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Abstract

China harbors diversified forest types, from tropical rainforest to boreal coniferous forest,

and has implemented large-scale reforestation/afforestation programs over the past several

decades. However, little information is available on changes in China’s forest area and the

causes. In this study, we used the classified forest distribution thematic map derived from

Normalized Difference Vegetation Index (NDVI) datasets and a revised IPAT model to

examine China’s forest area change and the possible driving factors from 1982 to 2006.

Overall, NDVI-derived forest areas were numerically consistent with those reported in the

3rd, 4th, 5th, and 6th National Forest Inventories, respectively. Over the past 25 years, Chi-

na’s forest area was estimated to have an average of 169.18 million hectares with an annual

increase of 0.15 million hectares (c.a. a total net increment of 3.60 million hectares), which

is equivalent to 0.089% of the relative annual change rate. However, a large difference in

the changing rate and direction of forest area at the province level was found; for instance,

forest area has declined in 10 provinces, mainly in Northeastern and Southern China, while

21 provinces showed an increase. The changes were most likely attributed to the policy

regarding the import and export of timber and affluence (per capita gross domestic product),

and both contributed more than 80% of the total contribution of the six factors of the revised

IPAT model.

Introduction

Forests covers 30.6% of the Earth’s landmass, and its change has a large effect on biodiversity,

clean air and water, carbon emissions, etc. [1]. However, forest change is always underway

in some region of the world [2, 3]. Thus, a better understanding of forest cover changes is

urgently needed for researchers, forest managers and decision-makers.

China harbors diversified forest types, from tropical rainforest to boreal coniferous forest,

and has implemented large-scale reforestation/afforestation programs over the past several

decades [4]. According to the 8th National Forest Inventory (NFI), China has a forest area of

207.69 million hectares [5], accounting for approximately 5.15% of the global forest area. A
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comprehensive assessment of China’s forest cover change and its driving factors is important

for clarifying the nature of regional and global forest change.

Generally, forest cover change can be monitored via NFI [6] and/or remote sensing (RS)

data [7, 8]. However, Chinese NFI data lack spatial georeferenced records and can not be

updated in a timely manner. In contrast, two-decadal advancements in remote sensing (RS)

techniques and developed vegetation indexes make the real-time monitoring of forest change

and its causes possible [9–11]. For instance, Janssen et al. [12] detected forest cover change in

a nature reserve of central Ghana using the Normalized Difference Vegetation Index (NDVI).

Li et al. [13] used NDVI to examine land cover change in Hangzhou Bay. Zhao et al. [8] used

NDVI to explore long-term vegetation changes and their drivers on the Mongolian Plateau. It

should be noted, however, that the inconsistency was frequently found in forest cover change

based on NFI and RS data, especially on a large scale [14–16]; for instance, the Chinese 8th NFI

(2009–2013) indicated an increasing forest area compared to the 6th NFI (1999–2003), but the

Global Forest Change dataset [17] showed a net loss of almost 40,000 km2 during the 2000s

(2000–2012).

Currently, there are three more widely used NDVIs derived from Landsat TM/ETM+,

Moderate-resolution Imaging Spectroradiometer (MODIS) or NOAA Advanced Very High

Resolution Radiometer (AVHRR) imagery. Landsat imagery has relatively high spatial-tempo-

ral resolutions but a low temporal frequency of acquisition because of cloud masking, and

finding cloud-free images to cover all of China may require imagery from several different

years or a combination of data from different satellites. Landsat NDVI may result in inconsis-

tent time and biased results because of inconsistent data sources while exploring the forest

cover change and its driving factors. The MODIS NDVI dataset has only been available since

2001, thus limiting the time span that can be studied. AVHRR imagery has a coarse spatial res-

olution but a high temporal frequency that does provide global data, and NDVI datasets devel-

oped from the Global Inventory Monitoring and Modeling Studies Working Group (GIMMS)

[18–20] are thus more appropriate and widely used in large-scale mapping and vegetation

cover change.

In this study, GIMMS NDVI datasets were used to examine China’s forest area change and

its driving factors. Specifically, we intended to examine (1) whether NDVI-derived change in

forest area is consisted with NFI; (2) how China’s forest area has changed over the past 25

years; and (3) what the possible driving factors were.

Data and methods

Data

Vegetation Map of China. A Vegetation Map of China at 1:1,000,000 was plotted by pri-

marily using ground survey data from the 1980s and recorded 175 forest types (please see S1

Fig) [21]. It contains almost all types of forests in the world, from tropical rain forest to boreal

coniferous forest, covering tropical, subtropical, temperate and cold temperate climatic zones.

For more details, please see http://www.nsii.org.cn/mapvege.

These data provide one of the auxiliary maps for land cover classification during the process

of interpretation and the basis for the subdivision of China’s forest types (please see the later

Section Methods).

