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Abstract

Background

Chronic kidney disease (CKD)-mineral and bone disorder (MBD) is a systemic disorder that

leads to vascular calcification and accelerated atherosclerosis. Uric acid has been shown to

associate with vascular calcification and with carotid intima-media thickness (CIMT) and to

suppress the 1 α-hydroxylase enzyme leading to lower 1,25-dihydroxyvitamin D (1,25(OH)

2D) and higher intact parathyroid hormone (iPTH) levels. We hypothesized that lowering

serum uric acid would reduce CIMT, calcification propensity, and circulating markers of

CKD-MBD in CKD.

Methods

This is a post-hoc analysis of a randomized, double-blind study of 80 patients with stage 3

CKD and hyperuricemia who received allopurinol or placebo for 12 weeks. CIMT and T50

were measured as markers of vascular disease and serum calcification propensity, respec-

tively. The following markers of CKD-MBD were measured: serum calcium, phosphorus,

vitamin D metabolites, iPTH, and fibroblast growth factor-23 (FGF-23). Expression of extra-

renal 1α-hydroxylase was evaluated in endothelial cells of study participants.

Findings

Allopurinol successfully lowered serum uric acid levels compared to placebo with an esti-

mate of -3.3 mg/dL (95% C.I. -4.1,-2.5; p < 0.0001). After 12 weeks, however, we found no

significant change in CIMT or serum T50. There was not a significant change in vitamin D

metabolites, iPTH, FGF-23, or the expression of endothelial 1α-hydroxylase.
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Conclusion

These data suggest that factors other than uric acid may play a more important role in the

regulation of CKD- MBD including vascular calcification and vitamin D metabolism in

patients with CKD.

Introduction

Chronic kidney disease (CKD) is characterized by accelerated vascular aging and atherosclero-

sis of which vascular calcification is a dominant feature [1–3]. It is induced by dysregulation of

the mineral and bone axis (CKD-associated mineral and bone disorder) as well as by local

inflammation, elastin degradation, and vascular smooth muscle osteogenic differentiation [4–

6]. A systemic complication of CKD, vascular calcification may involve the intima, the media,

or both [7] and is predictive of cardiovascular events in this patient population [8]. In addition,

vascular calcification has been reported to correlate with surrogate outcomes of cardiovascular

disease (CVD) such as carotid intima-media thickness (CIMT) [9], an early marker of athero-

sclerosis and an established risk factor for CVD [10, 11].

CKD-associated mineral and bone disorder (CKD-MBD) is a complex disorder encom-

passing a wide range of abnormalities in mineral and bone metabolism including calcium,

phosphorus, vitamin D, parathyroid hormone, and fibroblast growth factor (FGF)-23 [12].

Collectively, these abnormalities are believed to contribute to vascular calcification and accel-

erated atherosclerosis in CKD. Uric acid is the main end-product of purine metabolism in

humans [13] and it is filtered and, subsequently, reabsorbed and secreted by the kidney [14].

Generally, the pathological changes caused by uric acid, such as gout and kidney stones, are

the consequences of its insolubility at higher concentrations whereby a high uric acid level

induces urate crystallization in multiple organs [15]. It has recently been postulated that hyper-

uricemia is in the causal pathway of hypertension, CKD progression, and cardiovascular dis-

ease (CVD) by non-crystal mechanisms [14]. The prevalence of hyperuricemia is, in fact,

increased in patients with CKD and has been linked in epidemiological studies to both CKD

progression and CVD in patients with CKD [14].

Previously published data by our group have linked hyperuricemia to CKD-MBD, as we

have shown uric acid suppresses 1α-hydroxylase expression and activity in vitro in renal proxi-

mal tubular cells and in vivo in a rodent model of acute hyperuricemia [16]. We have also

shown increased uric acid levels associate with increased intact parathyroid hormone (iPTH)

levels independently of the degree of CKD [16]. We have noted hyperuricemia associates with

an increased risk of fractures in elderly community-dwelling adults [17] and with coronary

calcification in patients with type 1 diabetes mellitus [18]. Other groups have published similar

findings associating asymptomatic hyperuricemia with coronary calcification [19, 20] and

with CIMT [21, 22]. Based on these data, we hypothesized that lowering serum uric acid levels

would improve CKD-MBD parameters and slow vascular calcification in patients with CKD.

