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Abstract

Introduction

Retention of 2-deoxy-2-[18F]fluoro-D-glucose 18F-FDG in the bladder causes more prob-

lems in small animal research than in human research owing to the smaller size of the sub-

ject. Catheterization has been proposed to reduce bladder spillover both in human studies

and in small animal research. Noninvasive alternatives such as hydration plus furosemide

also seem to be a promising pre-imaging strategy for decreasing bladder spillover. Our main

goal was to measure the effects of the combination of furosemide and hydration for reducing

bladder signal directly on mouse bowel 18F-FDG-PET images.

Methods

Nine mice were divided into two groups: the control group (C, n = 4) and the treatment group

(n = 5). The clearance protocol combines hyperhydration and a single furosemide dose dur-

ing the 18F-FDG uptake period. Two images were acquired on different days in treated mice

to evaluate two different furosemide doses (low dose, LD, 3.5 mg/kg; and high dose, HD, 7

mg/kg). A region of interest was drawn on each computed tomography image (bladder, kid-

neys, liver, muscle, and bone marrow). To quantify bladder spillover, two different areas of

the colon were selected.

Results

A remarkable reduction in bladder spillover was achieved on 18F-FDG -PET in both groups.

Our imaging findings were quantified, and both furosemide doses induced a decrease in

mean standard uptake values (SUVmean) compared with the controls (LD 1.46 ± 0.54 and

HD 1.05 ± 0.29; controls: 8.90 ± 3.4 [p-value < 0.05]).

Conclusion

We validated a non-invasive, easy, and harmless pre-imaging alternative for decreasing
18F-FDG bladder spillover. Our study shows the effect of furosemide on bladder spillover
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directly on 18F-FDG-PET images by measuring SUVmean in the bladder, colon, liver, mus-

cle, and bone marrow.

Introduction

Clinical and preclinical applications of 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) positron

emission tomography (PET) are increasingly used in a wide variety of disciplines such as

oncology [1], cardiology [2, 3], neuroscience [4], and inflammatory and infectious diseases [5,

6]. Although unspecific uptake of 18F-FDG results in the well-known problem of detectability

in several applications [7, 8], accumulation of urine also constitutes a relevant limitation of

this radiotracer [9]. The accumulation mechanism depends on the fluorine atom in the mole-

cule, which reduces the affinity of 18F-FDG for sodium-glucose linked transporter 1 on the

proximal tubules of the nephron, thus decreasing reabsorption [10, 11] and, consequently,

increasing elimination of 18F-FDG from urine. The accumulation of activity in the bladder

leads to spillover, which may hamper visualization of neighboring lesions such as gynecologi-

cal cancers [12], bladder wall malignances [13], and inflammatory bowel diseases (IBD) [5].

Spillover is more important in small animal research than in human studies owing to the

smaller size of the subjects, their faster metabolism, and their higher excretion rates, which

lead to rapid bladder refilling [14]. Several methods have been proposed [15] to reduce the
18F-FDG signal in the bladder. Non-invasive alternatives are based on the use of saline hydra-

tion with or without concurrent administration of diuretic [11, 16]. These methods focus

mainly on the evaluation of 18F-FDG in urine, but do not explore its actual effects on the PET

image, which remain largely unknown. Accordingly, our main goal was to measure the effects

of the combination of furosemide and hydration for reducing bladder signal directly on mouse

bowel 18F-FDG-PET images.

Materials and methods

All mice were housed in cages under the same conditions (ad libitum access to food and water,

with 12 h of light and 12 h of darkness).

Nine mice were divided into two groups, the control group (C, n = 4) and treatment group

(n = 5). Animals fasted overnight before PET-CT acquisition (ARGUS scanner, SEDECAL,

Madrid). Scans were performed under inhaled anesthesia (isoflurane: 5% for induction and

2% for maintenance). Control animals (under no treatment) underwent a single PET-CT

study. Two PET-CT images were acquired on different days from the treated mice to evaluate

the bladder clearance protocol.