NDVI datasets. NDVI datasets was downloaded from the Global Inventory Monitoring

and Modeling Studies Working Group [18–20] with a time span from 1982 to 2006 and with

spatial and temporal resolutions of 8 km and 15 days, respectively. These datasets have been

widely used to evaluate vegetation changes and can be downloaded at http://iridl.ldeo.columbia.

edu/SOURCES/.UMD/.GLCF/.GIMMS/.NDVIg/.global/.dataset_documentation.html.

Forest area change and its driving factors
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NDVI datasets are most likely influenced by extreme climate in one certain year [22]. To

eliminate the adverse effects induced by extreme climate, multi-year NDVI datasets were com-

posed as a time period. In addition, to utilize the Sixth National Forest Inventory Distribution

Map as an auxiliary map for visual interpretation, and make a comparison of forest area

derived from NDVI and that reported by the 3rd, 4th and 5th NFI, NDVI datasets were grouped

into six time periods, namely, 1982–1983, 1984–1988, 1989–1993, 1994–1998, 1999–2003 and

2004–2006.

There were 24 NDVI gridded images in any one calendar year. For each time period, all of

the same half-month NDVI images in several years (2, 3 or 5 years) were respectively averaged,

and then synthesized as a synthetical layer with 24 channels; the minimum, maximum and

mean value of each pixel for each period can thus be extracted and reserved for the following

expert classification of forest types. For more details of preprocessing NDVI datasets, please

see the paper by Shi [23].

National Forest Inventory (NFI). China has implemented eight National Forest Invento-

ries since the 1970s, namely, 1973–1976, 1977–1981, 1984–1988, 1989–1993, 1994–1998, 1999–

2003, 2004–2008 and 2009–2013 [20]. To date, a total of 415,000 permanent and temporary

plots were set up in the country, and information on species composition, tree height, diameter

at breast height and other relevant parameters for each plot was documented. Four NFIs were

used in the current study (i.e., 1984–1988, 1989–1993, 1994–1998, and 1999–2003) [24–27]. The

statistical data of forest resources for each province can be browsed at http://www.cfsdc.org/.

Auxiliary data for interpretation. During the interpretation, we also used the following

auxiliary data:

The Sixth National Forest Inventory Distribution Map at a scale of 1:4,000,000 includes

eight land use types, namely, coniferous forest, broadleaved forest, mixed forests, bamboo for-

est, shrub, water, desert and others (please see S2 Fig) [28].

Terrain data was downloaded from U.S. Geological Survey with a resolution of 1 km

(https://lta.cr.usgs.gov/GTOPO30). It is first projected to the Albers Equal Area Projection,

and then resampled to a resolution of 8 km for utilization in expert classification.

The MODIS Land Cover Type product (MCD12Q1, downloaded from https://lpdaac.usgs.

gov/dataset_discovery/modis/modis_products_table/mcd12q1) consists of the 17-class Inter-

national Geosphere–Biosphere Programme classification (IGBP), the 14-class University of

Maryland classification (UMD), a 10-class system used by the MODIS LAI/FPAR algorithm,

an 8-Biome classification and a 12-Class plant functional type classification [29, 30]. The prod-

uct has a spatial resolution of 500 m and was completed in 2001; the completion time coin-

cided with the 6th NFI (Hereafter called IGBP 2001 in this paper). Given more land cover types

(17 classes), the IGBP 2001 classification product was identified as a reference map for assess-

ment of our forest cover interpretation accuracy.

Other data. The other data we used in the revised IPAT model are as follows:

Population and Gross Domestic Product (GDP) data were based on the previous statistical

yearbooks and downloaded from the CEInet Statistics Database [31]. It is noted that China’s

historical population data do not include Chongqing City and Sichuan Province, owing to the

incompleteness of the records, and Hong Kong, Macao and Taiwan are also excluded.

National wood production data were compiled from the China Forestry Statistical Year-

book [32].

Data on wood imports was compiled from the China Foreign Economic and Trade Year-

book and Development Research Center of the State Council of China [33, 34].

Afforestation data at the provincial and national levels were compiled from “New China’s

50 Years of Agricultural statistics” [35] and “Compilation of Agricultural Statistics for 30 Years

of Reform & Opening up” [36].

Forest area change and its driving factors
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Methods

Subdivision of China’s forest types. Based on the Vegetation Map of China, together

with the climatic zone (tropical, subtropical, temperate and cold temperate) and life types

(evergreen vs. deciduous, coniferous vs. broadleaved types), China’s forests were subdivided

into 16 land cover types in this paper, namely, cold temperature and temperature deciduous

coniferous forest, cold temperature and temperature evergreen coniferous forest, temperature

evergreen coniferous forest, subtropical and tropical evergreen coniferous forest, temperature

evergreen coniferous and deciduous broadleaved mixed forest, subtropical evergreen conifer-

ous and evergreen broadleaved mixed forest, temperature deciduous broadleaved forest, sub-

tropical deciduous broadleaved forest, subtropical evergreen broadleaved and deciduous

broadleaved mixed forest, subtropical evergreen broadleaved forest, tropical rainforest, sub-

tropical and tropical deciduous coniferous forest, shrub, bamboo forest, other vegetation and

unvegetated types (for more details, please see the S1 Table).

