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Abstract

Habitual loading and resistance training (RT) can lead to changes in muscle and tendon

morphology as well as in its mechanical properties which can be measured by Shear Wave

Elastography (SWE) technique. The objective of this study was to analyze the Vastus Later-

alis (VL) and patellar tendon (PT) mechanical properties adaptations to an 8-week RT proto-

col using SWE. We submitted 15 untrained health young men to an 8-week RT directed for

knee extensor mechanism. VL and PT shear modulus (μ) were assessed pre and post inter-

vention with SWE. PT thickness (PTT), VL muscle thickness (VL MT) and knee extension

torque (KT) were also measure pre and post intervention to ensure the RT efficiency. Signifi-

cant increases were observed in VL MT and KT (pre = 2.40 ± 0.40 cm and post = 2.63 ±
0.35 cm, p = 0.0111, and pre = 294.66 ± 73.98 Nm and post = 338.93 ± 76.39 Nm, p =

0.005, respectively). The 8-week RT was also effective in promoting VL μ adaptations (pre =

4.87 ± 1.38 kPa and post = 9.08.12 ± 1.86 kPa, p = 0.0105), but not in significantly affecting

PT μ (pre = 78.85 ± 7.37 kPa and post = 66.41 ± 7.25 kPa, p = 0.1287) nor PTT (baseline =

0.364 ± 0.053 cm and post = 0.368 ± 0.046 cm, p = 0.71). The present study showed that an

8-week resistance training protocol was effective in adapting VL μ but not PT μ. Further

investigation should be conducted with special attention to longer interventions, to possible

PT differential individual responsiveness and to the muscle-tendon resting state tension

environment.

Introduction

Skeletal muscles act as active and primary motors for the body segments movements [1], while

tendons represent an important connective tissue with high resistance to tensile loading,

responsible for muscle force transmission to the bone [2]. Both tendon tensile environment

and muscle demand levels will determine adaptations in these structures [3,4]. According to

the overload environment, tendons can increase resistance and thickness or undergo
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inflammation and structural disorganization [5]. Increased muscle demand and training

regime, especially against an high external resistance, can result in hypertrophy, changes in

architecture or, sometimes, lesions and degeneration [1]. Due to its fundamental function for

standing in upright position, walking and running and significant impairment in normal

movement during pathologic situations, knee extensor mechanism (quadriceps and patellar

tendon (PT)) mechanical properties has received particular interest recently [6–10].

In the last decades, changes in PT mechanical properties have been object of many studies.

Its adaptations to overload regimen, resistance training (RT) protocols, ageing and pathologic

conditions were extensively documented [6,11–13]. Yet, the PT structural and histological

adaptations to overloading are still not fully understood. Much of the knowledge about its

mechanical changes in vivo is derived from indirect analysis based on B-mode ultrasound

(US) imaging combined with dynamometry. This method, however, is subject to inaccuracies

due to possible calibration errors and misinterpretations of the structures displacement [9,14].

In the other hand, muscle mechanical properties analysis is not feasible using this strategy due

the dynamic nature of muscle contraction, even in isometric actions, and the absence of intrin-

sic anatomical landmarks to calculate strain and displacement. Other methodologies, as an

application of a durometer to describe a muscle hardness index are also very limited and the

reproducibility of this specific device has not been systematically evaluated [15].

Shear Wave Elastography (SWE) received particular interest in US imaging routine, allow-

ing a static evaluation of tissues mechanical properties [8,16]. Supersonic Shearwave Imaging

(SSI) is able to determine the shear modulus (μ) in a determined region of interest (ROI)

based on the combination of a radiation force and an ultrafast acquisition imaging system

[17–19]. The μ is therefore computed from the velocity of the propagating shear waves assum-

ing an isotropic and homogeneous medium [20,21]. Analyzing the PT, SWE has revealed PT μ
reducing after stretch-shortening regimens, ageing, tendinopathy and surgical procedures

[19,22–24]. SWE was also externally validated and although μ and tensile elastic modulus rep-

resent different measures, PT μ showed a strong positive correlation to longitudinal Young´s

Modulus (E), ultimate force to failure and resistance to tensile loading in in vitro models

[25,26]. In muscle study, SWE has showed a strong positive correlation to the muscle loading

environment passively or during active contraction (R2> 0.9) [27–29]. SWE also detected

reductions in muscle μ after long term stretching protocols [30], eccentric resistance training

[31], aging [32], musculoskeletal pathologies [33] and μ increases during acute muscle damage

[34].

