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Abstract

Effective video monitoring systems require optimization of camera and road network cover-

age, to exploit fully the hardware and software solutions in smart city traffic applications.

Monitoring requirements have grown increasingly diverse as scenes are becoming increas-

ingly complex, thereby transforming the camera and road network coverage optimization

issue into a nonlinear, high-dimension, and multi-objective problem. Previous research on

this topic however, has focused on a single, specific optimization objective, which may result

in invalid optimization results in actual applications. To extend this research, we propose a

multi-objective scheduling optimization algorithm for a camera network that addresses the

problem of directional road network coverage. In this solution, we incorporate an expanding

parameter of main optical axes into particle swarm optimization algorithm. Our new strategy

divides the range of main optical axes of all the cameras to control the scheduling number,

achieving collaborative optimization of multiple objectives. In a simulated camera and road

network, an experiment was designed for evaluating the effectiveness of the proposed

method, comparing the distribution of optimization results with the global and local optimal

solutions of the true value. A second experiment compared the distribution, performance

and running time of the optimization results with different values of expanding parameter of

main optical axes. A third experiment compared the performance of the optimization solu-

tions with different values of camera parameters. The results showed that the proposed

method can adapt to user application preference, and is effective and robust to schedule

and allocate monitoring resources in different scenarios.
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Introduction

Monitoring cameras are sensors used to observe both static scenes and moving objects in the

Internet of Things and Smart cities, given their real time, continuity, and reproducibility. In

actual applications, cameras are typically deployed on the intersections of road network to

monitor moving vehicles and pedestrians whose direction and trajectories are greatly con-

strained by the road network. These systems however, are not quite effective, as their low

scheduling flexibility and cooperativity, which generates several challenges about how to

improve coverage quality of available monitoring resources faced with various application

demands. Therefore, the optimization problem of camera and road network coverage presents

not only a key issue for video monitoring systems but also an interesting research direction for

the academia.

The rest of the paper is organized as follows. Section 2 presents the related works about

optimization problem of camera and road network coverage. Section 3 models the coverage

optimization problem of camera on a directional road network. Section 4 presents our multi-

objective scheduling optimization algorithm. Section 5 describes the experiment. Section 6 dis-

cusses the effectives of the proposed method, influence of the expanding parameter of main

optical axes, and camera parameters. Section 7 concludes the paper.

Related work

Solving the optimization problem of camera and road network coverage generally involves

two key steps, modeling coverage optimization objectives and optimization processing [1, 2].

As the central issue in modeling, coverage optimization objectives have attracted the attention

of many researchers who, in turn, have generated several interesting findings, and several opti-

mization methods have been designed for such optimization objectives, especially the multi-

ple-objective optimization which has good applicability in actual situations.

Coverage optimization objectives

Several coverage optimization objectives have been proposed, such as strong barrier coverage

[3], k-coverage [4], β-QoM coverage [5], and all-view coverage [6]. A strong barrier coverage

can provide no-gap coverage that prevents intruders from passing through a region unde-

tected, regardless of the crossing paths they choose. A camera network can provide k-barrier

coverage for an ROI if at least k cameras can cover all the crossing paths throughout the region.

β-QoM coverage focuses on the breadth of barrier coverage, which can guarantee high-quality

monitoring along with the breadth of β, which in turn monitors the movement of intruders

moving from one side of a squared region to the opposite side. A full-view covered object is

always monitored by a camera regardless of its direction and when the viewing direction of

camera is sufficiently close to the facing direction of the object. On this basis, several coverage

optimization methods have been designed for different coverage optimization objectives.

Coverage optimization methods

Some representative coverage optimization methods are voting strategy [7], method of geome-

try and graph theory [8, 9], greedy search [10], virtual potential field [11], and various heuristic

algorithms, such as particle swarm optimization (PSO) algorithm [12], genetic algorithm (EA)

[13], and simulated annealing algorithm [14]. Previous studies have established coverage opti-

mization models that aim at specific optimization objectives and obtained excellent optimiza-

tion results with different optimization methods. The aforementioned studies however, focus

on a single, specific objective, while in actual applications, the optimization of camera and
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road network coverage is frequently constrained by many factors, which contribute to a typical

multi-objective optimization problem. In this case, modeling a single optimization objective

may not reflect monitoring quality comprehensively, thereby resulting in invalid optimization

results. Therefore, to achieve a valid coverage optimization, a coverage model that comprises

multiple optimization objectives must be designed.

Multiple-objective optimization

As for the problem of multiple objective optimization, the processing methods can be generally

categorized into two main types, 1) classical methods, such as objective weighting, distance

functions and min-max formulation, 2) evolutionary methods, such as PSO, EA [15]. Classical

methods, which convert a multi-objective problem into a single objective problem, are sensitive

to weight vector and demand higher priori knowledge about the underlying problems, so the

coordination among multiple objectives is greatly limited. In contrast, evolutionary methods,

such as MOPSO, MOEA, have strong convergence, global optimization, and robustness, which

contribute to the main optimization methods. What is more, plenty of effective improved strate-

gies have been proposed, such as Pareto or tailored Pareto dominance strategy, where solutions

having better non-dominance performance in the parent population are selected, some repre-

sentative approaches are NSGA-II [16], MOPSO-CD[17], knee point driven evolutionary algo-

rithm (KnEA) [18]. Decomposition strategy, where a complex multi-objective problem is

decomposed into several single-objective problems or several simpler multi-objective problems,

such as NSGA-III [19] and MOEA/DM [20]. Performance indicator strategy, where measure-

ment quality of solutions is used as criteria of selection, and two widely used approaches are

hypervolume-based evolutionary algorithm (HypE) [21] and an indicator based multi-objective

evolutionary algorithm with reference point (AR-MOEA) [22]. Consequently, such processing

methods and improved strategies, which adopt to sensing characteristics of cameras on a road

network, can be introduced into the coverage optimization issue of camera network.