NDVI-derived interpreted thematic map using expert classification method. An expert

classification method is defined as land use classification using an expert system through

supervised data training or subjectively defined by human experts and is widely used in large-

scale vegetation classification [37–39]. This method requires the establishment of a set of deci-

sion trees (rules) in advance. Owing to the obvious discrepancy of NDVI values with land

cover types and altitude, NDVI was frequently employed in decision trees [40–42]. In this

paper, the minimum, maximum and mean NDVIs of gridded cells, together with a digital ele-

vation model (DEM), was used while constructing the decision tree.

The Sixth National Forest Inventory Distribution Map was based on the results of the 6th

NFI. While drawing NDVI profiles and identifying the threshold of each forest type in build-

ing decision (or classification) trees by province, the Sixth National Forest Inventory Distribu-

tion Map, together with the Vegetation Map of China, were used as auxiliary maps. In other

words, the decision tree was mainly based on the time period of 1999–2003. S3–S6 Figs show

the interpreted forest distribution maps of the four time periods of 1984–1988, 1989–1993,

1994–1998 and 1999–2003 using an expert classification method.

In the accuracy assessment, IGBP 2001, at a spatial resolution of 500 m, was treated as a

standard map. Before the accuracy assessment, the vegetation types of IGBP 2001 were subdi-

vided to match the interpreted results following the climatic zones, the Sixth National Forest

Inventory Distribution Map and the Vegetation Map of China. Please see S2 Table for more

details of the subdivision of IGBP 2001.

Due to the large difference in the areas of various vegetation types, a hierarchical random

point generation method was adopted to generate random points, whose total areas were not

less than 25% of the area of each land cover types. S3 Table showed that the overall interpreta-

tion accuracy was high (84.18%), and the kappa was 0.82.

Land use transfer matrix. To quantify the mutual transformation between forest and

non-forest, land use transfer matrix was used to explore the land-use transformations between

1982–1983 and 2004–2006 aided by the software, ERDAS Imagine (Leica Geosystems GIS &

Mapping LLC, Atlanta, US). The transfer matrix reflects the change information of a specific

location in a certain period. We can use the transfer matrix to calculate the decreased and

increased area and the changing magnitude of each land use type. The formula for the land use

transfer matrix can be written as:

Sij ¼

s11 s12 � � � s1n
s21 s22 � � � s2n
..
. ..

. ..
. ..

.

sn1 sn2 � � � snn

2

6
6
6
4

3

7
7
7
5

ð1Þ
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where S represents the area, i and j are the land use types before and after the transformation,

respectively, and n denotes the number of transferred land cover types.

Revised IPAT model for exploration of factors driving forest area change. Ehrlich and

Holdren [43, 44] assumed that the human impact on the environment (Influence) results from

the population (Population), its affluence (Affluence) and technological innovation (Technol-
ogy) and can be expressed using the equation: Influence = Population × Affluence × Technology.
Hereafter, this is referred to as the IPAT model (or equation). The equation is a very useful

tool to dissect interactions and mutual influence and has been widely used to analyze the

impact of human activities on the environment [45–47].

Some studies have indicated that forest cover dynamics are often driven by the population

[48], economic development [49, 50], and the forestry policy [51, 52]. In this paper, we there-

fore assume that changes in forest area (I) are influenced by the population (P), level of eco-

nomic development (A), technology (i.e., consumption intensity) (C), policy of importing

wood (T), sustainable management level (S) and reforestation projects (R) and can thus be

expressed using an equation that resembles the IPAT equation as follows: I = P × A × C × T × S
× R, where P denotes the Chinese population, A denotes the per capita GDP, C denotes the

total wood consumption intensity (i.e., the sum of wood imports and domestic wood) per unit

GDP, T denotes the forestry policy on wood orientation (as indicated by the ratio of national

forest-derived wood to the total amount of wood, a reflection of the wood-oriented policies), S
denotes the sustainable forest management level (as indicated by the ratio of reforestation area

to the domestic wood production) and R denotes the impact of afforestation on forest area

change (as indicated by the ratio of forest change area to afforestation area). Table 1 shows

more details on the symbols used and their implications.

