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Abstract

Warfarin dosing remains challenging due to narrow therapeutic index and highly individual

variability. Incorrect warfarin dosing is associated with devastating adverse events. Remark-

able efforts have been made to develop the machine learning based warfarin dosing algo-

rithms incorporating clinical factors and genetic variants such as polymorphisms in CYP2C9

and VKORC1. The most widely validated pharmacogenetic algorithm is the IWPC algorithm

based on multivariate linear regression (MLR). However, with only a single algorithm, the

prediction performance may reach an upper limit even with optimal parameters. Here, we

present novel algorithms using stacked generalization frameworks to estimate the warfarin

dose, within which different types of machine learning algorithms function together through

a meta-machine learning model to maximize the prediction accuracy. Compared to the

IWPC-derived MLR algorithm, Stack 1 and 2 based on stacked generalization frameworks

performed significantly better overall. Subgroup analysis revealed that the mean of the per-

centage of patients whose predicted dose of warfarin within 20% of the actual stable thera-

peutic dose (mean percentage within 20%) for Stack 1 was improved by 12.7% (from

42.47% to 47.86%) in Asians and by 13.5% (from 22.08% to 25.05%) in the low-dose group

compared to that for MLR, respectively. These data suggest that our algorithms would espe-

cially benefit patients requiring low warfarin maintenance dose, as subtle changes in warfa-

rin dose could lead to adverse clinical events (thrombosis or bleeding) in patients with low

dose. Our study offers novel pharmacogenetic algorithms for clinical trials and practice.

Introduction

Warfarin is the most widely used oral anticoagulant worldwide. Due to its narrow therapeutic

window and large interpatient variability, warfarin dosing remains challenging [1]. The
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consequence of incorrect warfarin dosing can be devastating, predisposing the patient to

thrombosis in the case of under-dosing or bleeding in the case of overdosing. Because of these

challenges associated with warfarin use, it is one of the leading causes in emergency depart-

ment visits and the most often cited cause of drug-related mortality [2]. Clinical factors, demo-

graphic variables and genetic variants significantly contribute to interpatient variability in

dose requirement for warfarin. While non-genetic factors, such as age, height, weight, race and

drug interaction, have been reported to explain 15–20% of the variability in dose, polymor-

phisms in cytochrome p450, family 2, subfamily C, polypeptide 9 (CYP2C9), and vitamin K

epoxide reductase complex, subunit1 (VKORC1) independently correlate with warfarin thera-

peutic dose [3–5], and combined polymorphisms of those two genes account approximately

30% (20%-25% for VKORC1 rs9923231; 5%-10% for CYP2C9) of the interpatient warfarin

dose variability [3–6].

Remarkable efforts have been made to estimate the appropriate warfarin dose to improve

the patient care. Many pharmacogenetic algorithms integrating clinical, demographic and

genetic variables have been created to predict the dose requirement in individual patients [7–

11]. Most of the dosing algorithms are based on multivariate linear regression (MLR). One of

the most widely used and tested algorithms is the IWPC pharmacogenetic algorithm [8],

which has proved accuracy in multiple studies. Other advanced machine learning approaches

such as deep learning (neural networks), tree-based algorithms and support vector machines

have also been used to predict warfarin dose [7, 10, 11], but those studies use a single machine

learning algorithm to maximize the accuracy of predicting warfarin dose. In a mathematical

point of view, a machine learning algorithm is a sophisticated fit to a non-linear function, and

a single machine learning model may fit well to a certain subset of patients, but may overfit or

underfit to the rest of patients with different genetic and racial background. As a result, the

prediction accuracy of a single model may reach an upper limit even with optimal parameters.

It is not surprising that the models produced by MLR and support vector regression with a lin-

ear kernel were statistically indistinguishable and significantly outperformed all the other

approaches in the IWPC cohort [8]. One way to overcome the limitation of a single algorithm

is to combine the advantages of several algorithms to break through the upper limit of a single

machine learning algorithm (i.e. ensemble method). Recently, the ensemble method “bagging”

has been applied to predict warfarin dose [12, 13]. Stacked generalization is another ensemble

method that uses a higher-level model to combine lower-level models to achieve higher predic-

tion accuracy [14, 15]. Unlike the “bagging” and “boosting” approaches which can only com-

bine machine learning algorithms of the same type, stacked generalization can combine

different types of algorithms through a meta-machine learning model to maximize the general-

ization accuracy.