Therefore, we propose a multi-objective scheduling optimization algorithm for a camera net-

work that addresses the problem of directional road network coverage, aimed to meet the vari-

ous demands in actual applications and improve the effectiveness of the monitoring systems.

Coverage optimization modeling of camera on a directional road

network

In this paper, we focus on the coverage optimization problem of camera on a road network,

therefore, it is necessary to build models of camera coverage and road network first. On this

basis, we further define several concepts of valid coverage of camera on a directional road net-

work, especially, expanding parameter of main optical axes. Finally, we conclude the most

important aspects in common monitoring tasks, and design coverage optimization objectives.

Camera coverage modeling

Monitoring cameras are generally classified into static cameras and pan-tilt-zoom (PTZ) cam-

eras. The field of view (FOV) of a static camera is fixed if installed, while a PTZ camera has

capability of dynamic monitoring and tracking with the adjustment of its focal length, rotating

angle, and pitch angle despite the fixed FOV at some time. The actual FOV of a camera is a 3D

truncated pyramid. To simplify the problem, we selected a sector model to represent the FOV

of a camera in 2D.

The camera coverage model is denoted by a 4-tuple (P, D!, θ, R), where P is the spatial loca-

tion (x, y) of a camera, and D! denotes the current sensing direction of main optical axes
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(MOA). Unless otherwise specified, D! ¼ ðdx; dyÞ denotes the unit length, where dx and dy are

components along the x- and y-axes. Moreover, θ denotes the horizontal offset angle of FOV

around D!, and R is the sensing range of a camera. Camera 1 is a PTZ camera, cameras 2 and 3

are static cameras, the blue sector represents FOV, and the red vector represents D! (Fig 1).

Given that this paper focuses on the scheduling optimization of cameras instead of layout

optimization, P remains unchanged and we assume that θ and R also remain unchanged after

its initial deployment. As a result, the D! of a static camera remains in its initial state all the

time, while the range of D! for PTZ cameras is denoted by the circular dotted line (Fig 1).

Therefore, PTZ cameras can be dynamically scheduled by adjusting their D! to change their

coverage.

Directional road network modeling

A road network comprises nodes and sections, and we use both of them to model. According

to the constraints of advancing direction for moving objects, a road section can be divided into

a directional or a bidirectional one. The former only permits unilateral movement from

Fig 1. Valid coverage model of camera and directional road network.

https://doi.org/10.1371/journal.pone.0206038.g001
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beginning to end, while the latter does not impose limits on the object along its advancing

direction. A, B, C, and D are road nodes, D-A and C-B are directional road sections, while A-B

and C-D are bidirectional road sections (Fig 1).

Valid coverage modeling of camera on a directional road network

In actual situations, different monitoring tasks usually impose specific requirements for imaging

angle. Under this constraint, not all the areas that can be monitored are considered as valid cov-

erage areas. Furthermore, the topology of road network is relatively fixed, limiting the advanc-

ing direction and trajectories of moving objects. Therefore, valid coverage can be defined by the

imaging angles of camera and road network. Given that not all the cameras need to be sched-

uled in a camera network scheduling solution, a method for dynamically controlling scheduling

number of cameras must be devised. Based on the two aforementioned issues, we define the rel-

evant concepts of valid coverage, and incorporate an expanding parameter of MOA. This new

strategy divides the range of D! of all the cameras to control the scheduling number.

Definition 1: Valid range of line of sight (LOS_V). For a PTZ camera, LOS_V refers to

the set of line of sight (LOS) vector that included angle with road section vector is no less than

the threshold value (TAng), while the LOS_V of a static camera must be also in its initial FOV at

the same time. Taking directional road section A-B and bidirectional road section C-D as exam-

ples (Fig 1), TAng represents the threshold value of included angle between the LOS of a camera

and a road section vector, and φ represents the LOS_V of PTZ camera 1 on the directional road

section C-B, shown as the sector field filled with slash. Two other LOS_Vs can be found on the

bidirectional road section A-B. φ0 represents the LOS_V of static camera 2 on the bidirectional

road section C-D, and this is the sector field filled with slash within initial FOV of static camera

2. The LOS of φ@ satisfies the constraint of TAng but without initial FOV, therefore, it is not a

LOS_V, shown as the sector field filled with slash without initial FOV of static camera 2. In the

same way, static camera 3 does not have LOS_V on the directional road section D-A.

Definition 2: Valid range of main optical axes (MOA_V). MOA_V represents the set of

D! corresponding to LOS_V. The yellow sector field represents half of θ. [φ � y=2, φþ y=2]

represents the MOA_V of PTZ camera 1 on the directional road section C-B, while the

MOA_V of static camera 2 on the bidirectional road section C-D remains its initial D! (Fig 1).