We evaluated this in a post-hoc analysis of a recently published randomized, double-blind, pla-

cebo-controlled clinical trial of the effects of uric acid-lowering on vascular endothelial dys-

function in patients with stage 3 CKD and hyperuricemia [23]. We utilized CIMT and T50 (a

serum calcification propensity score shown to predict mortality in CKD) as markers of vascu-

lar calcification [9, 24].
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Methods

Study population

The details of the parent study have been published previously [23]. Briefly, to qualify for par-

ticipation, male patients were required to have a serum uric acid level of�7.0 mg/dL and

female patients a serum uric acid level of�6.0 mg/dL with stage 3 CKD (eGFR between 30–60

mL/min/1.732) calculated based on the Modification of Diet in Renal Disease (MDRD) for-

mula [25]. Additionally, patients had to be 18–74 years of age, have a serum albumin >3.0,

and be able to give informed consent. Exclusion criteria included: any condition that would

contraindicate use of allopurinol such as severe liver disease, a history of severe congestive

heart failure, any infection within the past 2 weeks, any hospitalization within the past 3

months, use of coumadin, and a body mass index >40 kg/m2. Additionally, patients were

excluded from participation if they were currently taking allopurinol or another uric acid-low-

ering agent or if they had a history of intolerance to allopurinol. The study was approved by

the Colorado Multiple Institutional Review Board and all participants were required to provide

written consent prior to participation in the study. For purposes of this analysis, we included

only participants, who had provided written consent for the future use of their samples and

had adequate sample volumes (n = 63). The study was registered at ClinicalTrials.gov,

NCT01228903.

Study intervention

Patients were randomly assigned to receive allopurinol or placebo over a 12-week period and

were advised to take 100 mg/day during the first week, 200 mg/day during the second week,

and 300 mg/day for weeks 3–12.

Assessments

- Carotid- intima-media thickness (CIMT): was measured in a double-blind manner at the

Clinical and Translational Research Center (CTRC) at the University of Colorado Anschutz

Medical Center. Briefly, the left common carotid artery was imaged via GE Vivid 7 ultrasound

equipped with a linear array transducer and carotid artery diameter was analyzed using image

analysis software (Carotid Analyzer version 5.10.10, Medical Imaging Applications) as previ-

ously described [26]. A longitudinal segment of the cephalic portion of the carotid artery was

acquired ~2 cm distal to the carotid bulb for at least 10 cardiac cycles. Carotid IMT was

defined as the distance from the leading edge of the lumen-intima interface to the leading edge

of the media-adventitia interface on the far wall, measured during end diastole. All image anal-

ysis was performed by a single investigator blinded to the study randomization.

- T50: We utilized a novel in vitro blood test to measure the overall calcification propensity

by monitoring calciprotein particles (CPPs) maturation time (T50). This measurement, as pre-

viously described [27], is a nanoparticle-based assay that detects the spontaneous transforma-

tion of spherical colloidal primary CPPs to elongate crystalline secondary CPPs in the

presence of artificially elevated calcium and phosphate concentrations. Lower (compared to

higher) T50 values have been shown to predict all-cause mortality in patients with CKD [24].

The samples were measured for T50 in the clinical research unit at Bern University.

- CKD-MBD markers: Analysis of 1,25(OH)2D was performed on frozen serum samples using

immunoaffinity extraction and high-performance liquid chromatography (HPLC) mass spectro-

photometry (XEVO TQ, Waters) at the University of Washington’s Laboratory for Nutrition and

Obesity Research Center. The detailed methodology and assay optimization has been previously

published [28]. The method has lower limits of quantification (20% coefficient of variation) of

Uric acid, vascular disease and CKD-MBD
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1.25 pg/ml for 1,25(OH)2D3 and 0.64 pg/ml for 1,25(OH)2D2. Published interassay and intraassay

imprecision for this method are<14% for both 1,25(OH)2D3 and 1,25(OH)2D2. Total 1,25

(OH)2D is reported as the sum of 1,25(OH)2D3 and 1,25(OH)2D2. The subset of measured sam-

ples consisted of samples stored at -80˚C. Specifically, 29 samples were available from the allopuri-

nol group and 34 from the placebo group. We were unable to evaluate all the participants from

the larger parent study involving 80 patients due to lack of adequate sample volume. To reduce

the number of thaw-refreeze cycles, 25(OH)D and 24,25(OH)2D were measured simultaneously

utilizing the same analysis and extraction procedure [29, 30]. The interassay coefficients of varia-

tion were<3.4% and 14.7%, respectively. [31] FGF-23 and iPTH analyses were also conducted at

the University of Washington laboratories using the same frozen serum samples. Full-length

(intact) FGF-23 levels were measured via sandwich ELISA assay (Kainos, Japan) [31]. The interas-

say coefficient of variation (CV) = 12.4%. iPTH levels were measured by using a 2-site immunoas-

say via a Beckman Unicel DxI clinical analyzer [31]. The interassay CV = 6.1%. Calcium and

phosphorus were analyzed using ambient plasma samples on the day of collection by the Univer-

sity of Colorado Hospital clinical lab.

