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Abstract

Xylanases are hydrolytic enzymes which based on physicochemical properties, structure,

mode of action and substrate specificities are classified into various glycoside hydrolase

(GH) families. The purpose of this study is to show that the activity of the members of the

xylanase family in the specified pH and temperature conditions can be computationally

predicted. The proposed computational regression model was trained and tested with the

Pseudo Amino Acid Composition (PseAAC) features extracted solely from the amino acid

sequences of enzymes. The xylanases with experimentally determined activities were used

as the training dataset to adjust the model parameters. To develop the model, 41 strains of

Bacillus subtilis isolated from field soil were screened. From them, 28 strains with the high-

est halo diameter were selected for further studies. The performance of the model for predic-

tion of xylanase activity was evaluated in three different temperature and pH conditions

using stratified cross-validation and jackknife methods. The trained model can be used for

determining the activity of newly found xylanases in the specified condition. Such computa-

tional models help to scale down the experimental costs and save time by identifying

enzymes with appropriate activity for scientific and industrial usage. Our methodology for

activity prediction of xylanase enzymes can be potentially applied to the members of the

other enzyme families. The availability of sufficient experimental data in specified pH and

temperature conditions is a prerequisite for training the learning model and to achieve high

accuracy.
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Introduction

After cellulose, xylan is the second most abundant polysaccharide in nature which is mostly

found in the plant cell wall and accounts for a large part of plants biomass. Xylan can be depo-

lymerized using xylanase enzymes, an important family of hydrolases.

The glycosyl hydrolases (GHs) are a very large family of enzymes which hydrolyze the gly-

cosidic bond between carbohydrates as well as between a carbohydrate and a noncarbohydrate

moiety to form heteropolysaccharides. The classification of GH enzymes into subfamilies is

mainly based on amino-acid sequence similarities as proposed in [1–7].

Endo-xylanases with somewhat different sequences are found in various GH families

because of the sequence-based classification of GH enzymes and despite similar structures and

conserved folding [3–9].

Xylanases (EC3.2.1.X) are among important constituent subfamilies of GH enzymes. While

xylanase isoenzymes show different specificities, they have synergistic effect on the hydrolysis

of xylan [10]. Heteroxylan backbone is composed of glycoside linkages. For cleaving these

bonds, the interaction of some cleavage enzymes for both main and side chains is required.

Endo-β-1,4-xylanases (EC 3.2.1.8), β-1,4 xylosidases (EC 3.2.1.37), and exoxylanases are

examples of enzymes with the capability of cleaving main-chain glycosyl groups [7]. Most xyla-

nases extracted from microbial communities are single-subunit enzymes [9].

There have been a lot of works to achieve highly active xylanases suitable for various appli-

cations in specified conditions [11–13]. A comprehensive review covered those approaches

and offered a procedure for cloning of recombinant xylanase enzymes with thermostability

and alkaline stability [14]. There are many computational approaches for predicting the

enzyme activity from its tertiary structure [15,16], but the prediction of the activity of an

enzyme based on its sequence is not a straightforward task. The members of a specific enzyme

family, e.g., xylanases, have very similar sequences with high sequence identities, but very dif-

ferent activity levels in similar conditions. This property makes it very hard to predict the

activity only from the sequence. The purpose of the proposed computational method is to pre-

dict the activity of enzymes from xylanase family based on limited experimental studies.

Different Bacillus subtilis strains capable of xylanase production have been hitherto isolated

from natural resources [17–23]. In this study, 41 strains of Bacillus subtilis were isolated from

gardens and farms based on their ability to produce xylanase enzyme.

For these strains, the xylanase activity determination experiment was done. Using trained

computational models, the halo zone diameter in screening plates as well as enzyme activities,

could be predicted based on Pseudo Amino Acid Composition (PseAAC) features that were

extracted from xylanase amino acid sequences. This makes it possible to predict the bacterial

halo diameter and enzyme activity in specified condition without doing screening and activity

measurement experiments.