As described above, the revised IPAT model was written as:

I ¼ P � A� C � T � S� R ð2Þ

Thus,

lgðIÞ ¼ lgðPÞ þ lgðAÞ þ lgðCÞ þ lgðTÞ þ lgðSÞ þ lgðRÞ ð3Þ

We assumed that lg(I), lg(P), lg(A), lg(C), lg(T), lg(S) and lg(R) have a linear relationship

with time, respectively, and then,

dlgðIÞ=dt ¼ dlgðPÞ=dt þ dlgðAÞ=dt þ dlgðCÞ=dt þ dlgðTÞ=dt þ dlgðSÞ=dt þ dlgðRÞ=dt ð4Þ

Let i� dlg(I)/dt, p� dlg(P)/dt, a� dlg(A)/dt, c� dlg(C)/dt, t� dlg(T)/dt, s� dlg(S)/dt,
r� dlg(R)/dt

Then,

i ¼ pþ aþ cþ t þ sþ r ð5Þ

The definition of each symbol in Eqs (2–5) is as specified in Table 1.

We employed Eqs (6) and (7) to respectively calculate the 24-year absolute change (slope)
and relative annual rates of change (RR, %) of the six driving fators, namely, Chinese popula-

tion, affluence (i.e., GDP per capita), wood consumption intensity, policy of importing wood,

sustainable management level and afforestation impact on a logarithmic basis at the national

level over the past 25 years, as follows:

y ¼ slope� xþ b ð6Þ

where y represents the 24-year population, affluence, consumption intensity, policy of import-

ing wood, sustainable management level or afforestation impact on a logarithmical basis at the

Forest area change and its driving factors
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national level, x is the corresponding specific year, and the slope denotes the absolute ampli-

tude and the direction of changing. We calculated the 24-year relative annual rates of change

as follows:

RR;% ¼ ðslope
1

24

X24

i¼1

yiÞ � 100

,

ð7Þ

where yi denotes the population, affluence, consumption intensity, policy of importing wood,

sustainable management level or afforestation impact on a logarithmical basis at the national

level over the past 24 years, and the slope and RR (%) are the corresponding absolute amplitude

and 24-year relative annual rates of changes of the six driving factors, respectively.

Let

Sum ¼ jpj þ jaj þ jcj þ jtj þ jrj þ jsj ð8Þ

Then changes in the forest area can be decomposed into the combination of the six compo-

nents specified by Eq (8).

Therefore, the contribution weights (W, %) (i.e., the weights representing the contributions

of the specified factors) can be calculated using Eq (9), as follows:

W;% ¼W=Sum� 100% ð9Þ

whereW is the contribution weight of the population, affluence, consumption intensity, policy

of importing wood, sustainable management level or afforestation impact at the national level,

and Sum denotes the sum of the absolute values of the driving factors in Eq (8).

To explore the forest area changes with time, we employed Eqs (10) and (11) to calculate

the absolute change rate (AR) and relative change rate (RR) of forest area. The AR was defined

as the regression coefficient a of the interpreted forest area of each time span versus the corre-

sponding time span [please see Eq (10) for more details], while RR was the annual relative

change rate of forest area, equal to AR divided by the mean forest area of the six time spans

[i.e., Eq (11)].

y ¼ axþ b ð10Þ

Table 1. Symbols for the impact of changes in forest area and forces that affect them.

Category Symbol Dimension Relative annual change rate in forest area (%)

Influence I Area i
Population P Capital p
Affluence A GDP/Capital a
Wood consumption intensity C Total wood/GDP c
Policy of importing wood T Domestic wood/Total wood t
Sustainable management level S Reforestated area/Domestic wood s
Impact of afforestation R Area/Afforestated area r

Note: The relative annual rates of change (%) of the six driving factors in the revised IPAT equation (i.e., p, a, c, t, s and r) are numerically equal to the corresponding

derivatives for each year after taking the common logarithm [please see Eqs (2–8) for more details]. Values of t < 0 indicate that the proportion of imported wood in

China’s total wood consumption becomes large, indicating that wood orientation policy tends to increase wood imports; values of t> 0 indicate that the wood

orientation policy mainly relies on the extraction of wood from domestic forests, indicating an increasing intensity of deforestation. Similarly, values of s< 0 show that

deforestation (i.e., cutting down China’s domestic forests) is stronger than afforestation, suggesting a low level of sustainable management; on the contrary, a high level

of sustainable management of forest is currently undergoing. Values of r< 0 indicate that the effect on forest area change caused by afforestation is gradually increasing;

on the contrary, a decreasing contribution of afforestation to China’s forest area change is currently undergoing.

https://doi.org/10.1371/journal.pone.0205885.t001
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where y represents the RS-derived forest area of each time span, and x is the corresponding

median year of 1982–1983, 1984–1988, 1989–1993, 1994–1998, 1999–2003 and 2004–2006,

respectively; a and b are regression coefficients.

RRð%=yrÞ ¼ ½a=ðy1 þ y2 þ y3 þ y4 þ y5 þ y6Þ=6� � 100 ð11Þ

where RR represents the annual relative change rate of forest area (i.e., i in Eq 5), and y1, y2, y3,

y4, y5, y6 and a and is RS-derived forest area of time spans of 1982–1983, 1984–1988, 1989–

1993, 1994–1998, 1999–2003 and 2004–2006, and regression coefficient a in Eq 2 (i.e., AR),

respectively.