- Endothelial cell expression of 1α-hydroxylase: This was evaluated as a measure of extra-

renal 1α-hydroxylase using endothelial cells collected from the antecubital vein of study partic-

ipants as previously published [32, 33]. Briefly, immediately after cell collection, cells were

fixed with 3.7% formaldehyde, washed with 1x PBS, and plated onto slides. Cells were then

blocked with 5% Normal Donkey Serum (Jackson Immunoresearch) and incubated with pri-

mary antibody (The Binding Site) for 1 hour. After, cells were incubated with CY3-congugated

secondary antibodies (Life Technologies) for 45 minutes. Slides were scanned systematically to

identify cells with intact nuclei; intact nuclei were identified by using 4’,6’-diamidino-2-pheny-

lindole hydrochloride (Vector Laboratories). Endothelial cells were then identified by positive

VE-Cadherin (Adcam) staining. Once intact endothelial cells were identified, the images were

captured and analyzed using NIS Elements AR software (Laboratory Imaging). An average

pixel intensity of 30 intact endothelial cells was used to quantify the intensity of the Cy3 stain-

ing. These values were then reported as a ratio of endothelial cell protein expression to human

umbilical vein endothelial expression. This ratio was used to account for any variation in the

staining procedure that may occur. Of note, 1α-hydroxylase was evaluated in 28 subjects; pla-

cebo (n = 8) and allopurinol (n = 20), all by the same analyst. The small number of samples is

due to the inadequate number of cells on some of our collections or to some patients not

undergoing the sample collection.

Statistical analysis

Baseline characteristics by group are presented as mean ± SD for continuous variables with

categorical variables shown as %. Variables that are not normally distributed were trans-

formed. We conducted the analysis utilizing generalized linear mixed (GLM) modelling. We

evaluated the distribution of the outcomes including CIMT, T50, 25(OH)D, 24,25(OH)2D, and

1,25(OH)2D, FGF-23, and iPTH. The majority had normal distribution so we ran mixed mod-

els using a normal distribution. The only exception was for FGF-23, for which Gamma distri-

bution with a log link function was used. There was one value that was an outlier for each:

CIMT and FGF-23 (significantly larger than the others) and they were both recoded to missing

for the modeling. A random intercept was included for each outcome. A random residual was

included for each outcome except for 24,25(OH)2D. In addition to the unadjusted analysis, we

adjusted for age, sex, race/ethnicity. We applied the same approach to analysis of 1α-hydroxy-

lase protein expression in the endothelial cells. SAS software (version 9.4, Cary, N.C.) was used

to conduct all analyses.

Uric acid, vascular disease and CKD-MBD
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Results

Clinical characteristics at baseline

Patient baseline characteristics are presented in Table 1. The majority of patients in both

groups were male but there were more men in the treatment arm (79% in the placebo group

and 83% in the allopurinol group). Additionally, the patients were predominantly Caucasian

with a higher % in the placebo group (85% compared to 62% in the allopurinol group). Over

half of the patients in each group had a history of DM with 62% of those assigned to the pla-

cebo and 66% of those assigned to allopurinol being diabetic. Chronic Kidney Disease Epide-

miology Collaboration (CKD-EPI) estimated GFR [34] was 40.8 ± 8.4 mL/min/1.732 in the

placebo group and 40.3 ± 9.3 mL/min/1.732 in the allopurinol group. Serum uric acid levels

nor MBD markers were significantly different between the groups at baseline except for FGF-

23, which was quantitatively lower in the group randomized to allopurinol compared to pla-

cebo (p value = 0.002).