Definition 3: Expanding range of main optical axes (MOA_E). For a PTZ camera,

MOA_E denotes the range of D! whose upper and lower limits expand along with the length of

MOA_V. The expanding parameter of MOA denoted by k represents the expanding multiples

of the range of D!. α represents the MOA_E of PTZ camera 1 on the directional road section C-B

where α = k�(φ+θ), and it is the gray sector field filled with dots (Fig 1). If D!2MOA_V, the cam-

era is selected to participate in the scheduling. On the contrary, if D!2MOA_E, the camera is not

selected to participate in the scheduling. In this way, we can dynamically control the probability

for a PTZ camera to be selected by using expanding parameter of MOA. Therefore, the larger

expanding parameter of MOA generates the larger MOA_E and eventually the smaller probabil-

ity for a PTZ camera to be selected to participate in the scheduling. The static camera does not

have MOA_E, if it has LOS_V, then this camera is surely selected, similar to the static camera 2.

Otherwise, the static camera is surely not selected, similar to the static camera 3 (Fig 1).

Definition 4: Feasible range of main optical axes (MOA_F). MOA_F refers to the union

set of MOA_V and MOA_E, and it is the feasible solution space of D!. Those candidate cameras

which participate in the scheduling must satisfy D!2MOA_F. [φ-θ/2-α, φ+θ/2+α] represents

the MOA_F of PTZ camera 1 on the directional road section C-B, while β represents one of its

infeasible D! sets, as shown the white sector field on the directional road section C-B (Fig 1).
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Definition 5: Valid road section covered (Road_V). The valid road section covered is

the road section with LOS_V, the valid length covered (Length_V) is the length of covered

part of Road_V, and the valid camera (Camera_V) is the camera whose D!2MOA_V. φ0 rep-

resents the LOS_V of static camera 2 on the bidirectional road section C-D and it is also the

subset of initial FOV (Fig 1). Therefore, bidirectional road section C-D is a valid road section

covered, segment E-F is the valid length covered, and static camera 2 is a valid camera. In the

same way, static camera 3 is not a valid camera. While PTZ camera 1 cannot cover the target

road network in its initial monitoring state, after adjusting D!, it can provide a valid coverage

for directional road section C-B and bidirectional road section A-B. It should be emphasized

that we only aim at valid coverage problems in this paper, they are valid camera, valid road sec-

tion covered, and valid length of road network covered.

In conclusion, the coverage model of camera and directional road network can be denoted

by a 7-tuple (P, D!, θ, R, Dis, TAng, k), where Dis denotes the shortest distance between a cam-

era and a road network, and k denotes the expanding parameter of MOA. Given their fixed

spatial location and topological relationship, Dis takes a constant value, while the values of

TAng and k can be determined based on practical application requirements. In this case, the

scheduling optimization solutions of camera and road network coverage only depend on the

adjustment of D!.

Optimization objectives modeling

As for common monitoring tasks, increasing length of road network covered can extend expo-

sure time of monitoring objects, while increasing number of road sections covered can

increase their capture probability. These two objectives are the most important aspects in

monitoring quality. Given the limited monitoring resources and high economic cost, the cov-

erage optimization of camera must focus on scheduling number of cameras. In this case, we

choose the three objectives mentioned as the coverage optimization objectives by using Eqs

(1)–(3) respectively.

Number roadðfD
!

gÞ ¼ [
n

i¼1
ðRoad ViÞ; where D! 2 MOA F ð1Þ

Length roadðfD
!

gÞ ¼ [
n

i¼1
ðLength ViÞ; where D! 2 MOA F ð2Þ

Number cameraðfD
!

gÞ ¼
Xn

i¼1

ðCamera ViÞ; where
Camera Vi¼1; if D! 2 MOA V

Camera Vi¼0; if D! 2 MOA E

ð3Þ

where fD!g denotes the D! set of a camera network, n denotes the number of cameras,

Number roadðfD
!
gÞ denotes the number of road sections covered, Length roadðfD

!
gÞ denotes the

length of road network covered, and Number cameraðfD
!
gÞ denotes the number of cameras par-

ticipating in the scheduling. Therefore, the scheduling optimization problem of a camera net-

work on a directional road network is a multi-objective optimization problem. This problem

involves solving a set of scheduling optimization solutions fD!g to increase the number of road

sections covered, extends the length of road network covered and decreases the scheduling

Multi-objective scheduling optimization algorithm of a camera network
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number of cameras, as shown in Eq (4).

F ¼ f ðNumber roadðfD
!

gÞ; Length roadðfD
!

gÞ;Number cameraðfD
!

gÞÞ ð4Þ

Subject to :

Maximize Number roadðfD
!
gÞ

Maximize Length roadðfD
!
gÞ

Minimize Number cameraðfD
!
gÞ

8
>><

>>:

A multi-objective scheduling optimization algorithm

We proposed a multi-objective scheduling optimization algorithm by incorporating an

expanding parameter of MOA into PSO algorithm. In this case, the discrete variables, like

scheduling number of cameras, will transform into continuous objectives, which generates a

unify optimization strategy in PSO algorithm. The algorithm procedure is presented as follows

(Table 1):

The algorithm process consists of two steps, they are valid coverage computation, and sched-

uling optimization. The valid coverage computation step completes the initial modeling of cam-

era and directional road network, selects the candidate cameras participating in scheduling, and

obtains the MOA_V of cameras. In scheduling optimization, we expand the MOA_V to obtain

both MOA_E and MOA_F by expanding parameter of MOA and solve the optimization objec-

tives. Therefore, after inputting a camera network, directional road network, and TAng value

into the proposed algorithm process, we determine the scheduling optimization solutions for

the camera network.