Although PT mechanical adaptations and quadriceps structural changes after resistance

training monitored by US are extensively documented [35,36], to our knowledge no previous

studies evaluated the PT or quadriceps μ changes promoted by a RT protocol using SSI.

Changes in tendon collagen cross-linking as well as muscle architecture can impact ultimate

force to failure [25,26]. These adaptations could be reflected in variations of tendon stiffness.

Therefore, our initial hypothesis was that the PT stiffening and quadriceps hypertrophy after

RT observed in previous studies using US evaluation, would be reflected as an increase in μ on

SSI evaluation. Therefore, our main objective was to assess the changes in PT and quadriceps μ
using SWE, after a progressive RT protocol.

Materials and methods

Ethics statement

The University Hospital Ethics Committee approved this study (registration number

2.811.595). The experimental procedures were conducted in accordance with the Declaration

Resistance training increases quadriceps but not patellar tendon shear modulus

PLOS ONE | https://doi.org/10.1371/journal.pone.0205782 April 16, 2019 2 / 15

thickness; RM, repetitium maximum; ROI, region

of interest; RT, resistance training; SD, standard

deviation; SQ, squat; SSI, supersonic shearwave

imaging; SWE, shear wave elastography; US,

ultrasound; VL, vastus lateralis; μ, shear modulus.

https://doi.org/10.1371/journal.pone.0205782


of Helsinki. All participants received instructions about the study procedures and provided

informed written consent before testing.

Experimental procedure

The study was conducted at the Biomedical Engineering Department in our University

between july 2017 and august 2018. The body weight and height of all subjects were measured

and body mass index (BMI) was calculated. Age and dominant leg were informed. All subjects’

PT and VL were submitted to SSI evaluation pre and post intervention. As a form to assure

that the RT protocol was effective, Vastus Lateralis muscle thickness (VL MT) and knee exten-

sor torque (KT) were measured at baseline and after the eight weeks of RT. PT thickness

(PTT) was measured pre and post intervention to detect possible tendon structural adapta-

tions. All post intervention measures were performed at one week after the last training

session.

The intervention and data acquisition protocol is available in dx.doi.org/10.17504/

protocols.io.ykwfuxe.

Subjects

In this longitudinal study, 15 untrained male volunteers (28.6 ± 3.26 years old, 177.3 ± 6.88 cm

height, 91.8 ± 17.25 kg of body mass and 28.84 kg/m2 of body mass index) had the right knee

examined. Age was set between 25 and 40 years old to eliminate any variation of PT properties

due to age or gender. None of the subjects had participated in any systematic training or physi-

cal activity for at least 6 months. Any clinical history or report of knee pain/injuries, systemic

disease or previous knee surgery was considered as exclusion criteria. All subjects were right

handed.

Resistance training protocol

Participants were designated to eight-week resistance training for the quadriceps femoris mus-

cle consisting of free-weight Squats (SQ) and Knee Extensions (KE) in a knee extension

machine (MatFitness, São Paulo, Brazil) in this precise exercise order. RT protocol was

designed based on the ACSM recommendations for healthy individuals and adapted based on

previous studies with similar design [37]. The frequency of the training program was 2 sessions

per week with at least 72 hours rest between sessions. A total of 16 sessions were performed in

the 8-week training period with all the sessions occurring between 8 and 10 AM.

At baseline, 10RM testing was performed for both exercises. All subjects were submitted to

a familiarization before testing during which the subjects performed the same exercises as used

in the 10RM tests with the aim of standardizing the technique of each exercise. The 10 RM

tests and retest were then performed on 2 nonconsecutive days separated by 48–72 hours. The

heaviest resistance load achieved on either of the test days was considered the pre-training

10RM of a given exercise. The 10RM was determined in no more than five attempts, with a

rest interval of five minutes between attempts and a 10-minute recovery period was allowed

before the start of the testing of the next exercise.

