3420 0.5442 0.8753 0.2430 0.5041 0.7279 0.3139

Prior work

- Mihaylov and Frank (2016) [14] 0.6413 0.9120 0.4032 0.6331 0.8980 0.3919 0.5460 0.7820 0.3451

- Rutherford and Xue (2016) [15] − − 0.4032 − − 0.3613 − − 0.3767

Baseline models

- most common class 0.2202 0.2807 0.1669 0.2088 0.2701 0.1530 0.2738 0.3903 0.1746

- simple LSTMs + augm. 0.6229 0.9120 0.3685 0.5643 0.8796 0.2774 0.5017 0.7766 0.2680

Overall results for all, Explicit and non-Explicit discourse relations on English datasets expressed in F1-scores using the CoNLL 2016 Shared Task methodology.

Our FR system at word (FR-wa) and character levels (FR-ca) with data augmentation fall behind state-of-the-art performance, but do not use any linguistic knowledge

or external resources.

https://doi.org/10.1371/journal.pone.0206057.t007
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We also perform an ablation study to qualitatively assess the contribution of our simple

data augmentation technique (+ augm.) and the introduction of pre-trained word embeddings

(+ word2vec). These 300-dimensional pre-trained word embeddings were produced by the

Skip-gram model from Word2vec [39] on the Google News English dataset. The results indi-

cate that introducing data augmentation usually improves the performance. Introducing pre-

trained word embeddings seems to only improve the performance on Explicit discourse

relations. This suggests that the same semantic and syntactic information relevant for

Implicit discourse relations can also be learned from scratch.

Previous studies [26] suggest that there is a substantial difference between Explicit and

non-Explicit discourse relations, therefore we continue with a detailed analysis of Chinese

results in both situations. Basic statistics show that there are substantial differences on the dis-

tribution of discourse senses. Some senses, like EXPANSION.EXCEPTION, are only present in the

training dataset and no other dataset, while 6 others contain merely a few training samples and

are not even present in the blind test dataset. If one would remove these senses from the

model, there would be fewer target classes for classification and consequently the overall per-

formance would improve. We reject this idea because it is in conflict with our goal of automat-

ically training our model in an end-to-end manner.

Table 8 shows per-sense results for Explicit discourse relations on English datasets. As

expected, the results on the validation and test datasets are better, because they are from the

same PDTB 2.0 corpus as the training dataset. Although the training dataset contains many

samples for COMPARISON.CONTRAST, EXPANSION.INSTANTIATION and TEMPORAL.SYNCHRONY, we see

a degradation of more than 15% in F1-score for all systems on the slightly out-of-domain blind

test dataset. This suggests that they are realized differently in the blind dataset, and manual fea-

ture engineering, which disambiguates their meaning, could substantially improve the results.

Our method at character level (FR-ca) seems to learn the correct concept of senses CONTIN-

GENCY.CAUSE.REASON, CONTINGENCY.CONDITION, and EXPANSION.CONJUNCTION slightly better than

Table 8. Per-sense results for Explicit discourse relations on English datasets.

Sense valid test blind

FR-wa FR-ca FR-wa FR-ca FR-wa FR-ca Mihaylov simple

COMPARISON.CONCESSION 0. 0.3529 0.2857 0.4211 0. 0.0260 0.2529 0.1463

COMPARISON.CONTRAST 0.9583 0.9501 0.9467 0.9296 0.3623 0.3636 0.3934 0.3559

CONTINGENCY.CAUSE.REASON 0.6392 0.7619 0.7619 0.8837 0.6111 0.7059 0.7037 0.8438

CONTINGENCY.CAUSE.RESULT 0.7742 0.7742 0.7097 0.8493 0.6000 0.6957 0.9167 0.8462

CONTINGENCY.CONDITION 0.9556 0.9318 0.9438 0.8947 0.9286 0.9804 0.9455 0.9811

ENTREL − − − − − − − −
EXPANSION.ALT 0.9091 0.8000 0.8571 0.8333 0.6667 0.5882 0.6667 0.6667

EXPANSION.ALT.CHOSEN ALT. 0. 0.7143 0.6250 0.5000 − − − −
EXPANSION.CONJUNCTION 0.9628 0.9596 0.9587 0.9584 0.9565 0.9535 0.9650 0.9585

EXPANSION.EXCEPTION − − − − − − − −
EXPANSION.INSTANTIATION 0.8421 0.9474 1.0000 1.0000 0.6667 0.8571 0.8000 0.8000

EXPANSION.RESTATEMENT 0. 0. 0.5000 0. 0. 0. 0.5000 0.5000

TEMPORAL.ASYNC.PRECEDENCE 0.9592 0.9143 0.9143 0.9000 0.9333 0.8434 0.9620 0.9487

TEMPORAL.ASYNC.SUCCESSION 0.7407 0.7765 0.8352 0.6526 0.8037 0.8148 0.8522 0.8739

TEMPORAL.SYNCHRONY 0.7613 0.8098 0.8214 0.6821 0.5524 0.5913 0.6838 0.6296

Overall 0.8756 0.8907 0.8460 0.8753 0.7230 0.7279 0.7820 0.7766

Results for each sense label for Explicit discourse relations on English datasets expressed in F1-scores using the CoNLL 2016 Shared Task methodology.

https://doi.org/10.1371/journal.pone.0206057.t008
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other methods. It is competitive for EXPANSION.CONJUNCTION, TEMPORAL.ASYNCHRONOUS.PRECE-

DENCE, and TEMPORAL.ASYNCHRONOUS.SUCCESSION, but falls behind in performance for other

senses. Overall, the performance of our models is not far behind state-of-the-art, despite using

only a single end-to-end trainable model, no hand-engineered features, or external resources.