Table 1. A multi-objective scheduling optimization algorithm procedure of a camera network for directional

road network coverage.

Input: The camera network, directional road network and TAng

Output: The scheduling optimization solution set of camera network

Valid coverage computation:

1. Initialize camera network and directional road network

2. Select cameras by distance

3. Compute LOS_V by TAng and select cameras by angle

4. Compute MOA_V

Scheduling optimization:

5. Compute expanding parameter of MOA

6. Compute MOA_E and MOA_F

7. Initialize particle population

8. Evaluate Pi by using Number roadðfD
!
gÞ, Length roadðfD

!
gÞ, and Number cameraðfD

!
gÞ

9. Repeat

10. Compute crowding distance value

11. Compute Pibest and Pgbest

12. Update new velocity and position

13. Perform mutation

14. Perform constraint handing if Pi goes beyond MOA_F

15. Perform escape

16. Evaluate Pi by using Number roadðfD
!
gÞ, Length roadðfD

!
gÞ, and Number cameraðfD

!
gÞ

17. Until the maximum number of generations or the rangeability of hypervolume is less than the threshold value.

https://doi.org/10.1371/journal.pone.0206038.t001
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Valid coverage computation

The valid coverage computation is an important step before scheduling optimization. In this

process, candidate cameras, which participate in scheduling can be selected under the con-

strains of distance and angle. We can also get MOA_V of cameras for later scheduling

optimization.

Initialize the camera network and directional road network. Discretize the continuous

target road network, begin the construction of nodes and sections, and initialize the fD!g of

cameras.

Select cameras by distance. Calculate distance between each camera and each road sec-

tion. If the Dis is longer than the R, the camera has no abilities to cover the target road net-

work. In this case, the camera will be deleted.

Compute LOS_V by TAng and select cameras by angle. According to the preset thresh-

old value of included angle, calculate whether a camera has LOS_V on the road sections. If

not, the camera will be deleted.

Compute MOA_V. Calculate the MOA_V based on the geometric relationship between

D! and LOS_V.

Scheduling optimization

Scheduling optimization aims to schedule all the candidate cameras for better coverage, and

expanding parameter of MOA plays an important role in this process. We describe its value

range, important threshold values, influence mechanism on camera network scheduling, and

compute its feasible range. Based on these works, PSO algorithm is applied to solve the sched-

uling optimization solutions. Furthermore, considering the sensing characteristics of cameras,

we introduce several strategies to improve the applicability of PSO algorithm in this issue.

MOA_F computation. The feasible range of MOA is the valid flying space of particles in

the optimization process, and it depends on the expanding parameter of MOA. In this section,

we will compute the important threshold values of the parameter and further get MOA_F.

Expanding parameter of MOA computation. A camera network generally consists of mul-

tiple cameras, and each camera may have multiple MOA_Vs. For a MOA_V, an increase in

expanding parameter of MOA will expand the range of MOA_E on both sides. In this case, the

upper or lower limit of adjacent MOA_F will intersect and merge into a new interval. We call

the value as the maximum k of the upper limit (kU) or lower limit (kL). With the continuous

increasing of this parameter, all MOA_Fs will combine into one interval. At this point, the

camera obtains a maximum of MOA_E and MOA_F, and we call this value as the maximum k
of the camera (kc). When the parameter increases to a certain value, all the cameras in the net-

work obtain the maximum of MOA_F, and we call the value as the maximum k of the camera

network (kcn). The relationship among these three types of maximum k is computed as follows:

kUi ¼
ELiþ1 � EUi

EUiþ1 � ELiþ1 þ EUi � ELi
ð5Þ

kLi ¼
ELi � EUi� 1

EUi � ELi þ EUi� 1 � ELi� 1

ð6Þ

kc ¼ maximizeðkUi; kLiÞ; i ¼ 1 � � �m ð7Þ

kcn ¼ maximizeðkjÞ; j ¼ 1 � � � n ð8Þ
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where EUi and ELi denote the upper and lower limits of MOA_V, kUi and kLi denote the maxi-

mum expanding parameters of EUi and ELi, kc and kcn denote the maximum expanding parame-

ters of a camera and camera network, and m as well as n denote the number of MOA_Vs and

cameras.

MOA_E and MOA_F computation. According to the above analysis, after setting the

expanding parameter of MOA, we can obtain MOA_E and MOA_F by expanding MOA_V.

PSO implementation. For the optimization problem of camera and road network cover-

age, each scheduling optimization solution is a particle whose dimension is denoted by the

number of cameras. Considering that multiple-optimization generates non-dominated solu-

tion set, it is necessary to evaluate the performance of a single optimization solution as well as

the optimization solution set. This section focus on these issues.

Initialization of particle population. We create a particle population by a preset solution

scale, define MOA_Fs as the feasible solution space for each particle, set the maximum number

of generations, and create an external archive to store the excellent particles.

Performance evaluation of optimization solution. We calculate objective function values

of Number roadðfD
!
gÞ, Length roadðfD

!
gÞ, and Number cameraðfD

!
gÞ for each solution by using Eqs

(1)–(3), respectively. As shown in Eq (4), if a solution is not worse than the others in these

three optimization objectives, then this solution is called a non-dominated solution, and it

must be stored in the external archive for the selection of global optimal solutions.