In this study, we created novel regression models to estimate warfarin stable dose utilizing

stacked generalization frameworks that combine the advantages of distinct machine learning

algorithms and significantly improved the prediction accuracy compared to MLR.

Materials and methods

The International Warfarin Pharmacogenetic Consortium (IWPC) Cohort

IWPC Cohort has been described previously [8]. Expanded Data set was downloaded from the

PharmGKB website (http://www.pharmgkb.org/downloads/), which contains pooled data on

6256 chronic warfarin users recruited through collaborative efforts of 22 research groups from

4 continents. This data set includes detailed de-identified curated data on demographic factors,

clinical features, such as age, weight, height and concomitant use of amiodarone, as well as

CYP2C9 and VKORC1 genotypes. Missing values for height and weight were imputed with
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multivariate linear regression models. Specifically, weight, race, and sex were used for the

imputation of the height variable, while height, race, and sex were used for the weight variable.

For missing values of the VKORC1 rs9923231, the imputation strategy has been described [8],

which is based on linkage disequilibrium in VKORC1 and race. We excluded 17 subjects with

CYP2C9�5, �6, �11, �13 and �14, due to low allele frequency and an outlier subject with warfa-

rin stable dose 315 mg/week. A total of 5743 subjects were included in this study.

Stacked generalization framework

Predicting warfarin maintenance dose is a regression task, which requires a function or model

f that maps an input vector x 2 d onto the corresponding continuous label value y 2 . Since a

training data set {(x1, y1), . . ., (xn, yn)} is utilized to find f, the task falls into the category of a

supervised learning problem. The machine learning problem is formulated as a minimization

problem of the form:

min
f

Xn

i¼1

lðf ðxiÞ; yiÞ þ lrðf Þ ð1Þ

The first term of the objective is the empirical risk described by a loss function S which

measures the quality of the function f. A specific case is the squared loss l(ŷ, y) = (ŷ - y)2. The

second term of the objective in Eq (1) is a regularization term which measures the complexity

or roughness of the function f, which usually is a norm of f or its derivatives. L2 regularization

was used in this study.

Stacked generalization is utilized to ensemble different machine learning algorithms, which

can be viewed as a means of collectively using several models to estimate their own generaliz-

ing biases with respect to a particular learning set, and then filter out those biases [16, 17].

There are two kinds of models in a stacked generalization framework: several base models

(level-0 models) and one meta-model (level-1 model). The essence of stacked generalization is

to use the level-1 model to learn from the predictions of level-0 models. Generally, a stacked

generalization framework can obtain more accurate prediction compared to the best level-0

model [16].

One of the key points is to obtain the training data for level-1 model (Dcv) from cross-vali-

dation technique. Given an original data set D = {(yn, xn), n = 1, . . ., N}, where yn is the target

value and xn represents feature vectors of the nth instance, randomly split the data into K
almost equal folds D1, D2, . . ., DK (K = 5 in this study). Define Dk and D(-k) = D–Dk to be the

test and training sets for the kth fold of a K-fold cross-validation. Given J different level-0

machine learning algorithms (M1, M2, . . ., MJ), each Mj is trained by D(-k) and predict each

instance x in Dk. Let vk(-j)(x) donate the prediction of the model Mj on x. Then we have:

zkn ¼ vð� jÞk ðxnÞ ð2Þ

At the end of the entire cross-validation process of each Mj, the data assembled from the

outputs of the J models is

Dcv ¼ fðyn; z1n; . . . ; zJnÞ; n ¼ 1; 2; . . . ;Ng: ð3Þ

Dcv is the training set of level-1 model Mmeta. To complete the training process, level-0

models Mj (j = 1, 2, . . ., J) are trained using original dataset D, and Mmeta is trained by Dcv.