The 10RM tests were used to set the initial training load. Subjects were instructed to per-

form both exercises to failure in all sets and the weighs were continually adjusted to keep the

exercises in an 8–12 repetitions range, with a two-minute rest interval between sets. Full range

of motion was used in both SQ and KE. The RT program followed a linear periodization and

progressive volume with four sets per exercise in weeks 1–4 and six sets per exercise in weeks

5–8. Before each training session, the participants performed a specific warm-up, consisting of

20 repetitions at approximately 50% of the resistance used in the first exercise of the training
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session (SQ). Contraction time was self-determined as individuals were instructed to perform

both exercises until concentric failure in the 8–12 repetition range with the highest load

possible. Adherence to the program was superior to 90% in all individuals and a strength and

conditioning professional and a physician supervised all the training sessions. Verbal encour-

agement was provided during all training sessions.

Measurement of patellar tendon shear modulus and thickness

An Aixplorer US (v.11, Supersonic Imaging, Aix-en-Provence, France) with a 60-mm linear-

array transducer at 4–15 MHz frequency was used in this study. The transducer was positioned

at the inferior pole of patella and aligned with the patellar tendon, with no pressure on top of a

generous amount of coupling gel. B-mode was used to locate and align the PT longitudinally.

When a clear image of the PT was captured, the shear wave elastography mode was then acti-

vated. The transducer was kept stationary for approximately 10 seconds during the acquisition

of the SWE map. A total of four images were acquired and saved for off-line processing analy-

sis. Scanning of PT was performed with the subject in supine lying and the knee at 30˚ of flex-

ion [38]. The knee was supported on a custom-made knee stabilizer to keep the leg in neutral

alignment on the coronal and transverse planes (Fig 1). Prior to testing, the subjects were

allowed to have a 10-min rest to ensure the mechanical properties of PT were evaluated at rest-

ing status. The room temperature was controlled at 20˚ C for all image acquisitions and the

same experienced operator performed all exams.

The Q-box selected was the larger possible rectangle in order to consider more PT elasticity

information. The μ values were obtained by a custom MatLab routine and ROI limits were

defined as the area between 5 and 25 mm from the inferior pole of the patella excluding the

paratendon (Fig 2) [39]. The custom routine calculated the μ by dividing the mean E generated

from the system by 3 [21].

Off-line analysis using ImageJ 1.43u (National Institutes of Health, Bethesda, MD, USA)

was performed with using two B-mode recorded images and the mean values were considered

for analysis. PTT was measured at 20 mm from the inferior pole of the patella. The measure

was limited by the PT deep and superficial paratendon and oriented transversely to the tendon

fibers (Fig 3).

Measurement of vastus lateralis shear modulus

The same equipment was used for VL μ measurement. A longitudinal line was drawn between

the most superficial and palpable portion of the great trochanter and the lateral epicondyle.

Scans were taken at 50% of the length of the line [40]. The line length and distance from the

great trochanter where the imaging was performed was registered for every volunteer to ensure

that the post intervention analysis was made in the same exact location in the. B-mode was

used to locate and align the probe with the VL. The images were recorded with subjects lying

supine with their knee fully extended and their muscles fully relaxed [40]. When a clear image

of the VL was captured, the SWE mode was then activated. The ROI was selected avoiding any

detectable vascular structure within the muscle and the deep fascia and based on the quality

map (Fig 4).

Measurement of vastus lateralis muscle thickness

The images acquisition was performed by an experienced researcher, using a US (GE LogiqE,

Healthcare, EUA), frequency of 8 MHz, for longitudinal scans of the VL muscle. The US probe

was centered and the images were recorded with subjects on the same position and location

used for VL SWE. The VL images were obtained on longitudinal plane laterally and the MT

Resistance training increases quadriceps but not patellar tendon shear modulus
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was determined as the mean of three distances (proximal, middle and distal) between superfi-

cial and deep aponeurosis for each image [41] (Fig 5). The images were processed with publicly

available software (ImageJ 1.43u; National Institutes of Health, Bethesda, MD, USA). For each

image, two consecutive measurements were performed and the mean values were considered

for analysis.