Updating velocity and position. To guide particles to fly within MOA_F, where not yet

explored, and enhance the diversity of particle population, we use crowding distance [17] as an

evaluation index to select the global optimal particles for updating velocity and position as fol-

lows:

Vtþ1

i ¼ oVt
i þ c1r1ðP

t
ibest � Pt

iÞ þ c2r2ðPgbest � Pt
iÞ ð9Þ

Ptþ1

i ¼ Pt
i þ Vtþ1

i ð10Þ

where Pibest and Pgbest denote the local optimum and global optimum, Vt
i and Pt

i denote the

velocity and position of a particle, o is the inertia weight, c1 and c2 are the learning factors,

r1and r2 are random numbers generated between 0 and 1, and t is the current generation. Pibest

generates from the personal best states during the updating generations, while Pgbest generates

from the random selection of top portion in archive sorting in descending crowding distance

values. In a way, maintenance strategy of external archive decides the optimization direction

and distribution of particle population. All the new non-dominated solutions will be inserted

into external archive after a new updating generation, meanwhile, all the solutions dominated

by the new ones will be removed. If the archive is full, solutions will be randomly selected from

bottom portion to make place for the new non-dominated ones. In this way, the particle popu-

lation approaches the Pareto Front in trend during the updating generations.

Performance evaluation of optimization solution set. To quantitatively evaluate the com-

prehensive performance of optimization solution sets in different generations, we introduce

the hypervolume metric [23], which refers to the size of the area governed by non-dominated

solution set. It can comprehensively evaluate the convergence, uniformity, and universality of

solution set [24]. Hypervolume is maximized if and only if a solution set only contains the

Pareto Front [25]. Given the dimension differences, we need to normalize the three objective

function values and then use the Hypervolume by Slicing Objectives (HSO) algorithm [26] to

calculate hypervolume. In this case, we can obtain a more excellent scheduling optimization

solution set.

Multi-objective scheduling optimization algorithm of a camera network
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Improved strategies. Given that the optimization problem of camera and road network

coverage is a complex, high-dimensional problem, we introduce several improved strategies

for better applicability of PSO algorithm in this issue, based on the sensing characteristics of

cameras.

Crowding distance computation. Maintaining the diversity of particle population is criti-

cal in optimization process. To ensure a uniform distribution in the feasible solution space,

crowding distance is introduced to measure the distribution density of the particles. The

greater crowding distance corresponds to the sparser distribution and the greater diversity. In

this case, the feasible solution space around the particles must be searched emphatically. The

crowding distance is computed as follows:

PiCD ¼
Xm

j¼1

ðSj½iþ 1� � Sj½i � 1�Þ ð11Þ

Where PiCD is the crowding distance of Pi, m is the number of objectives, and Sj½i� is the objec-

tive function value of Pi order by objective j. We set m to 3 to denote the three objectives of

Number roadðfD
!
gÞ, Length roadðfD

!
gÞ, and Number cameraðfD

!
gÞ. Given the dimensional differ-

ence, we must normalize the three objective function values before calculating the crowding

distance and then cumulate these values to obtain the crowding distance of each solution.

Mutation. To avoid premature convergence to the local optimal solution during the search

process, we create a random disturbance to the obtained solutions for the diversity of particle

population. We select cameras in these solutions randomly to make their D! fluctuate in

MOA_F.

Constraint handling. During its adjustment, D! may fly out of MOA_F. In this case, con-

straint handling is performed to change flying direction of the particles to ensure a continued

search process in MOA_F and obtain a feasible solution.

Escape. Given that a camera may have multiple independent MOA_Fs that may be far

apart from one another, particles may have difficulties in flying toward other MOA_Fs by only

following Pibest or Pgbest. Therefore, we introduce the escape strategy [27] into PSO algorithm.

At the beginning of the generations, if the probability that fD!g appears in one MOA_F exceeds

a certain value (Tep) in the current obtained solutions, then we will select solutions randomly

on this dimension and make the D! escape from current MOA_F to another one, thereby

ensuring the uniformity of this dimension for the whole particle population.

In conclusion, the multi-objective scheduling optimization algorithm we proposed can

offer users a solution to objectively evaluate the coverage quality under various monitoring

requirements, efficiently schedule camera network, and further increase the utilization of cam-

era monitoring resources.

A controlled experiment with simulated data

In order to verify the rationality and validity of the proposed algorithm, we designed a con-

trolled experiment with simulated data of camera network as well as directional road network,

and compared initial monitoring solution with scheduling optimization solutions.

Directional road network data

The green rectangle represents road node (similar to road node B), the solid line represents

directional road section (similar to the directional road section A-B), and the dotted line repre-

sents bidirectional road section (similar to the bidirectional road section G-F). In this target road

network, there are 29 road sections, of which 25 are directional and 4 are bidirectional (Fig 2).
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Camera network data

The blue triangle represents static camera, the red dot represents PTZ camera, and the gray

sector represents the initial FOV. Therefore, the initial camera network has 37 cameras, of

which 12 are static and 25 are PTZ (Fig 2). Furthermore, all the cameras are set in the same

parameters (Table 2).