The main reason for choosing PseAAC feature vectors as representative of xylanase

enzymes in activity prediction task was the fact that PseAAC features have been vastly used

in computational biology for prediction of different properties of proteins and nucleic acid

sequences since 2001 [24–58]. Some of its recent applications are related to RNA and DNA

sequence analysis fields. Pseudo k-tuple nucleotide compositions (PseKNC) were exploited to

identify enhancers and their strength in a two-layer architecture and since 2015 it has been

accessible via iEnhancer-2L web server [34]. In 2016, two ensemble learning methods were

introduced. The iDHS-EL is a web server for identifying DNase I hypersensitive sites which

fuses three different modes of pseudo nucleotide composition [33]. Also, the iRSpot-EL fuses

different modes of PseKNC plus mode of dinucleotide-based auto-cross covariance for identi-

fying DNA recombination spots [59]. One of the most recent studies in 2017 introduces
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2L-piRNA, a two-layer ensemble classification system, for identifying Piwi-Interacting RNAs

and their function using PseKNC [60].

Among the important factors in industrial processes are pH and temperature on which

chemical and enzymatic stability depend. Therefore, choosing the right enzyme to optimize

catalyzing a specific reaction is not straightforward [61].

Many attempts have been made for engineering thermostable microbial xylanases for opti-

mizing their activity in industrial processes through advanced biotechnological approaches

including enzyme immobilization methods, gene editing and docking [62–64]. Despite the

above mentioned studies, there is still no computational framework to predict the enzyme spe-

cific activity in the specified condition. The proposed approach can facilitate this complex pro-

cess using statistical learning methods. Moreover, this method can be extensively used for

screening the activities of enzymes extracted from metagenomic data.

Materials and methods

Experimental data

Bacterial strains and culture condition. About 90 Bacillus subtilis isolates were obtained

from Microbial Culture Collection established in the Agricultural Biotechnology Research

Institute of Iran (ABRII). The strains were grown in NBY medium (Nutrient Broth: 8g / L,

K2HPO4: 1g / L, Yeast Extract: 1g / L, KH2PO4: 0.25g / L, Glucose: 2g / l, MgSO4 (1M): 1ml /

L and Agar: 18g / L) and incubated at 28˚C for 48 h.

Screening of xylanase producing bacterial isolates. Bacterial isolates were grown on XC

agar medium containing 10 g/L oat-spelt xylan, 5 g/L peptone, 1 g/L yeast extract, 4 g/L

K2HPO4, 1 g/L MgSO4.7H2O, 0.2 g/L KCl, 0.02 g/L FeSO4.7H2O, agar 15 g/L, pH 7.0. The

plates were incubated at 28˚C for 48h. Xylanse producing bacteria exhibited a clear zone

around their colony as a qualitative index for xylanase productivity potential.

Enzyme production. For crude enzyme production, 200μl of overnight-grown bacterial

culture in nutrient broth (OD600nm = 0.5) was transferred into 10 ml enzyme medium and

shaked at 28˚C for 48h. The enzyme medium contained xylan: 12 g/L, Meat Extract: 3 g/L,

Yeast Extract: 4 g/L, CaCl2.H2O: 0.5 g/L, MgSO4.7H2O: 0.3 g/L and K2HPO4: 1 g/L and pH

was adjusted to 7.0. The fermented culture medium was centrifuged at 10,000 rpm for 10 min

at 4˚C and the supernatant was stored at -20˚C for xylanase assay.

Xylanase assay. Xylanase activity was assayed by measuring the formation of reducing

sugar by the dinitrosalicylic acid (DNS) method [65]. The reaction mixture containing 100 μl

of crude enzyme and 300 μl 1%soluble xylan(sigma) in 50 mM phosphate or citrate buffer at

desired pH. After 20 min, the 600 μl DNS reagent was added to the mixture and boiled at

100˚C for 15 min. The xylanase was assayed at three different conditions including

temperature = 60˚C and pH = 4.6, temperature = 26˚C and pH = 4.6 and temperature = 26˚C

and pH = 6.9. Absorbance was measured at 540 nm against a reagent blank. A series of xylose

dilutions were used as standards to calculate the quantity of reduced sugar. One unit (U) of

xylanase activity was defined as the amount of enzyme needed to generate 1 μmol of reduced

sugar per minute under the assay conditions.