Table 9 shows per-sense results for all of the other discourse relation types (Implicit,

AltLex, and EntRel) on English datasets. Predicting non-Explicit discourse relations

seems to be a substantially more difficult problem. All systems completely fail to recognize 6

sense labels, even on the validation and test datasets. This is not unusual for sense labels with

only a few samples, but there should be enough training samples for senses COMPARISON.CON-

TRAST and TEMPORAL.ASYNCHRONOUS.PRECEDENCE. This suggests that the target concept for these

senses seems to be unsuitable for current systems, and thus a completely new approach is

needed. The system by Mihaylov and Frank (2016) [14] substantially outperforms our models

at EXPANSION.CONJUNCTION and EXPANSION.INSTANTIATION. For other senses, our model at word

level (FR-wa) achieves slightly better or comparable results. Overall low performance for all

systems suggests that much more research and different approaches are needed for classifying

non-Explicit discourse relations in English.

Conclusion

In this paper, we move away from hand-engineering and designing a system specifically for a

given language, and present a novel system for sense classification of shallow discourse rela-

tions (FR system). In contrast to existing systems, we only need to train a single model for all

types and senses of discourse relations (no differences in handling Explicit and

Implicit discourse relations), perform no preprocessing of its input text spans, nor use any

feature engineering or external resources, not even pre-trained word embeddings. The core

Table 9. Per-sense results for non- Explicit discourse relations on English datasets.

Sense valid test blind

FR-wa FR-ca FR-wa FR-ca FR-wa FR-ca Mihaylov simple

COMPARISON.CONCESSION 0. 0. 0. 0. 0. 0. 0. 0.

COMPARISON.CONTRAST 0. 0.0233 0. 0. 0. 0.0625 0. 0.

CONTINGENCY.CAUSE.REASON 0.3099 0.2805 0.2634 0.2576 0.2292 0.1786 0.2136 0.2604

CONTINGENCY.CAUSE.RESULT 0.0984 0.0615 0.1273 0.1062 0.2500 0.1860 0.1818 0.2385

CONTINGENCY.CONDITION − − − − − − − −
ENTREL 0.5368 0.4993 0.4300 0.3781 0.5356 0.4912 0.5424 0.4479

EXPANSION.ALT − − − − 0. 0. 0. 0.

EXPANSION.ALT.CHOSEN ALT. 0. 0. 0. 0. − − − −
EXPANSION.CONJUNCTION 0.1870 0.3222 0.1747 0.1616 0.2182 0.0320 0.3444 0.2320

EXPANSION.EXCEPTION − − − − − − − −
EXPANSION.INSTANTIATION 0.3000 0. 0.1961 0.0270 0.1667 0.0800 0.2807 0.1538

EXPANSION.RESTATEMENT 0. 0.2383 0. 0.1107 0. 0.1810 0.1963 0.0619

TEMPORAL.ASYNC.PRECEDENCE 0.0714 0. 0.2000 0. 0. 0. 0. 0.

TEMPORAL.ASYNC.SUCCESSION 0. 0. 0. 0. − − − −
TEMPORAL.SYNCHRONY 0. 0. 0. 0. 0. 0. 0. 0.

Overall 0.3447 0.3420 0.2646 0.2430 0.3415 0.3139 0.3451 0.2680

Results for each sense label for Implicit, AltLex, and EntRel discourse relations on English datasets expressed in F1-scores using the CoNLL 2016 Shared Task

methodology.

https://doi.org/10.1371/journal.pone.0206057.t009
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component of FR system is our novel generalization of the focused RNNs layer, the first multi-

dimensional RNN-attention mechanism for generating text/argument embeddings.

The most important characteristic of FR system is the end-to-end trainable approach, that

is language-independent with respect to its inputs and architecture, and can be used almost

out-of-the-box on any language, label set, and level of input representation. We have con-

firmed this by successfully applying almost the same model hyper-parameters on two substan-

tially different languages, but also by providing its input at the word and even character levels.

It is true, that the model needs to be trained on labeled datasets for each language, but it does

not need any language-specific features, pipelines, or resources. It is interesting to note, that

attempts at fine-tuning the model hyper-parameters for different setups and introducing pre-

trained word embeddings did not substantially improve its performance. On the contrary, dis-

abling either the simple data augmentation technique or weight sharing degraded it.

By following the official task formulation, datasets and methodology of the CoNLL 2016

Shared Task [8], we compared FR system with winning systems and strong baselines on Chi-

nese and English, two substantially different languages. It improved 2.5% over existing best

overall results on the Chinese blind dataset (with 0.7477 F1-score), but did not fall a lot behind

state-of-the-art on English blind dataset (with 0.5170 F1-score). This lack behind state-of-the-

art was expected, given that English is the most explored language with advanced language

technologies, and systems carefully designed for it can outperform our generic approach.

However, significantly lower performance scores of all systems for English than for Chinese

indicate, that sense classification on English is much more difficult than on Chinese and F1-

scores are highly affected by differences in grammar, sense labels, and their distribution.

This difference is also observed for FR system, that does not achieve comparable F1-scores on

both languages. Because its performance depends on the language, we can not claim it is

completely language-independent. This drop in performance when switching to another lan-

guage could be mitigated by adding language-specific features, external resources, or addi-

tional information.

Automated discourse parsing and analysis, especially sense classification of Implicit dis-

course relations, is a crucial next step in natural language processing. Even though the theoreti-

cal grounds for this linguistic phenomena are not fully understood, our single language-

independent neural network model is capable of learning the necessary concepts for sense clas-

sification without manual feature-engineering efforts and external resources. Furthermore, it

is likely that larger amounts of training data or removal of less-frequent sense labels would

improve its performance to a practical level.
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