In this road network, a single camera has three basic coverage types. The first only covers

one road section (i.e., camera 35 only covers the road section B-C), the second covers several

road sections at the same time (i.e., camera 68 covers both road sections P-L and C-L), and the

third has several candidate road sections but only covers part of them at a time (i.e., camera 10

Fig 2. Initial camera and directional road network.

https://doi.org/10.1371/journal.pone.0206038.g002

Table 2. Camera parameters.

Parameter Value

θ (˚) 50

R (m) 60

TAng (˚) 135

https://doi.org/10.1371/journal.pone.0206038.t002
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can cover road section O-N or H-N at a time, while camera 73 can cover road section F-I or

G-F and E-F at a time). In this case, cameras may be independent of one another (i.e., cameras

35 and 24) or share same overlapping areas (i.e., cameras 48 and 61 have same coverage parts

on road section A-B), Therefore, it is a fact that the coverage problem for a camera network is

not the simple superposition of single cameras but generally exists the collaborative coverage

among them, and it is necessary to schedule cameras for coverage optimization.

Experiment set up

Firstly, we select cameras by distance and delete those that do not cover the target road net-

work within R. We obtain 27 cameras, of which 8 are static and 19 are PTZ (Fig 3A). We then

calculate the LOS_V of each camera with each road section. As shown in the shaded area (Fig

3B), the cameras without LOS_V have been deleted. In this way, we can obtain valid cameras

Fig 3. Experimental data. (A) Cameras after distance selection. (B) LOS_V and cameras after angle selection. (C)

MOA_V. (D) MOA_E and MOA_F.

https://doi.org/10.1371/journal.pone.0206038.g003

Multi-objective scheduling optimization algorithm of a camera network

PLOS ONE | https://doi.org/10.1371/journal.pone.0206038 October 31, 2018 12 / 22

https://doi.org/10.1371/journal.pone.0206038.g003
https://doi.org/10.1371/journal.pone.0206038


that satisfy the constraints of distance and angle for scheduling. There are 21 cameras, of

which 3 are static and 18 are PTZ (Fig 3B). According to the geometric relationship between D!

and θ, we can get MOA_V as represented by the yellow section (Fig 3C) and then calculate kUi,

kLi, kc, and kcn as the important threshold values for k by Eqs (5)–(8). Table 3 presents these

threshold values.

We then set k = 2.8 and calculate MOA_E, which is represented by the purple section filled

with dots (Fig 3D) and we can obtain the MOA_Fs of cameras that can participate in schedul-

ing. The PSO algorithm parameters, such as population size, external archive size, and maxi-

mum number of generations has been set (Table 4).

All the experiments are conducted using the environment with CPU of Intel(R) Core(TM)

i5-6300HQ CPU @2.30GHz, and memory 4G. The program is developed with C++ on Micro-

soft Visual Studio 2012 (Table 5).

We eventually use the proposed multi-objective scheduling optimization algorithm to solve

scheduling optimization set of camera network.

Results

Two scheduling optimization solutions are used for quantitative analysis. The orange line rep-

resents the valid coverage length of road network (Fig 4A–4C).

Table 3. Threshold values of expanding parameter of MOA.

Camera ID MOA_Fa kL kU kc kcn
61 244.26–308.11 2.32 2.32 2.32 2.80

67 79.14–146.63 2.17 2.17 2.17

68 148.66–240.44 1.46 1.46 1.46

70 179.68–251.76 2.00 2.00 2.00

74 253.26–307.88 2.80 2.80 2.80

76 57.15–227.41 0.57 0.57 0.57

77 142.02–219.14 1.83 1.83 1.86

10 179.68–248.10 0.91 0.57 0.91

331.08–407.51 0.57 0.91

24 242.84–308.06 1.69 0.32 1.69

346.34–400.59 0.32 1.69

27 167.60–227.71 1.14 1.00 1.14

341.98–396.92 1.00 1.14

57 129.24–202.38 1.19 0.27 1.19

242.38–315.52 0.27 1.19

65 249.53–312.22 1.51 0.05 1.51

319.07–369.92 0.05 1.51

69 146.24–227.41 1.15 0.10 1.15

242.82–321.60 0.10 1.15

73 29.09–99.27 0.5 0.22 0.50

130.01–202.38 0.22 0.27

242.38–316.56 0.27 0.50

71 73.86–138.96 0.88 0.01 0.88

140.80–226.08 0.01 0.18

253.94–319.33 0.18 0.88

a The angle refers to the included angle between D! and due north in clockwise direction.

https://doi.org/10.1371/journal.pone.0206038.t003
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We compared initial monitoring solution with two scheduling optimization solutions, and

evaluated the optimization objectives mentioned above. Scheduling optimization solution 1

(Fig 4B) reduces the scheduling number of cameras by 1, increases the number of road sections

covered by 4, and extends the length of road network covered by 153.67 meters or about

74.54% of the initial length covered (Table 6). It demonstrates the ability of the proposed

method to balance multiple optimization objectives and obtain favorable optimization results.

For scheduling optimization solution 2, all the valid cameras covering the target road net-

work are participating in the scheduling (Fig 4C). The scheduling number of cameras increases

by 10, the number of road sections covered increases by 10, and the length of road network

covered increases by 413.07 meters or about 200.35% of the initial length covered (Table 6). It

demonstrates that the proposed method can also take full advantage of available camera

resources to maximize video monitoring quality.