The effects of uric acid-lowering on CIMT and serum calcification

propensity

Baseline CIMT and T50 were similar between both groups at baseline. Across the 12 weeks of

the study, allopurinol successfully lowered serum uric acid levels compared to placebo with an

estimate of -3.3 mg/dL (95% C.I. -4.1,-2.5; p< 0.0001). There was no significant change in

CIMT over a period of 12 weeks in either the treatment or the placebo group. The estimate

Table 1. Baseline characteristics of the subset of subjects with CKD-MBD measurements according to study

group.

Placebo

(n = 34)

Allopurinol

(n = 29)

Age (years) 58.0 ± 9.6 59.2 ± 12.9

Gender (Male) 27 (79%) 24 (83%)

Race

Caucasian 29 (85%) 18 (62%)

African American 3 (9%) 7 (24%)

Other 2 (6%) 4 (14%)

Hispanic ethnicity 9 (27%) 5 (17%)

History of DM 21 (62%) 19 (66%)

CKD-EPI eGFR (mL/min/1.73m2) 40.8 ± 8.4 40.3 ± 9.3

Serum urate (mg/dL) 8.81 ± 1.4 8.39 ± 1.4

CIMT (mm) 0.77 ± 0.17 0.73 ± 0.14

Serum T50 (min) 274 ± 56 244 ± 53

Calcium (mg/dL) 9.4 ± 0.4 9.1 ± 0.4

Phosphorus (mg/dL) 3.6 ± 0.6 3.6 ± 0.5

25 vitamin D (ng/mL) 29.4 ± 10.1 26.8 ± 8.1

Total 1,25 vitamin D (pg/mL) 28.0 ± 12.0 27.2 ± 11.0

24,25 vitamin D (pg/mL) 3.4 ± 1.9 3.2 ± 1.8

iPTH (pg/mL) 73.8 ± 40.8 68.4 ± 32.4

FGF-23 (pg/mL)-Median (IQR) 110.4(92.7,150.4) 74.1(57.3,104.9)�

Values are expressed as means ± standard deviation or % = percent of patients unless otherwise noted iPTH = intact

parathyroid hormone; FGF-23 = fibroblast growth factor-23

�: p value <0.05

https://doi.org/10.1371/journal.pone.0205831.t001
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was -0.02 (95% C.I. -0.06, 0.02, p = 0.43). As shown in Table 2, we did not observe a significant

change in T50 between the group treated with allopurinol vs the group treated with placebo. Of

note, adjustment for sex and race/ethnicity did not alter our findings (data not shown). Addi-

tionally, there was not a significant interaction with eGFR, neither as a continuous variable

nor using a cut-off of 45 mL/min/1.73m2, and CIMT or T50. We, furthermore, found no signif-

icant change in the participants’ fasting glucose or lipid profile (data not shown).

The effects of uric acid-lowering on vitamin D metabolites and other

CKD-MBD parameters

Table 2 illustrates that there was no effect for treatment group over the 12-weeks study period

on 25(OH)D, 24,25(OH)2D, and 1,25(OH)2D. Additionally, no significant effect of treatment

versus placebo was found on mineral and bone markers including serum calcium, phosphorus,

or iPTH. FGF-23 levels did increase slightly for the group that received allopurinol but this did

not reach statistical significance (estimate = 0.13 with 95% C.I. -0.05, 0.31; p = 0.17). Of note,

further adjustment for sex and race/ethnicity did not change our results (data not shown). Fur-

thermore, we found no significant interaction in any of our observations for CKD-MBD

parameters and eGFR.

Uric acid-lowering and the expression of 1α-hydroxylase in the

endothelium of study participants

The clinical characteristics for the participants with endothelial 1α-hydroxylase expression are

shown in Table 3. As shown in Fig 1, baseline expression of 1α-hydroxylase protein was similar

between the patients who were randomized to allopurinol vs those who received placebo at

baseline. In evaluating whether treatment arm influenced the expression of the 1α-hydroxylase

protein in the endothelial cells of participants over the 12-weeks study period, we found no sig-

nificance (p value = 0.59).

Discussion

In this study, we evaluated whether lowering serum uric acid levels in patients with stage 3

CKD reduces CIMT or the serum propensity for calcification or improves vitamin D

Table 2. Effect of treatment group compared to placebo over the 12-weeks study period.