As seen from the aforementioned equations, the annual relative change rate of forest area

(i.e., i) was calculated from RS-derived NDVI via Eqs (10) and (11), while the rate of the six

driving factors (i.e., p, a, c, t, s and r) were respectively calculated using the compilation of data

mentioned in Section “Other data” via Eqs (6) and (7).

RS-derived forest areas (NDVI, actually) were estimated at the province level for the time

periods of 1982–1983, 1984–1988, 1989–1993, 1994–1998, 1999–2003 and 2004–2006. During

the study period, only the four NFIs (i.e., 3rd, 4th,5th and 6th) at the province level were avail-

able, and thus forest area derived from NDVI was respectively compared with that of NFI only

in the time periods 1984–1988, 1989–1993, 1994–1998 and 1999–2003 to show the discrepancy

(or departure) in forest area estimated using RS and NFI.

Root-Mean-Square-Error (RMSE) and Relative-Root-Mean-Square-Error (RRMSE) were

used, as the two indicators are regularly used in the inter-comparison of model performance

(e.g., [53, 54]). The comparison in this study was conducted province by province. RMSE and

RRMSE were respectively defined as the following equations:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X30

i¼1

ðIi � NFIiÞ
2

n

v
u
u
u
t

ð12Þ

RRMSE ¼
RMSE
NFImean

� 100 ð13Þ

NFImean ¼

X30

i¼1

NFIi

30
ð14Þ

where Ii and NFIi denote the provincial forest area (106 ha) of interpretation and NFI for a cer-

tain time span, i = 1, 2, 3,� � � 30, and NFImean is the mean of the 30-province NFI forest area

(106 ha) of the same time span.

Results

Provincial forest area derived from NDVI and its comparison with that of

NFI

Following the produced thematic map of forest distribution, it was easy to calculate the provin-

cial forest areas for the time spans of 1982–1983, 1984–1988, 1989–1993, 1994–1998, 1999–

2003 and 2004–2006, respectively (Table 2). China’s mean forest area during the study period

was estimated to be approximately 1.69×108 hm2, with a forest coverage of 17.62%. China’s

forest area showed a reverse J-shape at the province level (Fig 1a). Among 31 provinces, most

(18) was less than 5 million hectares in forest area, 4 were larger than 10 million hectares, and

Forest area change and its driving factors
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others ranged between the two. Forest area was the largest in Heilongjiang Province (2.07×107

hm2), contributing to approximately 12.2% of the total national forest area, while Fujian Prov-

ince had the largest forest coverage (> 50%) in mainland China.

NDVI-derived forest area was compared to that reported in NFI. Four NFIs were reported

during the study period of 1982–2006, namely, the 3rd (1984–1988), 4th (1989–1993), 5th (1994–

1998) and 6th (1999–2003) NFIs. The comparisons showed that all estimated provincial forest

areas (points in Fig 2) were near the 1:1 line with respective RMSEs less than 2, suggesting that

NDVI-derived forest areas were all consistent with that derived from NFI of the same time span.

Change in China’s forest area

Overall, China’s forest area increased with a fluctuation (Fig 3). The annual absolute increase

or increment (i.e., AR) in national forest area was estimated to be approximately 1.5×105 hm2,

equivalent to 0.089% of the relative annual change (increase) rate.

Table 2. NDVI-derived forest areas (104 ha) at the province level for the six time spans and their annual relative change rates.

Province/Municipalities/Autonomous regions 1982–83 1984–88 1989–93 1994–98 99–2003 2004–06 Mean Forest coverage (%) RR (%)