In actual situations, users can set expanding parameter of MOA flexibly based on their pref-

erence and application requirements, and further strengthen the effectiveness and applicability

of the method.

Analysis and discussion

To evaluate effectiveness and robustness of the proposed method as well as the influence

mechanism of expanding parameter of MOA on optimization results, three studies are carried

out in this section. The first study compares all the obtained solutions with the true value solu-

tion set, while the second and third studies compare the optimization results among different

groups of expanding parameter of MOA as well as camera parameters.

Effectiveness

We exhaust all coverage types between camera network and road network as true value solu-

tion set with the precision of 1˚. The x-axes represents the number of road sections, the y-axes

Table 4. PSO algorithm parameters.

Parameter Value Explanation

Population size 100 Initialize the particle population

External archive size 500 Initialize the particle population

Maximum number of generations 500 Initialize the particle population

ω 0.4 Eq (10)

c1 1 Eq (10)

c2 1 Eq (10)

r1 0.3 Eq (10)

r2 0.4 Eq (10)

Tep 70% Perform escape

https://doi.org/10.1371/journal.pone.0206038.t004

Table 5. Experimental environment.

Item Configuration

CPU Intel(R) Core(TM) i5-6300HQ CPU @2.30GHz

Memory 4.00G

OS Windows 10 x64

Development platform Microsoft Visual Studio 2012

Development language C++

https://doi.org/10.1371/journal.pone.0206038.t005
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represents the scheduling number of cameras, the z-axes represents the length of road network

covered, and the gray segment represents the true value solution set (Fig 5A). Furthermore,

each gray segment represents the scheduling solution set of different length of road network

covered under a certain number of cameras and road sections. The red solid point, which is

the top point of the gray segment, represents the local optimum solution, that is, the

Fig 4. Evaluation of initial monitoring solution and scheduling optimization solutions. (A) Initial monitoring

solution. (B) Scheduling optimization solution 1. (C) Scheduling optimization solution 2.

https://doi.org/10.1371/journal.pone.0206038.g004

Table 6. Comparison of initial monitoring solution and scheduling optimization solutions.

Optimization objective Initial monitoring solution Scheduling

optimization

solution 1

Scheduling

optimization

solution 2

Value Value Improvement Value Improvement

Number roadðfD
!
gÞ 11 15 +4 21 +10

Length roadðfD
!
gÞðmÞ 206.17 359.84 +74.54% 619.24 +200.35%

Number cameraðfD
!
gÞ 11 10 -1 21 +10

https://doi.org/10.1371/journal.pone.0206038.t006
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scheduling solution of the longest length covered under a certain number of cameras and road

sections, and the green cross represents the global optimal solution or the best scheduling solu-

tion. The blue triangle represents the solutions obtained in 30 independent experiments using

the parameters in Table 3.

From the distribution of the true value solution set (Fig 5B), we can find the dominant rela-

tionship of global optimal solutions among the local optimal solutions. Increasing the schedul-

ing number of cameras can extend the longest length of road network covered to some extent.

Due to the overlapping, after cameras reach a certain size, a further increase however, means

only wasting monitoring recourse without further improvements (Fig 5C). Therefore, it is pos-

sible to use scheduling optimization methods to decrease the extra number of cameras without

reducing monitoring quality and eventually increase resource utilization. Similarly, increasing

the number of road sections covered can also extend the longest length of road network cov-

ered to some extent. However, given the conflict between different objectives, if we only focus

on the number of road sections covered, a further increase will be at the expense of shortening

the length of road network covered (Fig 5D). Therefore, only if the multiple optimization

objectives are balanced, then we can obtain better scheduling optimization solutions of a cam-

era network for road network coverage.

It is clear that the obtained optimization solutions are clustered around the local and global

optimal solutions (Fig 5), which prove the proposed method can effectively coordinate and

Fig 5. True value solution set and obtained solutions. (A) Scheduling number of cameras, number of road sections

covered, and length of road network covered. (B) Number of road sections covered and scheduling number of

cameras. (C) Scheduling number of cameras and length of road network covered. (D) Number of road sections

covered and length of road network covered.

https://doi.org/10.1371/journal.pone.0206038.g005
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balance multiple optimization objectives, find optimization solutions under different coverage

types, and ensure the diversity of optimization solution set.

Influence of expanding parameter of MOA

In this section, we analyze the influence mechanism of expanding parameter of MOA on cam-

era network scheduling in three aspects, summarize the general rules about how the parameter

can dynamically control the optimization results, and provide some recommendations for its

selection. Considering the range of the parameter and the distribution of its important thresh-

old values (Table 3), we assign 0, 0.1, 0.32, 0.57, 1.0, 1.86, and 2.8 to k in the experiments,

where 0 is the minimum value of k and 2.8 is equal to kcn and take the average of 30 indepen-

dent experiments as the results for each group.

The x-axes represents all of the cameras number that no more than the value, and the y-

axes represents the cumulative probability of all coverage types found by the proposed method

(Fig 6). When k is equal to 0, the method can only find the coverage types of scheduling all the

valid cameras. With the increasing of k, the probability of finding coverage types in a small

number of cameras (<11) increases, while the probability in a large number of cameras (> =

11) decreases. Until k = kcn, the probability in both large and small camera numbers is almost

the same (46% and 54%, respectively), because the expanding parameter of MOA decides the

range of MOA_E. The larger k corresponds to the larger MOA_E, the smaller probability for

cameras to be selected to participate in the scheduling, and the larger probability for coverage

types to be found in a small cameras number. Therefore, we can set the reasonable values of

Fig 6. Influence of expanding parameter of MOA on optimization solution set distribution.

https://doi.org/10.1371/journal.pone.0206038.g006
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expanding parameter of MOA flexibly by calculating its important threshold values and distri-

bution for more expected solutions.