Now we consider the prediction process, which uses the models Mj, j = 1, 2, . . ., J, in conjunc-

tion with Mmeta. Given a new instance, models Mj produce a vector (z1, . . ., zJ). This vector is

input to the level-1 model Mmeta, whose output is the final prediction result for that instance.
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Implementation of machine learning algorithms and parameters

The neural networks (NN), ridge regression (RR), random forest (RF), and extremely random-

ized trees (ET), support vector regression (SV) were implemented using python library Scikit-

learn (version 0.19.1) [18]. Gradient boosting trees (GBT) was implemented using Microsoft’s

software ‘LightGBM’ with a python wrapper [19]. Below are the key parameters for each single

model: (i) NN layer: 3, hidden layer size: 100, activation function: ‘logistic’, solver: ’lbfgs’; (ii)

RR regularization: 1.0; (iii) RF number of trees: 100, maximum depth of the tree: 100; (iv) ET

number of trees: 100, maximum depth of the tree: 100; (v) GBT number of trees: 100, Maxi-

mum depth of the tree: -1, Learning rate: 0.1; (vi) SV kernel: linear, cache_size: 1000.

In this study, 80% of the eligible patients were randomly chosen as the training set

(N = 4594), which was used to train the machine learning models. The rest 20% of the patients

(N = 1149) were utilized as the hold-out test set. Various models were then built on the train-

ing set and the hold-out test set was used to evaluate the model performance by two metrics.

The mean absolute error (MAE), the absolute difference between the predicted and actual

maintenance doses, was used to evaluate each model’s predictive accuracy. The mean of the

percentage of patients whose predicted dose of warfarin within 20% of the actual stable thera-

peutic dose (mean percentage within 20%) was utilized to evaluate the clinical significance of

each algorithm, as a difference in warfarin dose greater than 20% is likely to be considered to

clinically relevant by clinicians. The features/variables in single models were identified based

on reported IWPC pharmacogenetic dosing algorithm [8], including height, weight, race, age,

enzyme inducer and use of amiodarone. Additional features used in other warfarin stable dose

prediction algorithms [7, 9, 10, 20] such as diabetes mellitus, heart failure, valve replacement,

smoking, use of statins, smoking status, and other VKORC1 genotypes (S1 Table) were also

included to train the stacked generalization models.

Warfarin dose subgroup analysis

To assess the performance of the algorithms in different dose ranges, warfarin stable dose was

divided into three subgroups based on the 25% and 75% quantiles according to race: low dose

(< 15.0 mg/week), intermediate dose (15.0–28.0 mg/week), and high dose (> 28.0 mg/week)

in Asians; low dose (< 30.0 mg/week), intermediate dose (30.0–52.5 mg/week), and high dose

(> 52.5 mg/week) in blacks; low dose (< 22.0 mg/week), intermediate dose (22.0–42.5 mg/

week), and high dose (> 42.5 mg/week) in whites; low dose (< 22.0 mg/week), intermediate

dose (22.0–40.0 mg/week), and high dose (> 40.0 mg/week) in the missing or mixed race.

Statistical analysis

Due to the skewed (with a longer tail at high doses) distribution of warfarin dose, we trans-

formed raw dose into square root of the dose. To obtain robust statistics, 100 rounds of resam-

pling were performed from the IWPC cohort. All the quantitative data are presented as means

with 95% confidence intervals (CI). P values < 0.05 were considered to be statistically signifi-

cant. The MAE and differences of the mean percentage within 20% of the actual stable dose

among the algorithms were compared with unpaired Student’s t-test. All statistical analyses

were conducted with R (version 3.4.4).

Results

Basic characteristics of the IWPC cohort

The characteristics of the patients are shown in Table 1 and S1 Table. In the IWPC cohort,

5743 patients were included for analyses with a median warfarin stable dose of 28.0 mg/week.
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The target range for International Normalized Ratio (INR) fell within 1.7 to 3.3, with the

majority of being prespecified between 2 and 3. The proportions of patient age less than 50, 50

to 80, and older than 80 were 17.0%, 71.0%, and 12.1%, respectively. There were 4.9% of

patients concomitantly taking amiodarone, 19.6% of patients taking statins, 1.1% of patients

using enzyme inducers (including phenytoin, carbamazepine, and rifampin). There were 8.4%

of patients smoking. Patients with diabetes mellitus, cardiomyopathies and heart failure, and

valve replacement were 10.8%, 12.5% and 17.0%, respectively.