Measurement of knee extension torque

The maximal isometric extension KT was measured with an isokinetic dynamometer (BIO-

DEX1, Biodex Medical Systems, Shirley, NY, USA) at 80˚ of knee flexion [40]. Subjects were

positioned seated with inextensible straps fastened around the waist, trunk and distal part of

the thigh. The backrest inclination and seat translation as well as the dynamometer height

were adjusted for each subject, to ensure proper alignment of the rotation axis of the dyna-

mometer with the lateral condyle of the femur. The right knee was fixed to the dynamometer

lever arm 5 cm above the lateral malleolus. Settings were recorded for re-test reproducibility.

Fig 1. Imaging acquisition with the knee resting over a custom-made support at 30o.

https://doi.org/10.1371/journal.pone.0205782.g001

Fig 2. MatLab custom routine and ROI defined between 5 and 25 mm from the patella tip.

https://doi.org/10.1371/journal.pone.0205782.g002
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After a specific warm-up consisting of two submaximal isometric knee extensions, the subjects

performed two 5-s maximal voluntary isometric contractions (MVIC) with one-minute rest

between trials. Subjects were verbally encouraged to reach maximal effort while a visual feed-

back of the torque level was provided. The highest peak torque among trials (corrected for

gravity) was recorded for analysis.

Fig 3. ImageJ measure of PTT at 20 mm from the inferior pole of the patella.

https://doi.org/10.1371/journal.pone.0205782.g003

Fig 4. VL μ measurement and selected ROI.

https://doi.org/10.1371/journal.pone.0205782.g004
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Statistical analysis

Descriptive data such as mean ± standard deviation (SD) were calculated. The software Graph-

Pad Prism 7 was used for statistical analysis. After the normality distributions were verified

using the Shapiro-Wilk tests, paired t-tests were used to compare the PT μ, PT thickness, the

VL μ, the VL MT and the KT at baseline and after the resistance training protocol. A value of

p< 0.05 was adopted as statistically significant.

Results

Patellar tendon and vastus lateralis thickness

No statistically significant changes in PTT were observed after the eight weeks of RT (base-

line = 0.364 ± 0.053 cm and post = 0.368 ± 0.046 cm, p = 0.71). A statistically significant

Fig 5. VL MT measurement with B-mode US.

https://doi.org/10.1371/journal.pone.0205782.g005

Fig 6. A- VL MT at baseline and after eight weeks of resistance training. B- PTT at baseline and after eight weeks

of resistance training.

https://doi.org/10.1371/journal.pone.0205782.g006
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increase was observed in VL MT after the resistance training protocol (baseline = 2.40 ± 0.40

cm and post = 2.63 ± 0.35 cm, p = 0.0111) (Fig 6).

Patellar tendon and vastus lateralis shear modulus

No statistically significant changes in PT μ were observed after the eight weeks of RT (base-

line = 78.85 ± 7.37 kPa and post = 66.41 ± 7.25 kPa, p = 0.1287). A statistically significant

increase in VL μ was observed after the eight weeks of RT (baseline = 4.87 ± 1.38 kPa and

post = 9.08.12 ± 1.86 kPa, p = 0.0105) (Fig 7).

Knee extensor torque

A statistically significant increase was observed in KT after the resistance training protocol

(baseline = 294.66 ± 73.98 Nm and post = 338.93 ± 76.39 Nm, p = 0.005).

Discussion

Our study aimed to assess the effects of a progressive RT protocol directed for the knee exten-

sor mechanism on the PT and VL μ measured by SWE. Our findings indicate that the pro-

posed intervention was effective in promoting quadriceps hypertrophy and strength gains. VL

MT and KT increased significantly (p = 0.005). Also, the intervention was effective in promot-

ing VL μ adaptations (p = 0.0105), but not in significantly affecting PT μ (p = 0.1287) nor PTT

(p = 0.71)

Effects of resistance training on patellar tendon shear modulus

The study of the tendons and muscle adaptation process to progressive overload is fundamen-

tal to design optimal strategies to injury prevention and rehabilitation [42]. Two recent litera-

ture reviews investigated the PT mechanical properties changes after short-term (6–14 weeks)

RT protocols [35,43]. Significant increase in PT stiffness and E were observed routinely as a

consequence of RT [10,44–46]. It is important to notice that these previous literature address-

ing the changes in PT mechanical properties secondary to RT were based exclusively on stress

and strain estimation derived from B-mode US measures and dynamometry during isometric

quadriceps contraction [35]. Although extensively documented, there is no consensus related

to the acquisition protocol and this methodology can jeopardize results previously found

[9,14,47]. Many technical details can limit these results reliability such as limited scanning

from narrow fields of view [48,49], desynchronization between force production and elonga-

tion registration [50], limited three dimensional tracking of anatomical landmarks during

muscle contraction [49,51,52], tendon force estimation inaccuracies [53] and others.