Bladder clearance protocol

Fig 1 shows the steps followed to prevent accumulation of 18F-FDG in the bladder. Treated

animals were hydrated by administering two subcutaneous (SC) saline boluses 45 and 25 min-

utes before image acquisition (time point zero in Fig 1). A single intraperitoneal (IP) dose of

furosemide was administered together with the last saline bolus. Two furosemide doses were

tested on different days: low dose, LD, 3.5 mg/kg; and high dose, HD, 7 mg/kg; simultaneously

with the second saline bolus, 25 minutes before PET acquisition. In both control and treated

animals, urination was forced by manual bladder compression to minimize the bladder signal

before the animal was placed inside the PET scanner.

Cleaning 18F-FDG bladder signal
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Image acquisition

A 30-minute PET image (prone position) was first acquired followed by a CT image using an

X-ray beam current of 240 μA and a tube voltage of 40 kVp. Forty-five minutes before the PET

scan, every mouse received an intravenous injection of 19.4 ± 1.8 MBq 18F-FDG. Before imag-

ing, the animals also received 0.3 ml iopamidol intraperitoneally (Iopamiro, Bracco Imaging S.

p.A, Italy) to delimit the external border of organs and 0.5 ml of gastrolux contrast agent in the

rectum [17] (Iberoinvesa Pharma S.L, Spain) to enhance the internal lumen of the colon. PET

images were reconstructed using OSEM-2D, with 50 subsets and 2 iterations. CT images were

reconstructed using an FDK algorithm [18].

Image analysis

For each image, regions of interest (ROIs) were drawn on the CT image. These included the

bladder, kidneys, liver (0.04±0.01 cc of the left lateral lobe), muscle, small intestine and bone

marrow (left ilium). Bladder spillover was quantified as the ratio between SUVmean of distal

colon and SUVmean of middle colon. These two different colon areas were selected as follows:

a portion of the middle colon as a region at some distance from the bladder and a portion of

the distal colon as a region near the bladder. ROIs were transferred to the PET study to mea-

sure their mean standard uptake values (SUVmean). Total bladder radioactivity was also mea-

suring to support SUVmean results and evaluate possible bladder volume effects. Additionally,

bladder volume (cc) was measured on the CT.

Statistical analysis

Results are presented as mean ± SD. The Kruskal-Wallis test was used to statistically assess differ-

ences in SUVmean between the groups. The Wilcoxon test was used for paired comparisons (LD

vs. HD) and Levene test for the variability. Statistical significance threshold was set at p< 0.05.

Animal ethics statement

Mice were housed in the animal facility of Hospital General Universitario Gregorio Marañón,

Madrid, Spain (ES280790000087). All animal procedures conformed to EU Directive 2010/

Fig 1. Bladder clearance protocol. Zero time corresponded to the PET acquisition. Forty-five minutes before the scan, the animals received 19.4 MBq of 18F-FDG. CT

contrasts (iopamiro and gastrolux) were administered immediately before acquisition. Treated animals received two SC saline injections (-45 min and -25 min) and a

dose of furosemide (-25 min). �Administration only in treated animals; LD = low dose, 3.5 mg/kg; HD = high dose, 7 mg/kg; SC = subcutaneous; IP = intraperitoneal;

and IV = intravenous.

https://doi.org/10.1371/journal.pone.0205610.g001

Cleaning 18F-FDG bladder signal

PLOS ONE | https://doi.org/10.1371/journal.pone.0205610 October 17, 2018 3 / 9

https://doi.org/10.1371/journal.pone.0205610.g001
https://doi.org/10.1371/journal.pone.0205610


63EU and national regulations (RD 53/2013) and were approved by the local ethics commit-

tees and the Animal Protection Board of the Comunidad Autónoma de Madrid (PROEX 204/

14).