Table 1. Demographic and clinical characteristics of the IWPC cohort.

Variable IWPC data (n = 5743)

Warfarin dose—mg/week

Mean (SD) 32.0 (16.8)

Median 28.0

Interquartile range 20.0–40.0

Genotype—no. (%)

VKORC1 rs9923231

G/G 1887 (32.9)

A/G 2065 (36.0)

A/A 1683 (29.3)

Unknown 108 (1.9)

CYP2C9
�1/�1 4232 (73.7)

�1/�2 755 (13.2)

�1/�3 482 (8.4)

�2/�2 58 (1.0)

�2/�3 68 (1.2)

�3/�3 20 (0.4)

Unknown 128 (2.2)

Age—no. (%)

< 50 974 (17.0)

50–80 4075 (71.0)

> 80 694 (12.1)

Height—m

Median 167.6

Interquartile range 160.0–175.8

Weight—kg

Median 76.0

Interquartile range 63.0–90.7

Race—no. (%)

White 3095 (53.9)

Asian 1517 (26.4)

Black 665 (11.6)

Mixed or missing 466 (8.1)

Enzyme inducer 61 (1.1)

Amiodarone 280 (4.9)

Statin 972 (16.9)

Smoker 482 (8.4)

DM 619 (10.8)

Heart failure 716 (12.5)

Valve replacement 975 (17.0)

https://doi.org/10.1371/journal.pone.0205872.t001
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Overall performance of the single algorithms

To establish the stacked generation frameworks to ensemble different models, we first exam-

ined the predictive performance of several single models. Eight different machine learning

algorithms including MLR, SV, RR, NN, GBT, RF, ET, and K nearest neighbors (KN) were

trained by the training set and then prediction was made on the hold-out set. The performance

of each model measured by the MAE and percentage within 20% is shown in Table 2. The

algorithms SV, RR, and MLR performed statistically indistinguishable and were the best

among eight algorithms, followed by GBT and NN. The algorithms RF, ET and KN resulted in

the least favorable results.

Configuration and performance of stacked generalization framework 1 and

2 (Stack 1 and 2)

To determine whether ensemble predictors constructed using stacked generalization improve

the prediction accuracy for warfarin stable dose, we constructed two different stacked generali-

zation frameworks Stack 1 and 2 using the exactly same parameters in individual algorithms.

The frameworks in this study consisted of three level-0 models and one level-1 model (meta

model). Fig 1 exhibits the detailed configuration of each framework. The individual algorithms

(SV, RD, NN and GBT) in the frameworks were chosen based on the type of the algorithm (i.e.

linear regression, neural network and tree-based) and individual predictive performance in

Table 2. To improve the prediction accuracy, we included diabetes mellitus, heart failure, valve

replacement, smoking, use of statins, and other VKORC1 genotypes as additional features to

train the frameworks (Stack1 and 2). The MAEs for the Stack1 and 2 were 8.31 and 8.31 mg/

week, which were significantly better than 8.53 mg/week in the MLR (Table 3). The mean per-

centage within 20% produced by Stack 1 and 2 (47.85% and 47.81%) were significantly higher

than that (46.31%) of MLR (Table 3).

Evaluating the performance of the stacks by race

Given that genetic diversity is known to be great in different races [21], to further examine the

performance of the Stacks in different races, Stack 1 and Stack 2 were evaluated in Asians,

Table 2. Comparison of the performance of individual machine learning algorithms.