Variable Estimate for

Treatment group�Time

95% C.I. p value

Serum urate (mg/dL) -3.3 -4.1, -2.5 <0.0001

CIMT (mm) -0.02 -0.06, 0.02 0.43

Serum T50 (min) -11.4 -38.3, 15.5 0.41

Calcium (mg/dL) 0.04 -0.15, 0.23 0.67

Phosphorus (mg/dL) 0.15 -0.14, 0.44 0.32

25 vitamin D (ng/mL) -2.12 -4.94, 0.70 0.15

Total 1,25 vitamin D (pg/mL) -2.47 -7.08, 2.14 0.30

24,25 vitamin D (pg/mL) -0.29 -0.66, 0.08 0.14

iPTH (pg/mL) 0.28 -14.9, 15.5 0.97

FGF-23 (pg/mL) 0.13 -0.05, 0.31 0.17

iPTH = intact parathyroid hormone; FGF-23 = fibroblast growth factor-23; CIMT = carotid intima-media thickness

�: interaction

https://doi.org/10.1371/journal.pone.0205831.t002
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Fig 1. Treatment with allopurinol for 12 weeks was not associated with increased expression of 1α- hydroxxylase

protein compared to placebo (p value for generalized linear mixed model = 0.59). The figures represent change in

the expression of the protein from baseline by study group. Values for each sample were reported as arbitrary units and

represent ratios of endothelial cell protein expression to human umbilical vein endothelial cell (HUVEC) expression in

order to account for any variation in the staining procedure.

https://doi.org/10.1371/journal.pone.0205831.g001

Table 3. Baseline characteristics of the subset of subjects with 1α-hydroxylase protein expression according to

study group.

Placebo

(n = 8)

Allopurinol

(n = 20)

Age (years) 57.5 ± 9.4 54.8 ± 15.7

Gender (Male) 4 (50%) 8 (66.7%)

CKD-epi eGFR (mL/min/1.73m2) 41.4 ± 12.4 39.0 ± 11.2

Calcium (mg/dL) 9.3 ± 0.3 9.0 ± 0.4

Phosphorus (mg/dL) 3.5 ± 0.7 3.5 ± 0.8

25 vitamin D (ng/mL) 3.3 ± 0.3 3.2 ± 0.2

Total 1,25 vitamin D (pg/mL) 3.1 ± 0.5 3.1 ± 0.5

24,25 vitamin D (pg/mL) 0.9 ± 0.7 0.4 ± 1.2

iPTH (pg/mL) 83.6 ± 38.7 81.0 ± 24.2

FGF-23 (pg/mL)-Median (IQR) 110.4 (28.9, 470.4) 74.1 (28.1, 151.2)

1α-hydroxylase 0.7 ± 0.3 0.8 ± 0.2

Values are expressed as means ± standard deviation, median (interquartile range), or % = percent of patients;

iPTH = intact parathyroid hormone; FGF-23 = fibroblast growth factor-23

https://doi.org/10.1371/journal.pone.0205831.t003
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metabolism. We hypothesized that lowering serum uric acid would increase 1,25(OH)2D,

lower iPTH levels, and increase the expression of extra-renal 1α-hydroxylase. We found that,

although allopurinol effectively lowered serum uric acid levels over a period of 12 weeks, it did

not change CIMT or T50. Furthermore, we observed no significant change in vitamin D

metabolites (including 1,25(OH)2D) or in iPTH. Although FGF-23 increased slightly in the

allopurinol group, this was not statistically significant. Contrary to our hypothesis, the

12-week treatment with allopurinol did not lead to increased 1α-hydroxylase protein expres-

sion in the venous endothelial cells of a subset of participants. As such, our data indicate that

uric acid-lowering does not significantly impact the systemic manifestations of CKD-MBD

including vascular calcification or the expression of 1α- hydroxylase in extra-renal tissues.

Vascular calcification is a multi-faceted complication of CKD. Dysregulation of the mineral

and bone axis plays a central role in the pathological shifts in normal mineralization between

the bone and the vasculature in patients with CKD [35]. Restoration of active vitamin D and

suppression of secondary hyperparathyroidism are hypothesized to restore normal mineraliza-

tion at least partially [36]. As such, we hypothesized that improved vitamin D activation and

reduced iPTH levels would lead to lower CIMT and higher T50. Uric acid-lowering had been

shown to improve vitamin D metabolism in patients with CKD previously. In a prior study

published by Vanholder et al. [37], serum 1,25(OH)2D increased from 30.8 ± 2.7 pg/mL to

38.2 ± 4.8 pg/mL (P< 0.01) after only 1 week treatment with 300 mg of allopurinol per day in

patients with CKD. Our data contrast with these findings. One possible explanation for our

findings is that our patients may have had inadequate 25(OH)D substrate. In both groups ran-

domized to placebo and allopurinol, 25(OH)D levels were >25 ng/mL. While these values may

be adequate in the absence of CKD [38], it is possible that higher levels of 25(OH)D (>30 ng/

mL) are needed in CKD due to reduced nephron mass and impaired 1α-hydroxylase activity

[39–41]. Consistent with this, in the study by Vanholder et al., baseline 25(OH)D levels were

>50 ng/mL [37]. Thus, inadequate substrate may have influenced our findings.