Under different values of expanding parameter of MOA, the hypervolumes gradually all

converge to the Pareto Front and the solution sets tend to stabilize as the number of genera-

tions increases (Fig 7). Moreover, the larger expanding parameter of MOA generates the larger

hypervolume of initial particle population, because the parameter decides the spatial distribu-

tion of particle population at the beginning of generations, which, in turn, leads to the more

uniform particle distribution, better diversity, and larger hypervolume. When the solution sets

are convergent enough, the parameter corresponding to the maximum of hypervolume is

equal to 1.0 instead of kcn (2.8), because a moderate value can favorably balance the coverage

types in both large and small numbers of cameras and obtain better coordinated solution sets

among convergence, uniformity, and universality.

Under different values of expanding parameter of MOA, the running time of the proposed

method linearly increases along with the generations (Fig 8). Specifically, the smaller expand-

ing parameter of MOA requires the longer running time, because when the particles fly out of

the feasible solution space during exploring, constraint handing is performed to change their

flying direction and make them turn around. In this case, the smaller expanding parameter of

MOA, the higher probability for particles to fly out, in turn, the more times of constraint hand-

ing performed, and the longer running time. Therefore, we can set proper number of genera-

tions in accordance with the requirements of practical applications or compare the

hypervolume between adjacent generations in a certain step length until its rangeability is less

than the threshold value, and then the solution set is convergent enough, we have obtained a

favorable solution set without additional generations.

Fig 7. Influence of expanding parameter of MOA on optimization solution set performance.

https://doi.org/10.1371/journal.pone.0206038.g007
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Furthermore, when k is equal to or greater than kcn (2.8), the proposed method will degen-

erate into the random PSO algorithm without constrains of expanding parameter of MOA.

The shaded area represents the performance of our method (Figs 6–8), while the curve that k is

equal to 2.8 represents the performance of the random PSO algorithm. It is clear that, in con-

trast, the proposed method presents a better flexibility among the performance, distribution,

and running time of solution sets. In conclusion, the expanding parameter of MOA can

enhance the applicability of PSO algorithm in practical monitoring tasks and support the

scheduling optimization of camera on a road network.

Influence of camera parameters

In this paper, camera parameters include θ, R, and TAng. To evaluate robustness of the pro-

posed method, we design three groups of controlled experiments for each camera parameters

separately, We set θ equals 30, 70, 90, R equals 45, 55, 65, TAng equals 90,120,150 (Table 7).

According to the analysis presented in the previous section, our proposed method follows the

same rules under different k. Therefore, all the controlled experiments are carried out under

kcn, and we take the average of 30 independent experiments as results.

Fig 8. Influence of expanding parameter of MOA on optimization running time.

https://doi.org/10.1371/journal.pone.0206038.g008

Table 7. Camera parameters in experimental groups.

Camera parameter Value 1 Value 2 Value 3

θ (˚) 30 70 90

R (m) 45 55 65

TAng (˚) 90 120 150

https://doi.org/10.1371/journal.pone.0206038.t007
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Changing camera parameters can change the true value solution set. Therefore, after per-

forming normalization under different systems of true value solution sets, hypervolumes of the

solution sets become incomparable across different parameters, but still present a trend of con-

vergence despite the changing of θ, R, and TAng (Fig 9).

Consequently, the proposed method is effective to obtain good scheduling optimization

solutions and it can adapt to user application preference by changing the values of the expand-

ing parameter of MOA for more expected solutions, and is robust to schedule and allocate

monitoring resources in different scenarios.

Conclusion

To address the optimization problem of camera and road network coverage, we propose a

multi-objective scheduling optimization algorithm. We initially build a model for valid cover-

age of camera and directional road network, and then choose three of the most important

aspects in general monitoring tasks as our optimization objectives, they are number of road

sections covered, length of road network covered, and scheduling number of cameras. In this

solution, we incorporate an expanding parameter of main optical axes into particle swarm

optimization algorithm. Our new strategy divides the range of main optical axes of all the cam-

eras to control the scheduling number, in turn, achieves a collaborative optimization of multi-

ple objectives. On this basis, we analyze the influence of expanding parameter of MOA and

camera parameters on the optimization results. The experiments demonstrate the effectiveness

and robustness of the proposed method in solving complex optimization problem of camera

and road network coverage, and it can flexibly coordinate and schedule cameras, maximize the

Fig 9. Influence of camera parameters on optimization results. (A) Experiments of θ. (B) Experiments of R. (C)

Experiments of TAng.

https://doi.org/10.1371/journal.pone.0206038.g009
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utilization of these resources. In actual monitoring tasks, this method is not only confined to

the three aforementioned optimization objectives. If necessary, other optimization objectives

can be directly input into the model without changing the algorithm process, due to the uni-

fied optimization strategy for different optimization objectives. This method can also provide

some recommendations for other directional sensor resources in multi-objective optimization

allocation.
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