Algorithms MAE (95% CI) Within 20% (95% CI) P value (vs. MLR)

MLR 8.53 (8.08–8.99) 46.31 (43.73–48.89)

SV 8.52 (8.11–8.93) 46.51 (44.08–48.97) 0.639�; 0.279#

RR 8.52 (8.12–8.92) 46.29 (43.74–48.84) 0.758�; 0.907#

NN 8.84 (8.35–9.33) 44.35 (41.50–47.20) <0.001�; <0.001#

GBT 8.82 (8.42–9.23) 44.88 (42.47–47.29) <0.001�; <0.001#

RF 9.28 (8.84–9.73) 42.88 (40.16–45.59) <0.001�; <0.001#

ET 10.18 (9.73–10.63) 39.02 (36.81–41.22) <0.001�; <0.001#

KN 10.86 (10.32–11.40) 36.43 (33.89–38.96) <0.001�; <0.001#

� P value for MAE

# P value for Within 20%

Within 20%: the mean of the percentage of patients whose predicted dose of warfarin within 20% of the actual stable

therapeutic dose.

SV: Support Vector Machine; RR: Ridge Regression; MLR: Multivariate Linear Regression; NN: Neural Network;

GBT: Light Gradient Boosting Machine; RF: Random Forests; ET: Extremely Randomized Tree; KN: K nearest

neighbors.

https://doi.org/10.1371/journal.pone.0205872.t002
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whites and blacks. The MAE of prediction was highest in blacks and lowest in Asians across

the three algorithms (Table 4). In Asians, Stack 1 and Stack 2 performed significantly better

than MLR for both MAE and mean percentage within 20% (Table 4). The mean percentage

within 20% for Stack 1 and 2 had a 12.7% improvement (from 42.47% to 47.86% and 47.66%)

compared to that for MLR. In whites, the MAEs for Stack 1 and 2 were lower than that of MLR

(P = 0.002). The performance of Stack 1 and Stack2 in blacks was better than MLR, but there

was no statistical significance (Table 4).

Evaluating the performance of the stacks by warfarin dose range

We next to test the predictive ability of Stack 1 and 2 in three different warfarin dose ranges.

The MAE of prediction was highest in high dose and lowest in intermediate dose across the

three algorithms (Table 5). In the low-dose group, Stack 1 and Stack 2 provided a significantly

Fig 1. Schematic representation of the configurations of the stacked generalization frameworks (Stack 1 and 2)

built from base models. SV: Support Vector Regression; RR: Ridge Regression; NN: Neural Network; GBT: Light

Gradient Boosting Machine.

https://doi.org/10.1371/journal.pone.0205872.g001

Table 3. Overall comparison of the performance of the Stack 1 and 2 with MLR.

Algorithms MAE (95% CI) Within 20% (95% CI) P value (vs. MLR)

Stack 1 8.31 (7.86–8.76) 47.85 (45.43–50.28) <0.001�; <0.001#

Stack 2 8.31 (7.87–8.76) 47.81 (45.44–50.19) <0.001�; <0.001#

MLR 8.53 (8.08–8.99) 46.31 (43.73–48.89)

� P value for MAE

# P value for Within 20%

Within 20%: the mean of the percentage of patients whose predicted dose of warfarin within 20% of the actual stable

therapeutic dose.

https://doi.org/10.1371/journal.pone.0205872.t003
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better prediction of dose than MLR for both MAE and mean percentage within 20% (Table 5).

The mean percentage within 20% for Stack 1 was improved by 13.5% (from 22.08% to 25.05%)

compared to that for MLR. Likewise, in the intermediate-dose group, Stack 1 and Stack 2 per-

formed significantly better than MLR for both MAE and mean percentage within 20%

(P< 0.001). The mean percentage within 20% for Stack 1 and 2 had an about 2.0% improve-

ment (from 60.90% to 62.13% and 61.96%) compared with that for MLR. In the high-dose

groups, the mean percentage within 20% for Stack 2 was improved by 3.0% (from 41.11% to

42.35%) compared to that for MLR (P< 0.001).

Discussion

The individual response to warfarin is highly variable, being influenced by clinical factors and

genetic variants such as polymorphisms in CYP2C9 and VKORC1. Given that incorrect warfa-

rin dosing can potentially increase the risk of thrombosis or bleeding, estimating appropriate

warfarin dose for individual patient has been an active research area. Recently, personalized

genotype-guided warfarin dosing has demonstrated clinical benefits and superior clinical out-

comes in major clinical trials [22–24]. In these trials, predicted warfarin maintenance doses

Table 4. Comparison of the performance of the Stack 1 and 2 with MLR in Asians, whites and blacks.