Heilongjiang 2110.72 2015.36 2215.04 2094.72 1957.12 2001.92 2065.81 45.44 0.25

Inner Mogolia 1865.6 1960.32 2037.12 2158.72 1941.12 2195.84 2026.45 17.49 0.51

Sichuan 1445.76 1551.36 1520.64 1413.76 1443.2 1612.16 1497.81 26.46 0.14

Yunnan 1246.72 1386.88 1365.76 1473.92 1461.12 1361.28 1382.61 36.13 0.40

Tibet 859.52 992 1036.16 1013.12 955.52 1020.16 979.41 7.97 0.39

Jilin 778.88 725.76 833.28 785.92 755.84 709.12 764.80 40.49 -0.24

Jiangxi 877.44 769.28 821.76 781.44 718.72 567.68 756.05 45.35 -1.39

Guangdong 708.48 709.12 813.44 661.12 695.04 704.64 715.31 40.21 -0.20

Hunan 735.36 653.44 764.16 824.96 627.2 588.16 698.88 32.99 -0.65

Shaanxi 639.36 632.32 677.12 729.6 631.04 706.56 669.33 31.88 0.35

Guangxi 668.16 611.84 746.24 704.64 627.84 513.92 645.44 27.16 -0.72

Fujian 707.84 609.28 726.4 610.56 533.12 514.56 616.96 50.78 -1.30

Zhejiang 441.6 513.28 537.6 531.2 518.4 460.16 500.37 49.15 0.11

Liaoning 428.16 461.44 501.76 483.2 460.16 544 479.79 32.92 0.69

Hubei 418.56 498.56 378.88 436.48 418.56 453.12 434.03 23.35 -0.04

Guizhou 283.52 312.32 380.16 344.32 336 468.48 354.13 20.07 1.63

Hebei 267.52 300.8 314.88 315.52 266.88 370.56 306.03 16.46 0.79

Henan 250.88 238.08 270.72 297.6 252.8 293.12 267.20 16.00 0.65

Xinjiang 237.44 223.36 209.28 309.76 313.6 281.6 262.51 1.59 1.43

Gansu 258.56 280.96 238.72 243.2 272.64 238.72 255.47 5.68 -0.29

Anhui 179.84 234.24 234.24 273.28 278.4 261.76 243.63 17.63 1.45

Qinghai 134.4 226.56 232.96 215.68 193.28 233.6 206.08 2.86 1.04

Taiwan 187.52 195.84 207.36 210.56 195.84 202.24 199.89 55.90 0.23

Shanxi 191.36 185.6 194.56 210.56 169.6 209.92 193.60 12.36 0.18

Shandong 134.4 167.04 230.4 227.84 172.8 164.48 182.83 12.01 0.52

Hainan 102.4 136.96 145.28 121.6 128 114.56 124.80 36.59 0.01

Jiangsu 30.08 24.96 30.08 54.4 44.8 43.52 37.97 3.70 2.50

Beijing 10.24 8.96 26.88 29.44 16.64 48 23.36 13.11 5.57

Ningxia 14.08 13.44 14.08 13.44 16 25.6 16.11 2.43 2.42

Tianjing 9.6 8.96 7.68 8.32 7.04 8.96 8.43 7.33 -0.59

Shanghai 0 0.64 0.64 2.56 5.76 6.4 2.67 4.48 11.63

Total 16224 16649 17713 17581 16414 16925 16918 17.61 0.089

https://doi.org/10.1371/journal.pone.0205885.t002
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Fig 1. Frequency map of forest areas at the province level (a) and their relative annual change rate (b).

https://doi.org/10.1371/journal.pone.0205885.g001

Fig 2. Comparison in forest area (106 ha) based on remote sensing technique (RS) and NFI data in the time periods of 1984–1988

(a), 1989–1993 (b), 1994–1998 (c) and 1999–2003 (d), respectively. Each point denotes a province.

https://doi.org/10.1371/journal.pone.0205885.g002
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At the province level, a large difference in the changing rate and direction of forest area was

found (Fig 4). Over the past 25 years, forest area has declined in 10 provinces, mainly in North-

eastern and Southern China. Heilongjiang, Jiangxi, Fujian, Hunan and Guangxi Provinces had

an annual decreasing rate > 4.55×104 hm2. In contrast, 21 provinces showed an increase in

forest area with a positive annual change rate ranged from 1.3×104 hm2 to 3.85×104 hm2; how-

ever, a larger annual increasing rate> 3.85×105 hm2 occurred in Inner Mongolia, Guizhou

and Yunnan Provinces.

Similarly, the relative annual change rate and direction of provincial forest area also differed

with province (Fig 1b). Twenty-one provinces had positive relative annual change rates, while

10 had negative ones. The relative annual change rates in 27 out of 31 provinces ranged from

-2% to 2%. Shanghai had the largest relative annual change rate (11.62%), followed by Beijing

(5.57%), Jiangsu (2.50%) and Ningxia (2.42%), respectively.

In addition, a transfer matrix was used to analyze mutual transformation between forest

and non-forest in the past 25 years (Fig 5). Approximately 860.36 million hectares of land

cover type remained unchanged, including 136.62 million hectares of forest and 723.74 million

hectares of non-forest, respectively. Additionally, 99.92 million hectares of land cover type was

transformed from non-forest to forest or from forest to non-forest, accounting for 10.40% of

China’s land area. The transformed area from non-forest to forest, and from forest to non-for-

est were estimated as 51.76 and 48.16 million hectares, respectively. Thus, the net increment of

forest area was 3.60×106 hm2 (3.60×106 = 51.76×106−48.16×106), accounting for 2.13% of Chi-

na’s mean forest area [2.13% = (3.60 ×106)/(169.18×106)×100%].