Collected dataset. The xylanases were extracted from 41 different strains of Bacillus sub-
tilis. Their GenBank accession numbers and the associated strain codes are demonstrated

in Table 1. Also, Their amino acid sequences are provided in supplementary S2 Table. The

diameter of bacterial halos was measured. Among 41 xylanases mentioned in Table 1, 28

enzymes were selected for determining their activities in different conditions of temperature

and pH.
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Table 1. 41 different xylanase enzymes were selected for experimental and computational studies. The GenBank Accession No., and its relevant strain code, for each

sequence are included. The diameter of halos produced in the screening plates is also included for enzymes with high and medium halos surface. The last three columns

shows the activities measured for 28 selected xylanase enzymes in three different pH and temperature conditions.

Activity (IU ml-1)
No. GenBank Accession No. Strain Halo zone diameter (mm) Real Class pH = 4

T = 60°C
pH = 4
T = 26°C

pH = 6
T = 26°C

1 AGO02713 a14h 4.6 M 400 280 320

2 AGO02715 d16d 5.7 H 295 80 300

3 AGO02724 d19d 5 M 490 360 370

4 AGO63347 d3d 5 M 60 120 150

5 AGO63342 h11h 5 M 590 380 205

6 AGO02730 h13f 4.2 M 170 200 150

7 AGS78259 h13h 4.1 M 490 370 320

8 AGO63354 h14d 6.5 H 740 120 170

9 AGO63351 h14h 5 M 810 130 330

10 AGO63345 h16h 4.8 M 330 205 150

11 AGO63356 k2b 7 H 670 230 250

12 AGO02722 k32l 5 M 280 290 150

13 AGO02727 k33l 5 M 440 660 330

14 AGO63344 k36p88 5 M 400 230 180

15 AGO63350 k40b 6 H 610 320 200

16 AGO02714 k43l 5 M 220 180 50

17 AGO02728 k46b 4 M 510 60 210

18 AGO02725 s6a 5.8 H 710 420 40

19 AGO02721 s7e 6.5 H 890 420 780

20 AGO02726 S7h 5 M 370 350 280

21 AGO97103 t27b 4.3 M 530 280 210

22 AGO02717 t28d 5 M 525 170 150

23 AGO63355 t31d 4 M 5 40 50

24 AGO63353 t34b 4.5 M 210 0 120

25 AGO02716 t37a 8 H 670 280 590

26 AGO02718 t41a 5 H 505 310 390

27 AGO02729 W 4.5 M 410 110 125

28 AGO63357 Y 4.5 M 690 390 260

29 AGO02712 b16b 3 L

30 AGO02719 s2f 2.9 L

31 AGO02720 s2h 2.5 L

32 AGO02732 a10d 3.5 M

33 AGO02723 d3b 2.5 L

34 AGO02731 b5d 3 L

35 AGO02733 s3d 2 L

36 AGO63358 b9h 2.7 L

37 AGO63360 s5d 3 L

38 AGO97104 h13d 3 L

39 AGO02734 S1d 3.8 M

40 AGO63359 k27k88 3.5 M

41 AGO63349 b11h 3.5 M

All cloned xylanase gene sequences belongs to the CAZy GH family 11 according to the Expert Protein Analysis System (ExPASy) PROSITE.

The xylanases in rows 38–41 are excluded because they showed very low activities in all three different conditions of temperature and pH. By experimentally

determining the activities for 28 sequences in three conditions, they were used as the material for building and validating a regression model to predict the activity of the

xylanase enzymes. The model was validated using stratified k-fold cross validation and jackknife methods.

https://doi.org/10.1371/journal.pone.0205796.t001
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Computational analysis

Feature extraction. From the machine learning perspective and, for computational pre-

diction of enzymes activity solely from the sequence, the first step is extracting informative fea-

ture vectors based on the amino acid sequence of enzymes. These vectors are considered as the

identity profile for each member of the enzyme family. It is expected that using these discrimi-

native profiles and employing powerful computational methods, the activity level of novel

enzyme sequences can be estimated. For learning the predictive model for a specific enzyme

family, it is necessary to experimentally obtain the enzymatic activities for a limited number of

enzyme sequences as training data. One of the well-known sequence based features which has

been used in many computational tasks is the amphiphilic Pseudo Amino Acid Composition

(PseAAC).