Fig 7. A- PT μ at baseline and after eight weeks of resistance training. B- VL μ at baseline and after eight weeks of

resistance training.

https://doi.org/10.1371/journal.pone.0205782.g007

Resistance training increases quadriceps but not patellar tendon shear modulus

PLOS ONE | https://doi.org/10.1371/journal.pone.0205782 April 16, 2019 8 / 15

https://doi.org/10.1371/journal.pone.0205782.g007
https://doi.org/10.1371/journal.pone.0205782


We used SWE to observe the changes PT mechanical properties expressed by PT μ, before

and after a RT protocol. To our knowledge, this is the first work directed to PT with this

design. Although, it is well documented the association between μ and E in isotropic and

homogeneous materials [20], PT do not represent this ideal isotropic and homogeneous

medium. Nevertheless, SWE was externally validated and PT μ showed a strong positive corre-

lation to longitudinal Young´s Modulus (E), ultimate force to failure and resistance to tensile

loading in in vitro models [25,26]. Another significant limitation using SWE for PT mechani-

cal properties estimation is the guided waves effect, which is directly affected by the tendon

thickness [54]. Therefore, changes in PT structure and thickness after RT could represent a

bias in PT μ changes analysis pre and post intervention. In our study however, PTT analysis

revealed no significant changes after the 8-week RT. This results are in accordance with previ-

ous literature that revealed that larger tendons were observed only after longer interventions

(months, years) [3,35,53]. With the unaltered PTT pre and post intervention showed in our

study, we can assume that the guiding effect should have impacted similarly the PT μ at base-

line and after the RT protocol.

The 8 weeks intervention could be not sufficient to trigger changes in tendon mechanical

properties at an extent to make the μ detectable by SWE. It has been previously reported that

tendon remodeling process secondary to RT protocols can take longer periods [35], comparing

to muscle adaptations. Although literature on the topic uses RT protocols lasting 6–14 weeks, a

longer intervention could be necessary to make μ changes detectable by SWE. Our sample size

and characteristics (15 individuals) was compatible to other studies previously published

investigating PT adaptations to RT protocols with B-mode US [45,55], nevertheless, the

known wide range of normal PT shear modulus values [7,8,39] may require a large sample to

be tested.

Lastly, the changes in resting state passive tension in the muscle-tendon unit deserves par-

ticular attention. It was previously reported that the shear modulus presents strong correlation

to the tangent traction modulus at the time of SWE image acquisition [38]. It is also docu-

mented that RT can increase flexibility [56] and that static stretching was able to reduce de E

and μ acutely [57,58]. This could mask the resistance training effects on PT μ. In one hand the

expected increased collagen synthesis and tendon stiffening would increase shear modulus,

while in the other hand the relaxation in the muscle-tendon unit and reduction in passive ten-

sion applied to the tendon could reduce it.

Effects of resistance training on vastus lateralis shear modulus

Muscle mechanical properties seems to be much less explored, mainly by its limiting technical

settings [59,60]. Using US plus dynamometry technique does not seems feasible due to the

complex architecture when studying pennate muscles or due to the absence of reference ana-

tomical landmarks in fusiform muscles to calculate strain. Until the advent of SWE, muscle

mechanical properties were obtained by external mechanical analysis which is very limited, as

the muscle hardness index using a durometer, whose reproducibility has not been systemati-

cally evaluated [15].

SWE values show a strong positive correlation with the muscle force production and activa-

tion for quadriceps, triceps surae, abductor minimum and others [27–29,61], showing that as

muscle contract level rises, the more stiffer it becomes. However, the changes in muscle μ sec-

ondary to RT are far less studied. To our knowledge, only two studies addressed this topic.