Influential factors driving the change in forest area

Based on Eqs (2–9) described above and the compiled data of the Chinese population (loga-

rithmic P), affluence (logarithmic A), wood consumption intensity (logarithmic C), policy of

Fig 3. Scatter plot showing the forest area for the six time spans from 1982 to 2006.

https://doi.org/10.1371/journal.pone.0205885.g003
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importing wood (logarithmic T), sustainable management level (logarithmic S) and afforesta-

tion impact (logarithmic R) for each time period (Part I in Table 3), it was not difficult to cal-

culate the change rate (i.e., slope), relative annual change rate (i.e., RR) and contribution

weights (i.e.,W) of the possible driving factors (Part II in Table 3).

It was concluded from the change rate that the Chinese population, affluence (i.e., GPD per

capita) and the ratio of afforestation area to China’s total forest area increased from 1982 to

2006. A negative wood consumption per unit GDP (-0.0649) indicated an increasing efficiency

in wood utilization. The negative logarithmic S and T indicated that China has had a low level

of sustainable forest management but a high-degree of dependence on wood imports over the

past 25 years.

As for contribution weights, the logarithmic T is the largest (c.a., 59.92%), indicating that

the timber import and export policy is likely to play a key role in forest area change in China.

Affluence (logarithmic A) is the second most important influential factor (c.a., 20.48%), indi-

cating that it was a secondary factor driving the change of forest area in China. A combination

of the two contributed more than 80% (80.4% = 20.48%+59.92%) of the total contribution of

the six factors of the IPAT model. Wood consumption intensity contributed to more than 10%

(c.a., 14.06%) of the total. In contrast, the sustainable management level and afforestation effect

both made little contribution (< 3%). The Chinese population had almost no effect on China’s

forest area change.

Fig 4. Annual change rate of forest area at the province level over the past 25 years.

https://doi.org/10.1371/journal.pone.0205885.g004
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Discussion

Based on the classified forest distribution thematic map derived from NOAA/AVHRR NDVI

datasets, China’s forest area was estimated to have an average of 169.18 million hectares with a

forest coverage of 17.62% (Table 2). Over the past 25 years, the transformed area from non-for-

est to forest, and from forest to non forest were estimated as 51.76 and 48.16 million hectares,

respectively (Fig 5). Thus, the net increment in forest area was 3.60 million hectares with an

Fig 5. Spatial distribution of change in China’s forest over the past 25 years.

https://doi.org/10.1371/journal.pone.0205885.g005

Table 3. Relative change rates and contribution weights of each driving factor in the revised IPAT model.

Part I

Time span lg(P) lg(A) lg(C) lg(T) lg(S) lg(R)

1982–1983 8.9954 1.8918 -3.1310 -0.0455 -0.9775 1.4770

1984–1988 9.0140 2.1346 -3.2912 -0.0535 -0.9647 1.3821

1989–1993 9.0558 2.4477 -3.6977 -0.0313 -1.0300 1.5038

1994–1998 9.0835 2.8743 -4.1216 -0.0239 -1.1126 1.5454

1999–2003 9.1024 2.0838 -4.3700 -0.1403 -0.8763 1.4156

2004–2006 9.1104 3.3319 -4.5019 -0.1777 -1.1234 1.5892

Part II

Change dlg(P)/dt dlg(A)/dt dlg(C)/dt dlg(T)/dt dlg(S)/dt dlg(R)/dt
slope 0.0054 0.0645 -0.0649 -0.0057 -0.0032 0.0043

RR,% 0.0590 2.4534 1.6847 7.1790 0.3136 0.2922

W,% 0.4928 20.4761 14.0606 59.9151 2.6171 2.4383

https://doi.org/10.1371/journal.pone.0205885.t003

Forest area change and its driving factors

PLOS ONE | https://doi.org/10.1371/journal.pone.0205885 October 17, 2018 12 / 19

https://doi.org/10.1371/journal.pone.0205885.g005
https://doi.org/10.1371/journal.pone.0205885.t003
https://doi.org/10.1371/journal.pone.0205885


annual increase of approximately 0.15 million hectares per year (Fig 3), equivalent to 0.089%

of the relative annual change rate (Table 2).

A large difference in the changing rate and direction of forest area at the province level was

found (Fig 4). From 1982 to 2006, forest area has declined in 10 provinces, mainly in North-

eastern and Southern China, while 21 provinces showed an increase. Similarly, the relative

annual change rate and direction of provincial forest area also differed with province. NDVI-

derived forest areas were consistent with those reported in 3rd, 4th, 5th and 6th NFIs, respec-

tively (Fig 2). As far as the changing trend of forest area is concerned, the estimated areas from

RS and NFI were generally the same; both showed an upward trend (Fig 3). NFI had a monot-

onous increase in area, but RS-area showed no obvious increase in the fluctuations. This differ-

ence in amplitude is most likely caused by the rationales and estimation errors of the two

estimation methods. This study’s results suggested that RS is a very useful and reliable tool to

examine large-scale forest area, despite previous studies having noted that estimated forest

areas based on RS and NFI data were inconsistent [55].