Results

Fig 2A shows examples of PET-CT images from each group. 18F-FDG-PET activity in the blad-

der was markedly reduced in both treated groups compared with the control mice. Our visual

findings were quantified, and both furosemide doses induced a decrease in bladder SUVmean

compared with the controls (LD 1.46 ± 0.54 and HD, 1.05 ± 0.27; controls, 8.90 ± 3.4 [p <

0.05]). Total bladder radioactivity counts also decreased with both furosemide doses (LD 1.49

x 105 ± 4.92 x 104 and HD, 7.40 x 104 ± 3.19 x 104) compared with controls (2.89 x 105 ± 4.28 x

104, [p< 0.05]). In addition, a larger variability was observed in the control group (3.4 vs. 0.54

in LD and 0.29 in HD; [p = 0.012]), coefficient of variation is higher in controls (38.2%) com-

pared with HD (26.0%). The bladder clearance protocol also enabled a clear increase in blad-

der volume in treated animals compared with the control group, although the difference was

not statistically significant (Fig 2C).

No differences were observed for 18F-FDG uptake in bone marrow and muscle (Fig 2D).

Liver uptake increased in both treated groups (LD, 0.56 ± 0.10; HD, 0.55 ± 0.09) compared

with controls (0.39 ± 0.03; p-value < 0.05). A slight increase was also observed in the kidneys

and small intestine, although, again, the differences were not statistically significant.

Colon uptake ratio (SUVmean of distal colon / SUVmean of middle colon, as explained

above) was used to assess the effect of bladder spillover. Fig 3A shows the location of these

colon regions in the sagittal plane. Colon uptake ratios were clearly reduced in the treated

groups (LD, 1.09 ± 0.06; HD, 1.21 ± 0.06) compared with the control animals (1.9 ± 0.97), thus

quantitatively confirming the decrease in bladder spillover when the clearance protocol is

applied (Fig 3B). The high dose (7 mg/kg) induced a slight decrease in 18F-FDG uptake in the

bladder compared with LD (p = 0.043), liver (p = 0.70), kidneys (p = 0.5), and small intestine

(p = 0.35). Moreover, bladder volume was smaller than with the low dose (p = 0.5), although

the differences were not statistically significant.

Discussion

In this work we assess a non-invasive, easy, and harmless pre-imaging procedure to decrease

accumulation of 18F-FDG in the bladder. This clearance protocol combines hyperhydration

with a single furosemide dose during the 18F-FDG uptake period. Our study quantifies the

effect on 18F-FDG-PET images by measuring the SUVmean of the bladder bone marrow, liver,

muscle, small intestine and colon in order to assess bladder spillover.

Previous studies [11, 16] evaluated the effect of administering a diuretic by directly quanti-

fying 18F-FDG in excreted rodent urine under various experimental conditions, such as long

pre-hydration periods (IP saline administration 2.5 hours before 18F-FDG injection [16] and

IV saline infusion before and during the 18F-FDG-PET experiment [11]). To our knowledge,

our study is the first to quantify the effect of the proposed protocol on 18F-FDG-PET images.

Our results for bladder uptake also show a decreased standard deviation in treated animals,

indicating that the pre-imaging procedure helps to homogenize the studies, as the amount of

spillover would be more constant across subjects.

Previous studies in both clinical research [15, 19, 20] and preclinical research [16] con-

cluded that the key to obtaining satisfactory bladder clearance is the optimal time of furose-

mide injection with respect to 18F-FDG administration [15, 16, 19, 20], although this timing

has not yet been established in rodent 18F-FDG-PET imaging. We had observed that the
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Fig 2. PET-CT images. (A) Coronal PET (red scale, cps x 10−3) and CT (gray scale) images of a control animal (C), low dose (LD, 3.5 mg/kg), and high dose (HD, 7 mg/

kg). The bladder signal (arrow) is lower in treated animals than in controls. (B) Both furosemide doses led to a reduction in bladder SUVmean compared with the

control group. (C) Bladder volume of the treated animals is slightly higher than the controls. (D) Non-significant differences were observed in kidney, bone marrow,

small intestine and muscle uptake, although an increase in SUVmean was observed in the liver. �p< 0.05.

https://doi.org/10.1371/journal.pone.0205610.g002
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bladder clearance protocol (saline with furosemide) takes effect 15–20 minutes after adminis-

tration (S1 Fig). Additionally, in rodents, excretion of 18F-FDG occurs during the first 30 min-

utes after administration, with decreased blood levels [11]. Taking both observations together