The concept of PseAAC was proposed by Chou [25]. Since then, the concept of PseAAC

has penetrated into almost all the fields of computational proteomics [26–30,58]. Encouraged

by the successes of introducing the PseAAC approach into computational proteomics, a novel

feature vector, called ‘pseudo K-tuple nucleotide composition’(PseKNC) [31,32], was devel-

oped to represent DNA sequence samples to improve the quality of predicting the elements

[33–37,39,40,57,66]. Some soft packages or web servers were established to produce the

PseKNC [41–43]. The Pse-in-One is a web server with the ability of generating totally 28 dif-

ferent modes of pseudo components for DNA, RNA, and protein sequences [43]. Also, the

Pse-Analysis is a Python package freely accessible at http://bioinformatics.hitsz.edu.cn/Pse-

Analysis/ [67]. It provides an automated pipeline including feature extraction from samples

and parameter selection, training and validating the model, and evaluating the quality of

prediction.

The method of calculating the PseAAC vectors from the amino acid sequence is described

in details in [68] and [24].

Suppose an enzyme E, with a sequence of L amino acid residues:

E ¼ E1E2E3 . . .EL ð1Þ

In which Ei (i = 1,2,. . .,L) denotes the residue at chain position i. The hydrophobicity or

hydrophilicity of amino acids plays important role in enzyme structure and hence its function

[44]. Therefore, these indices are strong candidates to reflect the function and activity of

enzyme sequences. The following equations reflect the sequence order effect of an enzyme in

its activity and functionality:

t2k� m ¼
1

L � k

XL� k

i¼1
Hm

i;iþk

k ¼ 1; 2; . . . ; l; l < L

m ¼ 0 or 1

8
>>><

>>>:

ð2Þ

In above equations, τ2k−1 and τ2k are called the kth-tier correlation factors and H1
i;iþk and

H2
i;iþk are the hydrophobicity (m = 0) and hydrophilicity (m = 1) correlation functions

respectively.

τ2−1 and τ2k reflect the sequence–order amphiphilic correlation between all the kth most

contiguous residues along the enzyme sequence. For example, τ5 and τ6 are the 3rd-tier (k = 3)

correlation factors that shows the sequence-order correlation between all the 3rd most contigu-

ous residues in the sequence (Fig 1).

We used the PseAAC, a web server which is designed to generate PseAAC features from

protein sequences [46] (http://www.csbio.sjtu.edu.cn/bioinf/PseAAC/).
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For each enzyme sample E, we have an augmented vector to represent it:

E ¼

e1

..

.

e20

e21

..

.

e20þl

e20þlþ1

..

.

e20þ2l

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð3Þ

The elements of E are defined follows:

ek ¼

fk
P20

i¼1
fi þ w

P2l

j¼1
tj

; ð1 � k � 20Þ

wtk
P20

i¼1
fi þ w

P2l

j¼1
tj

; ð21 � k � 20þ 2lÞ

8
>>><

>>>:

ð4Þ

Different values for λ produce different feature vectors for enzymes. In this study, due to

slightly better performance, λ = 7 is used for generating feature vectors.

The feature values extracted from studied xylanase sequences are tabulated in supplemen-

tary S1 Table.

Building classification models. For constructing and learning a model to predict the bac-

terial halo diameters without the need for experimental works, 41 collected strains were cul-

tured in selective environments and the halo diameters were measured. These results and

PseAAC features obtained from respective xylanase sequence were used as the training and

testing datasets for classifiers.

The Naïve Bayes, SVM (Support Vector Machine), K-Nearest Neighbor (KNN) (with

K = 1) and random forest classifiers were used classify the diameter of halos. For KNN classi-

fier with uniform weights and Euclidean distance, different values for K (from 1 to 15) were

considered and for K = 1 the best performance was obtained.

SVM classifier with linear kernel, and random forest classifier with 30 trees were employed.

The target class has been selected based on the majority vote from the individually trained

trees in the forest. These classifiers were also used in many previous studies including virion

protein prediction [48] DNA/RNA modified site identification [47,69], membrane transporter

prediction [49] and the origin of replication prediction [39].

Fig 1. The amphiphilic coupling between all the third most contiguous amino acids. The values 0 and 1 for m represents the correlations via

hydrophobicity and hydrophilicity indices.

https://doi.org/10.1371/journal.pone.0205796.g001
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To compare the methods, the Area Under Curve (AUC) of ROC curve, Classification Accu-

racy (CA), F1, precision and recall measures obtained from classification methods were used.