Akagi et al. (2016) reported no changes in the triceps brachii μ after a 6-week RT consisting of

triceps extensions [16]. Differently from our study however, the authors report that transduc-

tor was positioned transversely to muscle fibers, which can actually exhibit lower μ values and
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blunt differences [62,63]. Furthermore, the study used a shorter intervention (6 weeks) consist-

ing of only one exercise in lower training volume (5 sets), what could explain the undetectable

changes.

Another study investigated the effects of a 6-week protocol consisting exclusively of eccen-

tric RT (Nordic Curl) on biceps femoris [31]. Similarly, to Akagi et al. (2016) no statistically

significant differences in biceps femoris μ were observed. However, in this study, stretching

was also used in the protocol. It was already evidenced that stretching can reduce muscle μ
[30], so increases in muscle μ secondary to the RT may have been counteracted by the addition

of a stretching intervention. Increased stiffness in VL μ observed in our study could be resulted

from collagen content, collagen linking and tissue fluid increasing [64]. Also changes in muscle

architecture and pennation angle as the VL, can have some impact in the μ, although the mag-

nitude of these changes in the SSI technique is still under investigation [18,65].

Limitations

Although SWE represents the state of the art in soft tissue mechanical properties evaluation

[17,66], inferring structural adaptations in the musculoskeletal tissues after RT protocols is not

trivial. Two different structures with similar composition can present different μ values on

SWE evaluation if subjected to different tension during evaluation. The same applies to struc-

tures with different structural arrangement, that can present equal μ values on evaluation if

subjected to different tension at the moment of testing [8,63,67]. We controlled the testing

position as much as possible to avoid this influence, trying to guarantee that the muscle was

fully relaxed, but it is not possible to guarantee that the relaxed muscle tension pre and post

intervention was the same. Further studies researching muscle and tendon mechanical adapta-

tions to RT with SWE should address this question and try to quantify the passive tension in

the muscle-tendon unit in the resting state pre and post intervention.

Another relevant limitation of the study is the underestimation of the tendon μ by commer-

cially available SWE equipment previously documented by Helfestein-Didier et al. [54].

Although the authors report high correlation (R = 0.84) between the conventional method and

the “corrected” method quantifying shear wave velocities and dispersion analysis, the guided

waves generated within the tendon due to its limited thickness can determine statistically sig-

nificant underestimated μ values. Furthermore, the SWE assumes a transverse isotropic

medium, which does not properly represent the complex tendon architecture [20]. In our

study, no corrections through dispersion analysis were implemented to the SSI evaluation.

When studying long term effects, these combined limitations can determine significant impact

to results. Further research in the field should attempt to address this bias.

Lastly, the VL pennation angle was not determined pre and post RT. The Aixplorer SSI

offers a relatively restricted field of view when compared to conventional US. In larger subjects

(present group average = 91.8 ± 17.25 kg), many times it is not possible to visualize the deep

fascia necessary to calculate the pennation angle. Previous literature has provided evidence

that particular attention should be paid to interpreting the SWE data related to the pennate

muscles [65] as it seems that the fascicle orientation can influence SWE measurements [68].

Also, it is well documented that RT protocols can determine changes in the pennation angle

[69], so it is possible that SWE measurements in chronic studies addressing pennate muscle

can suffer influence of the changes in muscle architecture promoted by RT. Further investiga-

tion using SWE to address pennate muscles μ changes after RT should give particular attention

to the impact of fascicle orientation changes on SWE measurements.

To our knowledge, this is the first study analyzing the adaptation of the PT and VL mechan-

ical properties to RT with SWE. Our initial hypothesis that RT would increase PT and VL μ
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was partially confirmed, as VL μ changes were observed, but not PT μ. These findings can help

design further researches on the field and build new knowledge about the knee extensor mech-

anism remodeling process to mechanical overloading.

Conclusion

The present study showed that an 8-week resistance training protocol was effective in adapting

VL μ but not PT μ, measured by SWE. Further investigation should be conducted with special

attention to longer interventions, to possible PT structural changes set points and to the mus-

cle-tendon resting state tension environment.
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