(optimal time for furosemide and 18F-FDG excretion) we chose to administer furosemide 25

minutes after the 18F-FDG injection, assuming that the diuretic effect of furosemide begins

close to the moment when the 18F-FDG blood concentration decreases. Our hypothesis was

confirmed after analyzing the 18F-FDG-PET images, because the timing selected reduced the

bladder signal (Fig 2A), with no marked effects on surrounding tissues such as muscle, small

intestine and bone marrow (Fig 2D).A secondary effect of furosemide is the increased bladder

volume, well described in patients and that may be helpful for the visualization of bladder wall

malignances [15]. However, in our study we observed that bladder volume increase may com-

press and displace adjacent organs, such as the colon, thus hampering visualization. Despite

this possible negative effect, we are already routinely using the high furosemide dose combined

with hyperhydration in mouse models with abdominal PET imaging, such as Crohn’s disease,

infectious colitis and prostate cancer.

The excellent bladder suppression we achieved is consistent with the observations of

Kosuda et al. [16], who reported an increase in 18F-FDG uptake in several tissues (liver, kidney,

small intestine, heart, etc.), which agree with our findings (Fig 2D). Kidney and liver are the

organs that are most susceptible to furosemide [21]. Foy et al. [22] showed a significant reduc-

tion in liver glycogen 1 hour after IP administration of the 200 mg/kg dose of furosemide, pos-

sibly indicating an increase in liver metabolism and, therefore, an increase in 18F-FDG uptake.

We did not observe any difference between the groups for uptake of 18F-FDG in bone marrow,

small intestine and muscle.

Fig 3. Evaluation of bladder spillover. (A) Sagittal PET (red scale) and CT (grey scale) image of mouse abdomen showing selected areas of the colon. (B) Ratio between

the distal colon and middle colon (n = 3 per group). HD, high furosemide dose (7 mg/kg); LD, low furosemide dose (3.5 mg/kg).

https://doi.org/10.1371/journal.pone.0205610.g003
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To evaluate the effects of bladder clearance, we measured uptake of 18F-FDG in the distal

and middle colon (Fig 3). Both areas have equivalent 18F-FDG uptake (ratio close to one),

whereas the control animals showed almost double the uptake ratio in the distal colon. There-

fore, the protocol we propose clearly reduces bladder spillover in the colon.

Interpretation of the data in this study is limited by the fact that mice are the rodent species

that is most sensitive to furosemide-induced toxicity [21]. Our protocol increases bladder vol-

ume, which may compress and displace adjacent organs, such as the colon, thus hampering

visualization. We observed this problem in four treated animals, forcing us to reduce the sam-

ple size per group for the spillover analyses. This undesirable effect may be reduced by forcing

urination before placing the animal inside the PET-CT device although in our case was not

effective in all the animals. Diuretic drugs reduce blood pressure, and this must be taken into

account if the animals are under treatment with additional drugs. Finally, it must be noted that

the decrease in bladder activity may contribute to an overall better contrast recovery by

increasing other organs uptake, although this effect depends on the system noise-equivalent

counting rate (NEC) and is expected to be small for most commercial PET scanners at the

dose levels used here.

In conclusion, we characterized a non-invasive and effective pre-imaging protocol that

reduces accumulation of 18F-FDG in urine. Our pre-imaging protocol is based on the combi-

nation of hyperhydration and furosemide during the 18F-FDG uptake period. With the excep-

tion of the liver, our pre-imaging protocol did not reveal alterations in tissue uptake measured

directly on the PET images. Furthermore, we demonstrated that it is an effective method for

decreasing bladder spillover in neighboring organs such as the colon.

Supporting information

S1 Fig. Urination effects of hydration and furosemide. (a) Minute 0 was chosen as reference

coinciding with the furosemide administration in treated groups. Every animal received two

subcutaneous (SC) saline boluses at minutes -20, and 0. �Treated groups (LD and HD) addi-

tionally received an intraperitoneal (IP) bolus of furosemide (0-time, total volume of 0.2 ml).

(b) Time course of voiding. Points represent means of three mice per group. LD: low dose of

furosemide group (3.5 mg/kg) and HD: High dose of furosemide group (7 mg/kg).

(TIF)
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