Building regression models. The statistical process of estimating the relationships

between a dependent variable and one or more independent variables is called regression. In

fact, the conditional expectation of dependent variable is estimated given the independent var-

iables, or predictors. In this study, the enzyme activity in a fixed pH and temperature was esti-

mated based on PseAAC features.

We used different regression methods to determine the activity of xylanases with slightly

different sequences using PseAAC vectors in three different pH-temperature conditions.

SVM, KNN and random forest regression algorithms were used to build a proper regression

model for xylanase activities in different conditions. Also, boosting regression trees using Ada-

boost algorithm were examined. For SVM regressor, linear kernel was employed. For KNN,

uniform weights and Euclidean distance were considered and different values for K (from 1 to

15) were tested. The best performance was achieved for k = 5. In Adaboost, 50 regression trees

as the base regressor machine were fused. For each regression tree, at least two instances for

each leaf and 5 instances for internal nodes with the maximum depth of 100 were considered.

In the random forest regressor, 10 trees were generated and for each tree maximal tree depth

and an unlimited number of considered features were used. The Mean Squared Error (MSE),

Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and R2 measures were calcu-

lated and used for comparing the results.

Implementation and validation of computational models. In this study, Orange was

used for performing classification, regression and validation operations as an open source

datamining and machine learning toolbox implemented in python [70]. Free access to python

codes of Orange makes it possible to use it in the future development of web applications for

similar studies.

K-fold cross-validation test, sub-sampling test, independent dataset test and jackknife

cross-validation test are four kinds of strategies in statistical learning which have been widely

used to examine the performance of a prediction model [71–73]. Because the jackknife test can

achieve unique outcomes [74], it has been widely used in Bioinformatics [75–79]. However,

the jackknife cross-validation is more time-consuming. In this study, the 10-fold cross-valida-

tion as well as the jackknife method were used to investigate the performance of the prediction

models.

Results

Xylanase assay

Experimental screening resulted in isolation and identification of 41 isolates producing xyla-

nase enzyme. Approximately, 28 xylanase producing strains (68%) had clear zones larger than

35 mm and selected for xylanase assay at three different conditions.

The halos with a diameter less than 3.5mm are assigned to class Low (L), between 3.5mm

and 5.5mm are assigned to class Medium (M), and larger than 5.5mm are assigned to class

High (H). Among these xylanases, 28 sequences related to strains with Halo Diameter (HD)

greater than 3.5mm (from M or H classes) were selected for further analysis.

Classification results

Applying Random Forest, Naïve Bayes, SVM, and KNN on 41 sequences listed in Table 1 for

classifying the area of bacterial halos from respective expressed xylanase enzymes showed that

the diameter and therefore the area of these halos could be classified with high accuracy in one

of the three categories L, M, or H. Table 2 shows the results. The AUC, CA, F1, precision and
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recall measures for different models are reported in Table 2. The results were validated by

10-fold cross validation and jackknife methods.

According to the results in Table 2, the Random Forest classifier outperformed other

models.

Regression results

Using SVM, KNN, Adaboost and random forest regression algorithms, predictive regression

models were built for predicting the xylanase activities in three specific temperatures and pH

conditions. The experimental data in Table 2 were used for tuning the parameters of these

models. The results are demonstrated in Fig 2 and Table 3. Fig 2, shows the experimentally

measured activities vs. predicted values by all four regression models for all 28 strains. Table 3

summarizes the performance measures for regression models. Based on the results, the SVM

regressor showed the best performance. As it can be seen in Fig 2, except the s7e and t31d in

all three conditions, and t34b in part (a) almost for all other strains the activity of produced

enzyme has been accurately predicted by at least one of predictors. Despite the overall better

performance of SVM, the Random Forest regressor showed better results.

Discussion and conclusion

Understanding the properties of amino acid sequences from their primary structure is one of

the main challenges in computational biology.

The rapid growth in the number of enzymes discovered from high-throughput sequencing

generates a wealth of data. However, a major challenge is the functional assignment and activ-

ity prediction for many newly found enzymes with no or limited experimental data. The activ-

ity of an enzyme in a specified condition is a very important factor that can affect the rate of

the underlying reaction.