The revised IPAT model has revealed that the policy of wood import and export is the chief

cause in forest area change in China. The forestry policy in China is strongly regulated by Chi-

nese government. From 1982 to 1994, the reform and opening up began, and special funds

were designated towards the import of wood, changing the former “self-sufficiency” approach

to wood supply. Compared to the time period of 1982–1983, the forestry policy was oriented

towards an increase in the quantity of wood imports over the past 25 years. The change in for-

estry policy thus alleviated the pressure on the destruction of domestic forests and temporarily

protected domestic forest resources. A number of studies have shown that importing more

wood benefits the importing countries but transfers the ecological consequences of deforesta-

tion to exporting countries, as more forests must be destroyed to produce wood that is

exported from the exporting countries (often from undeveloped regions and countries) [56–

58]. It is possible that the beneficiaries (i.e., the countries importing wood) can thereby allevi-

ate the pressure on the destruction of their own forests and thus temporarily protect their

domestic forest resources. China has become the world’s second-largest wood-consumer

country after the U.S., and total imports reached 29.57 million m3 in 2008 [59]. It is thus not

surprising that the policy of wood import and export plays a major role in driving forest area

change.

Affluence is the second most important influential factor in forest area change. Recent

reports have proven that GDP or income per capita has a strong effect on forest cover change

[60, 61]. The relationship is known as the environmental Kuznets curve (EKC), which is the

inverted U-shaped relationship between income growth and deforestation. However, the rela-

tionship between provincial forest coverage and per capita GDP in this study does not agree

with the EKC (Fig 6).

It is also noted that wood consumption intensity contributed to more than 10% (c.a.,
14.06%) of the total. Although an increasing efficiency in wood utilization has occurred from

1982 to 2006 (-0.0649 in Table 3), it will probably play a more important role in driving forest

cover change in the future, taking China’s recent generous investment and talent incentives

into account. As noted in forest transition theory, technological innovation could change or

influence the process or direction of forest transition [62, 63]. At present, China’s comprehen-

sive timber utilization rate is only 60%, far lower than the 80% (or even higher) of developed

countries; if increased to 80%, then 33% of the current total wood consumption would be

saved, equivalent to cutting down approximately 1.655 million hectares less of forest [64].

Some studies have suggested that on different scales the population has a substantial impact

on the domestic forest resource. For example, the annual growth of 3% in the deforestation in

Africa is consistent with population growth during the same period. Moreover, wood removals
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are gradually increasing globally with the long-term increases in populations and incomes,

and this trend will continue in the coming decades [48, 65]. However, this study does not sup-

port this conclusion. Compared with the forestry policy on wood import and export, level of

economic development, and the intensity of wood consumption, population has almost no

effects on the changes in China’s forest area. Therefore, it is highly probable that the effect of

demographic factors on the national forest area will show considerable regional differences.

In this paper, we revised the IPAT model to explore the factors driving China’s forest area.

We have only examined the aforementioned six factors, but they may be inadequate. It has

been reported that topographical factors such as slope and altitude are also possible influential

factors [66].

Conclusions

Overall, NDVI-derived forest area and its change were consistent with that of NFI. China’s forest

area was estimated to have an average of 169.18 million hectares with an annual increase of 0.15

million hectares. However, a large difference in the change rate and direction of forest area at the

province level was found. The results were most likely attributed to the policy regarding the

import and export of timber and affluence (per capita gross domestic product), and both con-

tributed more than 80% of the total contribution of the six factors of the revised IPAT model.
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S1 Fig. Main forest types in China and their distributions based on the Vegetation Map

of China. Owing to the similarity in NDVI profiles of the same life type in one climatic zone,

Fig 6. Relationship between forest coverage (%) derived from remote sensing data and the corresponding per

capita gross domestic product at the provincial level in China.
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tropical evergreen broadleaved and deciduous broadleaved mixed forest, 10. Subtropical

evergreen broadleaved forest, 11. Tropical rainforest and seasonal rainforest, 12. Subtropical

and tropical deciduous coniferous forest, 13. Shrub, 14. Bamboo forest, and 15. Other vegeta-

tion types.
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S2 Fig. Land cover types in the Sixth National Forest Inventory Distribution Map (1999–

2003).
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S3 Fig. Interpreted thematic maps of China’s main land cover types of the time period of

1984–1988. Labels 1–15 denote the same vegetation types as described in S1 Fig, and Label 16
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S4 Fig. Interpreted thematic maps of China’s main land cover types of the time period of

1989–1993. Labels 1–16 denote the same land cover types as described in S3 Fig.
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S5 Fig. Interpreted thematic maps of China’s main land cover types of the time period of

1994–1998. Labels 1–16 denote the same land cover types as described in S3 Fig.
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S6 Fig. Interpreted thematic map of China’s main land cover types of the time period of

1999–2003. Labels 1–16 denote the same land cover types as described in S3 Fig.
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