Algorithms Asian White Black

MAE

(95% CI)

Within 20%

(95% CI)

MAE

(95% CI)

Within 20%

(95% CI)

MAE

(95% CI)

Within 20%

(95% CI)

Stack 1 6.13

(5.58–6.68)

47.86

(42.29–53.42)

8.70

(8.04–9.36)

48.43

(44.77–52.10)

11.88

(10.13–17.64)

44.90

(37.09–52.73)

Stack 2 6.14

(5.60–6.69)

47.66

(42.22–53.10)

8.70

(8.05–9.35)

48.46

(44.70–52.21)

11.92

(10.17–13.66)

44.73

(36.32–53.13)

MLR 6.64

(6.12–7.16)

42.47

(38.01–46.93)

8.85

(8.17–9.53)

48.13

(44.67–51.60)

12.00

(10.32–13.68)

43.97

(36.49–51.44)

P value <0.001�;

<0.001#
<0.001�;

<0.001#
0.002�;

0.002#
0.244�;

0.209#
0.360�;

0.518#
0.093�;

0.187#

� P value for Stack1 vs. MLR

# P value for Stack2 vs. MLR

Within 20%: the mean of the percentage of patients whose predicted dose of warfarin within 20% of the actual stable therapeutic dose.

https://doi.org/10.1371/journal.pone.0205872.t004

Table 5. Comparison of the Stack 1 and 2 with MLR in three dose ranges.

Algorithms Low dose Intermediate dose High dose

MAE

(95% CI)

Within 20%

(95% CI)

MAE

(95% CI)

Within 20%

(95% CI)

MAE

(95% CI)

Within 20%

(95% CI)

Stack 1 8.11

(7.37–8.87)

25.05

(19.85–30.25)

5.47

(5.09–5.84)

62.13

(58.32–65.94)

14.43

(13.06–15.80)

41.75

(36.42–47.10)

Stack 2 8.27

(7.50–9.03)

24.66

(19.60–29.73)

5.50

(5.13–5.88)

61.96

(58.15–65.78)

14.23

(12.83–15.64)

42.35

(36.80–47.89)

MLR 8.62

(7.91–9.33)

22.08

(17.88–26.29)

5.59

(5.22–5.95)

60.90

(56.84–64.95)

14.61

(13.28–15.94)

41.11

(36.80–45.24)

P value <0.001�;

<0.001#
<0.001�;

<0.001#
<0.001�;

<0.001#
<0.001�;

<0.001#
0.072�;

<0.001#
0.071�;

<0.001#

� P value for Stack1 vs. MLR

# P value for Stack2 vs. MLR

Within 20%: the mean of the percentage of patients whose predicted dose of warfarin within 20% of the actual stable therapeutic dose.

https://doi.org/10.1371/journal.pone.0205872.t005
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were based on MLR. However, due to the complex and non-linear association between warfa-

rin dose and clinical and genetic variables, such limitations related to MLR-based algorithms

may affect the prediction accuracy. Because of that, in this study, we set out to develop novel

algorithms using the stacked generalization approach to estimate the warfarin dose, where dif-

ferent types of machine learning algorithms function together through a meta-machine learn-

ing model to maximize the prediction accuracy. This strategy has been successfully applied to

and significantly improved the prediction of molecular atomization energies [25].

To be able to directly compare the performance among different algorithms, we used the

IWPC data set and applied this data set to eight different machine learning algorithms with the

same covariates in the IWPC algorithm. In line with the MAE (8.5 mg/week, 95% CI (8.0–

9.0)) in the IWPC study [8], the MAE for MLR in this study was 8.53 mg/week (95% CI (8.08–

8.99)). These data validated our data processing and allowed us to directly compare the perfor-

mance of algorithms developed in this study to the IWPC algorithms. Moreover, we found

that MLR provided a comparable performance as SV and RR and outperformed all other algo-

rithms, including NN and GBT, which is consistent with the results reported in the IWPC

study [8]. In order to take advantage of different algorithms, we constructed ensemble predic-

tor Stack 1 and 2 using SV, RR, NN and GBT. Overall, Stack 1 and 2 performed significantly

better than MLR. Subgroup analysis revealed that the mean percentage within 20% for Stack 1

and 2 had a 12.7% improvement (from 42.47% to 47.86% and 47.66%) compared to that for