It is worth noting that both enzyme molecular function prediction and enzyme specific

activity prediction are important and challenging subjects which should not be confused with

each other.

Enzyme molecular function prediction refers to identifying the biochemical reactions that

an enzyme can catalyze and these functions are manually classified by the Enzyme Commis-

sion[80]. Several in-silico and experimental methods have been developed for this purpose,

many of which are based on the identification of target substrates for the enzyme active site(s)

[50].

However, for members of an enzyme family with similar molecular function, the level of

catalytic specific activity can be very different for a given condition of temperature, pH and the

presence of inhibitory factors. Establishing a computational framework for in-silico prediction

of the specific activities for the members of an enzyme family only from their amino acid

sequence, and for a given condition, is the main novelty of this research. Building a learning

model with high generalization power needs adequate training samples. In this field, we need

Table 2. Results from three different classifiers.

Model AUC CA F1 Precision Recall
10 fold Jackknife 10 fold Jackknife 10 fold Jackknife 10 fold Jackknife 10 fold Jackknife

Random Forest 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SVM 0.857 0.854 0.854 0.829 0.856 0.831 0.861 0.834 0.854 0.829

KNN (K = 1) 0.964 0.910 0.951 0.902 0.951 0.900 0.954 0.901 0.951 0.902

Naïve Bayes 0.688 0.636 0.317 0.610 0.307 0.604 0.608 0.600 0.317 0.610

https://doi.org/10.1371/journal.pone.0205796.t002

A computational method for prediction of xylanase enzymes activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0205796 October 22, 2018 8 / 16

https://doi.org/10.1371/journal.pone.0205796.t002
https://doi.org/10.1371/journal.pone.0205796


dozens of enzymes from the same family, with known amino acid sequence and precise spe-

cific activity values in the same pH and temperature to learn our regression model.

Despite many empirical studies which have been done to measure the activity of a variety of

enzymes, due to the lack of enough proper training data for specific temperature/pH condi-

tion, very little has been done to build statistical learner models for activity prediction from

sequence.

This research work is one of the primary steps to cover this deficiency. Due to the fact that

screening the bacterial halos is a primary step for selecting proper strains, a method was pro-

posed that can classify the magnitude of the diameter of bacterial halo zone by exploiting

PseAAC features. In the xylanase selective medium, the halo diameter is highly correlated with

Fig 2. The activity of xylanase enzymes purified from different Bacillus subtilis strains vs. predicted activities by

four computational models. The activities were determined in three different pH/temperature conditions. (a) pH = 4,

T = 26˚C (b) pH = 4,T = 60˚C (c) pH = 6,T = 26˚C.

https://doi.org/10.1371/journal.pone.0205796.g002
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the activity of the expressed xylanase from the corresponding strain. However, it is clear that

the halo diameter is not the only function of the xylanase activity, but, many factors play a role

in its formation. Therefore, the exact prediction of halo diameter only from xylanase sequence

is impossible. Nevertheless, we showed that correct classification of halo diameter from the

enzyme sequence in one of H, M, and L classes is logical and feasible. Therefore, we developed

two learning models which help to obtain a relatively accurate estimation of activity for new

xylanases and bacterial halos diameter for new strains without the need for new experiments.

Finding a reliable in-silico prediction model for enzyme function and activity, may circumvent

costly and time consuming experimental screening. We showed that the problem of enzyme

activity prediction solely from its primary structure could be partially solved by regression

machines. Adequate training data makes the regression results more reliable and informative.

However, the accuracy and precision of predictors remain as serious concerns. The main rea-

son is that choosing a model because of its performance based on limited training data, does

not guarantee the correct prediction of future observations, also known as the generalization

power of predictor. Cross-validation is a technique for evaluating predictive models and

assesses how the performance of a learning model will be generalized to independent and

unseen datasets. Our proposed models were validated using stratified cross-validation and the

jackknife techniques.

Although PseAAC features have been used in many prediction tasks in computational biol-

ogy, to the best of our knowledge, its usage for determining the activity of enzymes in specific

conditions has not been reported yet. Further efforts are required to develop similar computa-

tional models for enzyme activity prediction based on the other bio-physicochemical and

evolutionary features that can be extracted from the amino acid sequence of enzymes. The fea-

tures obtained from PSSM (Position Specific Scoring Matrix), hydrophobicity, polarity, polar-

izability, and many others are among such sources of information about enzyme activity.