Alternatively, it is likely that other factors (other than hyperuricemia) are predominantly

responsible for reduced vitamin D activation in CKD, such as reduced nephron mass or

increased FGF-23 [42]. If this is the case, lowering serum uric acid levels is likely to be of little

or no benefit in patients with moderate CKD. The absence of significant improvement in the

extra-renal expression of the 1α-hydroxylase enzyme in the treatment arm compared to pla-

cebo supports this conclusion. In the absence of increased enzyme expression, it is unlikely

that enzyme activity would increase. Additionally, these data suggest that, rather than reduced

nephron mass, circulating factors (such as FGF-23) in CKD represent the predominant regula-

tor of this enzyme.

Previous data have suggested that higher FGF-23 levels associate with higher uric acid levels

even in the absence of significant CKD [43, 44]. More recently, the potential association

between uric acid and FGF-23 was evaluated in 537 patients with CKD in a cross-sectional

analysis [45]. FGF-23 was independently associated with higher serum uric acid levels and

with reduced urate clearance by the kidneys. While this data is limited by its cross-sectional

nature, the authors suggested that FGF-23 may modulate urate metabolism in patients with

CKD [45]. One proposed mechanism by which this may occur is secondary hyperparathyroid-

ism. The rise in FGF-23 levels in CKD, suppresses vitamin D activation by the kidneys, leading

to secondary hyperparathyroidism [46]. Hyperuricemia has long been noted in patients with

primary hyperparathyroidism [47]. Although the exact mechanism by which this occurs

remains unclear, earlier studies evaluating urate clearance in primary hyperparathyroidism

suggest that tubular urate secretion is reduced via hypo-perfusion of the capillary network per-

haps secondary to hypercalcemia [48]. Based on our study, we cannot determine whether sec-

ondary hyperparathyroidism contributes to hyperuricemia seen in CKD.
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In addition to the CKD-MBD markers measured here, certain deficiencies have been

shown to cause vascular calcification such as Klotho [49] and Fetuin-A deficiency [50]. Such

deficiencies are not expectedly modified by uric acid and likely play an important role in vas-

cular aging and calcification. As noted in the introduction, CKD-MBD is but one mechanism

that contributes to vascular calcification in patients with CKD and certain processes such as

local vascular inflammation, elastin degradation, and vascular smooth muscle osteogenic dif-

ferentiation contribute to the disease [4–6]. Based on our previous analysis of the parent study,

we found no evidence that lowering serum uric acid levels reduces systemic or vascular inflam-

mation in CKD [23]. These data are consistent with our negative findings in the current

analysis.

Our study has several limitations. First, this was a post-hoc analysis of the original study

and the reported outcomes here were not pre-determined secondary end points. As such our

findings should not be generalized. Second, regarding surrogate outcomes for vascular calcifi-

cation, we were unable to measure all relevant markers (such Fetuin-A) and it is possible that

longer study duration might have yielded different results. Third, as noted above, 25(OH)D

levels were borderline adequate in our patients and we cannot exclude the possibility of inade-

quate substrate. Finally, while we were able to evaluate endothelial expression of 1α-hydroxy-

lase protein, the sample size included was small. Notwithstanding these limitations, our study

has several strengths including the ability to compare the treatment arm to placebo, the evalua-

tion of CIMT and serum calcification propensity, the measurement of vitamin D metabolites

by an experienced laboratory with standardized protocols, and the thorough evaluation of

CKD-MBD parameters including the extra-renal expression of 1α-hydroxylase enzyme.

In conclusion, uric acid-lowering therapy does not improve CIMT, serum calcification pro-

pensity, nor vitamin D metabolism in patients with stage 3 CKD. Lowering serum uric acid

levels did not improve the expression of 1α-hydroxylase in the endothelium of patients with

CKD. Our data suggest that other factors play a more important role than uric acid in the vas-

cular calcification of CKD-MBD.
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