MLR in Asians. Similarly, the mean percentage within 20% for Stack 1 was improved by 13.5%

(from 22.08% to 25.05%) compared to that for MLR in the low-dose group. The median warfa-

rin weekly dose for Asians was lower compared to whites and blacks [21]. These data suggest

that our algorithm would especially benefit patients requiring low warfarin dose, as subtle

changes in warfarin dose could result in adverse clinical events such as thrombosis or

bleeding.

Many studies developed the pharmacogenetic algorithms for warfarin dosing [7–11], but

the performance of these algorithms can hardly be compared due to different data sets with

different patient ethnicity and prevalence of CYP2C9 and VKORC1 polymorphisms. For

example, we have reported that Asians, whites and blacks have different warfarin sensitivity,

resulting from different polymorphisms of CYP2C9 and VKORC1 in the IWPC cohort [21].

For the IWPC data set, additional algorithms such as multivariate adaptive regression splines

(MARS), lasso regression (LAR) and Bayesian additive regression trees (BART) have also been

tested along with MLR [10]. Interestingly, the MAE for MLR was 9.28 mg/week in that study

and they showed that BART, MARS and SVR performed superior than MLR in the prediction

of warfarin dose. However, MLR and SVR performed better than MARS in the IWPC study.

This discrepancy could be owing to different data processing and independent variables

selected. In addition, the ensemble method “bagging” has been used to predict warfarin dose

[12, 13], which is a popular method to assemble base models to decrease the variance, but not

to improve the predictive force. Therefore, in terms of the coefficient of determination (R2), R2

for the IWPC algorithm in Asians is 0.46 [26], which is not inferior to the “bagging” models

(Ms+G) ranging from 0.402 to 0.441 for Chinese in the previous study [13]. “Bagging” method

requires designing various feature functions for base models in order to achieve diversity,

which is a key requirement for base models [13]. The novel regression models we proposed

here can take advantage of distinct machine learning algorithms to achieve high diversity of

base models. Designing feature functions is not necessary and all base models can use the same

feature space, which can avoid extra information extraction efforts. Moreover, “voting” has

been combined with “bagging” to assemble the base models to predict warfarin dose [12]. In

contrast to “stacking”, no learning takes place at the meta-level when combining base models

by a voting scheme. Of note, “stacking” has been applied to combine different base models to
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predict warfarin dosing adjustment based on time-series data with patient’s history of warfarin

dose and INR [27], whereas in this study we focused on the development of pharmacogenetic

models to predict warfarin maintenance dose using clinical and genetic factors. Taken

together, the performance of our algorithms based on the stacked generalization framework

appears superior to other published models [10]. This is probably attributable to the power of

our model to identify complex, nonlinear relationships among genetic and clinical variables

and to deal with many sources of inferential trouble such as outliers and collinearity among

variables compared to the MLR in the IWPC study.

Our study has several limitations. First, due to the missing values in the IWPC cohort, we

imputed missing genotypes of VKORC1 for some patients based on linkage disequilibrium [5].

We also imputed missing values for height and weight using multivariate linear regression

models. These imputation strategies, which are generally reliable, could have introduced some

errors. Second, many patients required very high doses of warfarin in the IWPC cohort (> 70

mg/week), especially in warfarin normal groups. The polymorphisms explored in VKORC1
and CYP2C9 to classify warfarin sensitivity primarily explain increased sensitivity to warfarin,

not increased resistance. Mutations of VKORC1 have been associated with resistance to warfa-

rin [28, 29]. Third, our algorithms are more complex than MLR, which may not be very easy

to be implemented in clinical setting.

In conclusion, we created novel regression models using the stacked generalization

approach to estimate the warfarin maintenance dose. The performance of our algorithms was

superior to the algorithm developed by IWPC, especially in Asians and the low-dose group.

Our study offers alternative pharmacogenetic algorithms for clinical trials and practice.
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