In this work we used a feature vector with 34 elements. Using other information sources

such as the above mentioned features, can heavily increase the feature vector dimension. In

machine learning tasks, high dimension feature will maybe result in three problems: one is

over-fitting which results in low generalization ability of prediction model; another is

Table 3. Performance measures resulted from four different regression models. The models were validated by stratified 10-fold cross validation and jackknife methods.

The results are related to three different pH/Temperature conditions. (a) pH = 4,T = 26˚C (b) pH = 4,T = 60˚C (c) pH = 6,T = 26˚C.

Regression Models

SVM KNN (K = 5) AdaBoost Random Forest Regression
10-fold Jackknife 10-fold Jackknife 10-fold Jackknife 10-fold Jackknife

Assay Conditions pH = 4

T = 26˚C

MSE 24529.116 22879.562 25600.679 26193.536 35004.789 39039.153 34166.515 29285.824

RMSE 156.618 151.260 160.002 161.844 187.096 197.583 184.842 171.131

MAE 126.693 122.028 135.536 135.893 147.176 162.334 139.415 134.655

R2 -0.21 -0.128 -0.263 -0.292 -0.726 -0.925 -0.685 -0.444

pH = 4

T = 60˚C

MSE 55753.178 57096.944 72585.964 73541.250 123725.753 114543.750 78659.703 77522.968

RMSE 236.121 238.950 269.418 271.185 351.747 338.443 280.463 278.429

MAE 197.666 199.404 227.179 231.821 284.171 254.821 222.875 226.616

R2 -0.192 -0.221 -0.552 -0.572 -1.646 -1.449 -0.682 -0.658

pH = 6

T = 26˚C

MSE 31188.785 29521.580 32759.964 32268.250 62414.683 59070.759 44906.883 44090.080

RMSE 176.603 171.818 180.997 179.634 249.829 243.045 211.912 209.976

MAE 130.15 126.440 134.179 132.321 182.262 160.089 149.517 159.520

R2 -0.282 -0.213 -0.347 -0.326 -1.565 -1.428 -0.846 -0.812

https://doi.org/10.1371/journal.pone.0205796.t003
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information redundancy or noise which results in bad prediction accuracy; the other is dimen-

sion disaster which results in a handicap for the computation. Using feature selection tech-

niques to optimize feature set can not only economize the time for computation, but also

build robust prediction model. In fact, many techniques such as principal component analysis

(PCA) [53], minimal-redundancy-maximal-relevance (mRMR) [54], analysis of variance

(ANOVA) [55], F-score algorithm [40], binomial distribution [56] have been proposed and

used in sequence analysis and prediction. Thus, feature selection in the future works hopefully

can improve prediction results.

As main achievement, the proposed methodology can be used for any family of enzymes,

with exploiting any kind of regression machine and any sequence based feature vectors other

than those discussed in this work. The only limitation is the availability of sufficient training

data for specified temperature and pH condition.

No single general computational approach alone is likely to be a perfect solution for the

problem of predicting the activity of homologous enzymes from different families [50]. How-

ever, it is possible and plausible for a specific family of enzymes to determine the activity of

some members based on the determined activities of the others. In the current state, the lack of

computational tools with the capability of enzyme activity prediction is tangible in both scien-

tific studies and industrial applications. Considering the diversity of enzyme families and large

number of members in each family, it seems very difficult to design a general purpose machine

that can accurately predict enzyme activity in different pH and temperature conditions only

from sequence based data. It is more practical to design and implement a special purpose pre-

dictor machine for each family of enzymes. These machines can be trained based on experi-

mental activity measurements and evaluated with proper testing datasets. One of the main

applications of predictive models similar to those introduced in this work is to select new suit-

able candidate enzymes with superior activities from huge metagenome data. It is almost

impossible to select good targets without automated activity prediction tools. Since user-

friendly and publicly accessible web-servers represent the future direction for developing prac-

tically more useful models [38,81–86], more efforts will be made in the future work to provide

a web-server for the method presented in this paper.
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